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Two stages heat pump simulation
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ne model equations

DOF
ns=nv-ne  specification equations

x-xs = 0
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Incidence Matrix of a Unit model

IPESE
Industrial Process and 

Energy Systems Engineering

Mass balance     xxxxxxx   xxxxxx       xxxxx

Energy balance   xxxxxxxxxxxxxxxxxxxxxxxxxxxx

Model            xxxxxxx   xxxxxx             xx

Const Equations        xxxxxxxxxx     xxx     x

                        xx           xx            x

Specifications          x

                   x

                     x

                       x

                         x

                          x

                                              x

                                               x

                                                 x

                         x

                          x


nx state variables np parameters

To solve the problem :
1) square matrix
2) independent equations

nv variables = nx + np

In the incidence matrix, the element (i,j) is equal to 1 if variable i is in equation j
It indicates the presence (incidence) of a variable (i) in the equation (j) 
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Eq1  x

Eq2   x

Eq3    x

Eq4     x

Eq5      x

Eq6       x

Eq8   x     x

Eq9   xx     x

Eq7  x     x

Eq10  xx      x

Eq11     x    xx

Eq13     x      xx

Eq14 x   x       xx

Eq12     x x    x

Unit model : Incidence matrix rearranged

IPESE
Industrial Process and 

Energy Systems Engineering

Ns Specifications
X-Xs=0

Nb Balances
B(Xin)-B(Xout)=0

Nm Models
M(X,P)=0

F(X) : Equations
Ne=Ns + Nb + Nm

X : Variables
Nv state
Ni intermediate
Np parameters

Nx=Nv+Ni+Np

Nc Constitutive equations
C(X)=0

DOF analysis

Ne=Nx

Specified variables : e.g. parameters + context+decisions



Simulation

Process models & decision support

F (X,�unit) = 0

X �Xs = 0

�unit � �s
unit = 0

⇡s
unit

Performances

Optimization
values of decisions

Xs

Model

Set points

Specifications

⇡unit

What are the X we want to know ?
• Streams ?
• Unit parameters ?

Model is defining the level of detail



• The process model and the unit models define the 
expected level of detail

– i.e. the data we want to generate with the model 


• Unit models require Parameters with fixed values

– What are the values of the parameters ?


• Literature => correlations, experience

• From experiments/observation


– sensors => measured values 
=> Observed states 
=> Calculated parameters


– Calibration on existing equipment

• Parameter fitting



Two stage heat pump : measures and system state
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What is the state of the system ? 
What is the value of U ?

What is the value of efis ?


Measured points with sensors

e.g. T, P, X, ·m



Goals of the lecture

• How to calibrate models using measurements
– Where to place measurements
– Virtual sensors by process models
– Data reconciliation

• correct the values of the measurement
– Parameter identification



5. Simulation

Measurement and parameter identification
2. Identification

F (X,�unit) = 0

X �Xm = 0

F (X,�unit) = 0

X �Xs = 0

�unit � �s
unit = 0

Xm

⇡s
unit

⇡s
unit = ⇡unit

⇡unit

1. Measured values

6. Performances

7. OptimizationXs

Model

Measurements

3. Identified parameters

Model

Set points

Specifications

4. Specified parameters
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Eq9   xx     x

Eq7  x     x

Eq10  xx      x

Eq11     x    xx

Eq13     x      xx

Eq14 x   x       xx
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Unit model : Incidence matrix rearranged

IPESE
Industrial Process and 

Energy Systems Engineering

Nobs Measures
X-Xobs=0

Nb Balances
B(Xin)-B(Xout)=0

Nm Models
M(X,P)=0

F(X) : Equations
Ne=Nobs + Nb + Nm

X : Variables
Nv state
Ni intermediate
Np parameters

Nx=Nv+Ni+Np

Nc Constitutive equations
C(X)=0

DOF analysis

Ne=Nx

Measured

variables

Non Measured

variables



Analysing the specification or measurements sets
– Goals


• From a flowsheet flowsheet with a pre-specified set of specification
– what are the DOF, are there enough specs?

– if no where to place the missing specifications?

– If yes what are the extra specifications ?


• Model is defined by :


• S(Xstate) is the set of specification
– context

– operating set points

– Market specifications

– Model parameters


• S(Xstate) needs to be consistent with the model

F (Xstate) = 0⇥ equipment model
L(Xstate) = 0⇥ linking equations
T (Xstate) = 0⇥ constitutive equations

S(Xstate) = 0 : Xstate �Xspecified
state = 0⇥ Specification of the value of state variables

where

Xstate = {xStateV ariables, xUnitParameters, ydecision�{0, 1}}



• Do we have enough measurement

– can the model be solved ?

– do we need more measurements ?

– what do we do if we have more measurements ?

2. Identification

F (X,�unit) = 0

X �Xm = 0

Xm

⇡unit

1. Measured values

Model

Measurements

3. Identified parameters



Do we have enough measurement/specifications ?



Example of a simplified system
Hydrogen combustion with pure oxygen

Canonical form : F(x) = 0   =>   A x = c

H22

O22

H2O2

T2

H25

O25

H2O5

T5

F1
F3 F4 F5

F2 Q

H2 +1/2 O2 
-> H2OM

R

E

H21

O21

H2O1

T1 H23


O23

H2O3

T3

H24

O24

H2O4

T4

H2	 kmols/s

O2	 kmols/s

H2O	 kmol/s

T 	 °C

T 	 measured

Unité R
	 	 	 H23 - U - H24 = 0


Mass balance: 	 O23 - 1/2 U - O24 = 0

	 	 	 H2O3 + U - H2O4 = 0


Energy Balance :	 Σ x3 * (h°x3 
+ hx3

(T3)) - Σ x4 * (h°x4 
+ hx4

(T4)) = 0



Incidence matrix

Incidence Matrix : ai,j = 1 if variable j occures in equation i

Combustion

A x = c

H2	 kmols/s

O2	 kmols/s

H2O	 kmol/s

T 	 °C

T 	 mesures

Variables : 22 in which 11 measures Δ = 11

E
qu

at
io

ns
 1

2

F1
F3 F4 F5

F2 Q

H2 +1/2 O2 
-> H2OM

R

E

H21

O21

H2O1

T1

H22

O22

H2O2

T2

H23

O23

H2O3

T3

H24

O24

H2O4

T4

H25

O25

H2O5

T5

only 10 are 
needed



Structural analysis : re-arrange the matrix
N

EQ
 E

qu
at

io
ns

MES
Variables 
Measured
(specs)

M

variables : measured (= specified) or not (to be calculated)
1) NEQ < NMES :no solution

(NMES-NEQ) Equations are missing

to calculate unknown variables

2) NEQ = NMES : all the unknows can be 
calulated (just calculable system)

3) NEQ > NMES : too many equations 
(redundant system)

in this case some measured values can be 
recalculated using the value of the other

NMES
Variables 

not measured
(unknown)

B



Incidence Matrix

Measured variables: 11 

sy
st

em
 e

qu
at

io
ns

: 1
2

Example : combustion
H2	 kmols/s

O2	 kmols/s

H2O	 kmol/s

T 	 °C

T measured

F1
F3 F4 F5

F2 Q

H2 +1/2 O2 
-> H2OM

R

E

H21

O21

H2O1

T1

H22

O22

H2O2

T2

H23

O23

H2O3

T3

H24

O24

H2O4

T4

H25

O25

H2O5

T5

unknown variabless : 11 

Square system ?



Rearrange the matrix

1) regroup measured and unknowns (M+B)

Exemple : combustion
H2	 kmols/s

O2	 kmols/s

H2O	 kmol/s

T 	 °C

T 	 mesures

F1
F3 F4 F5

F2 Q

H2 +1/2 O2 
-> H2OM

R

E

H21

O21

H2O1

T1

H22

O22

H2O2

T2

H23

O23

H2O3

T3

H24

O24

H2O4

T4

H25

O25

H2O5

T5

measured/specified variables: 11 Non measured : 11 

3 1 2 1 1 2 2 1 2 3 4 3 3 R 4 4 4 5 5 5 5 E

H
2O

H
2O

H
2O O
2

H
2

O
2

H
2 T T T T O
2

H
2 U O
2

H
2

H
2O O
2

H
2

H
2O T Q

Bilan Matière M H2O X X X
Bilan Matière M O2 X X X
Bilan Matière M H2 X X X
Bilan thermique M X X X X X X X X X X X X
Bilan Matière R O2 X X X
Bilan Thermique R X X X X X X X X
Bilan Matière R H2 X X X
Bilan Matière R H2O X X X
Bilan Matière E O2 X X
Bilan Matière E H2 X X
Bilan Matière E H2O X X
Bilan thermique E X X X X X X X X X

2) Reorganise the B matrix (unknowns) by line and column permutations in order to have :

• 1 element on each diagonal position

• regroup in sub-systems  (square or rectangles)

sy
st

em
 e

qu
at

io
ns

: 1
2



Incidence matrix analysis

3 1 2 1 1 2 2 1 2 3 4 3 3 R 4 4 4 5 5 5 5 E

H
2

O
H

2
O

H
2

O
O

2
H

2
O

2
H

2 T T T T O
2

H
2 U O
2

H
2

H
2

O
O

2
H

2
H

2
O

T Q

Bilan Matière M H2O X X X
Bilan Matière M O2 X X X
Bilan Matière M H2 X X X
Bilan thermique M X X X X X X X X X X X X
Bilan Matière R O2 X X X
Bilan Thermique R X X X X X X X X
Bilan Matière R H2 X X X
Bilan Matière R H2O X X X
Bilan Matière E O2 X X
Bilan Matière E H2 X X
Bilan Matière E H2O X X
Bilan thermique E X X X X X X X X X

Redundant

nbeq > nb var => possibility to correct measures/
eliminate specification

just calculable

	 NEQ (7) =NMES(7)

not calculable

	 NEQ (1) < NMES(2)

Add at least 1 measure (2-1)

T5 or Q

Redundant = 1 (nb equations - nb unmeasured variables)

T4 can not be corrected/eliminated



Generalisation : In case of complex systems

0B1

B2''B2'

Eq
ua

tio
ns

unknowns (not measured)

S1 
redundant
 or calculable  
(B1 vertical)

S2=B2'+B2'' 
Non calculable sub system

 (B2'' horizontale)

S2
S1

1) Reorganise the B matrix ( unknowns - equations)
Reorganise the B matrix (unknowns) by line and column permutations in 
order to have:


• 1 element on each diagonal position

• regroup in sub-systems  (square or rectangles)

Missing measurement (rectangle is horizontal)
•add measures to make  B2’’ square or vertical 
rectangle (ncolonnesB2” - nlignesB2”)
•this influences the other permutations => 
iterations

validable sub-system (rectangle is vertical)
more equations than unknowns

variables candidates



Analogy measurements and DOF analysis

Measurements systems analysis

– Measures

– Redundancy


• more information available


– Missing measurements

• add measures

DoF analysis

–	 Specifications

–	 Over-specified


•	 Specs to be suppressed


–	 under specified

Add specs



Redundant measurements

00 B1

B2''B2'

Eq
ua

tio
ns

Variables 
measured

S1 
validable
(B1 vertical matrix)

Variables 
unknowns

S1
S2 M2' M2''

M1

{

Redundant measurement may be reconciled
Redundancy number= nlines

B1 - ncolumns
B1

S2 
just calculable
 (B2''  square)

variables just 
   calculable

measurement that can 
not be reconciled

and are considered as 
perfectly known

{ {
A redundant measurement can be corrected using the values of the other measurements and the model equations



Data reconciliation


What is happening when I have more measures 
than the minimum number needed ?



What is the heat transfer coefficient of the heat exchanger?

• Equations: 3 
– 2 energy balances
– Q=UA ΔTlm

• State variables: 8
– 4 temperatures
– 2 flows
– 2 parameters Q, U

• Degrees of Freedom : 5 = 8-3
• Measures : 6

– do not add losses in as a DOF !

Eau
30 kg/s
20 °C

25 °C

Beer
1.83 kg/s
130 °C

40 °C

Cp = water

Are the measurements consistent ?



Measure 1 2 3 4 5 6
Flow 1 kg/s 30.00 32.95 30.00 30.00 30.00 30.00 30.00

T in °C 20.00 20.00 19.51 20.00 20.00 20.00 20.00
T out °C 25.00 25.00 25.00 25.49 25.00 25.00 25.00
Q 1 kW 627. 689. 689. 689. 627. 627. 627.

Flow 2 kg/s 1.83 1.83 1.83 1.83 1.67 1.83 1.83
T in °C 130. 130. 130. 130. 130. 121.9 130.
T out °C 40.00 40.00 40.00 40.00 40.00 40.00 48.07

Q 2 kW 689.2 689.2 689.2 689.2 627.4 627.4 627.4
ΔT ML °C 51.3 51.3 51.7 51.1 51.3 48.7 58.3

U W/m2/K 134 133 135 122 129 108

Choosing the good measure

Measure Specified Calculatedcorrected

8 variables - 3 equations => 5 measures over 6 have to be fixed



Measurement system

• Classify variables

• Measured - non measured

• Redundant - non redundant

• Calculable - non calculable

• Specified


• Measures => sensors

• Exact (mean value)

• Precision-Accuracy (standard 

deviation)

• Redundancy


• Multiple sensors

• Mass and energy balances

σ2

µ

Δ



Data reconciliation problem
measured valueState variable value

minX,Y

nmesX

i=1

(
yi � y⇤i

�i
)2

s.t. MassBalance(X,Y ) = 0

EnergyBalance(X,Y ) = 0

Thermodynamic(X,Y ) = 0

ConstituveEquations(X,Y ) = 0

Performance(X,Y,⇡) = 0

Inequalities(X,Y ) � 0

standard deviation

Knowledge about the process
Virtual sensors

F(Y, X) = 0



Problem resolution : constrained NLP Optimisation

  

€ 

Min
xi ,yi ,λ i

L = ( yi − yi
*

σ ii
∑ )2 + 2* λ j * f j( yi , xi)

j
∑ Lagrangien

Min
X ,Y ,Λ

L = (Y −Y * )t Ρ(Y −Y * ) + 2 *Λ*F(X,Y )

⇒ ∇L= 0

soit 
δL
δΛ

=  F(Y ,X) = 0

δL
δX

= 2*Λ*B = 0 avec bi, j =
δfi(Y ,X )
δx j

δL
δX

= (Y − Y *) *P + Λ*A = 0 avec ai, j =
δfi(Y, X)
δy j

Lagrange Formulation

X = non measured, Y = measured

Lagrange multiplier

Matrix representation

Gradient set to zero

F(Y, X) = 0 : Set of modeling+ specification equations

virtual sensor

δY



What is the heat transfer coefficient of the heat exchanger?

• Equations: 3 

– 2 energy balances

– Q=UA ΔTlm


• State variables: 8

– 4 temperatures

– 2 flows

– 2 parameters Q, U


• Degrees of Freedom : 5 = 8-3

• Measures : 6

Eau
30 kg/s
20 °C

25 °C

Beer
1.83 kg/s
130 °C

40 °C



data reconciliation results

Mes. σ Vali. (M-V)/ σ
Flow 1 kg/s M1 30.00 1.50 30.30 -0.197

T in °C T1 20.00 0.50 19.81 0.371
T out °C T2 25.00 0.50 25.19 -0.371

Q 1 kW 627.4 680.6
Flow 2 kg/s M2 1.83 0.10 1.81 0.215

T in °C T3 130.00 1.00 129.96 0.044
T out °C T4 40.00 1.00 40.04 -0.044

Q 2 kW 689.2 680.6
A m2 100
ΔT LM °C 51.40

U W/m2/K 132
SSQ= 0.3643



Mesures 1 2 3 4 5 6
Flow 1 kg/s 30.00 32.95 30.00 30.00 30.00 30.00 30.00

T in °C 20.00 20.00 19.51 20.00 20.00 20.00 20.00
T out °C 25.00 25.00 25.00 25.49 25.00 25.00 25.00
Q 1 kW 627. 689. 689. 689. 627. 627. 627.

Flow 2 kg/s
T in °C 130. 130. 130. 130. 130. 121.9 130.
T out °C 40.00 40.00 40.00 40.00 40.00 40.00 48.07
Q 2 kW 689.2 689.2 689.2 689.2 627.4 627.4 627.4
ΔT ML °C 51.3 51.3 51.7 51.1 51.3 48.7 58.3

U W/m2/K 134 133 135 122 129 108

What are the most probable values of the measured values ?

Measure Specification CalculatedCorrected

30.30
19.81
25.19
680.6
1.81

129.96
40.04
680.6
51.40

132
Validated

All measures are considered

1.83 1.83 1.83 1.83 1.67 1.83 1.83



Results validity
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Results analysis
• How to use the results


– Sum of square residuals

• is there a lot of corrections ?

• Is the model (what we know) valid ?


– e.g. a leakage is apriori not modeled 


– Are the bounds activated

• Is the model valid


– Sensitivity analysis 

• One can calculate the precision of the value of measured and 

unmeasured values

– Corrections analysis


• Failling sensors => Gross errors (if big corrections => remove the sensor)

• Sensor calibration


– Importance of the sensors on the results



Sensitivity

€ 

on a ∇L = 0 ≡

P 0 AT

0 0 BT

A B 0

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 
*
Y
X
Λ

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

=

P Y *

0
−C

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

Soit MV = D
Et V = M −1D

When the solution is obtained, we have

Or

And Sensitivity of the calculated variable w.r.t to D 

weight x measure

D is the set of measured values

P is the weight of the measures (
1
σ2

)

A =
δF(X, Y )

δY
B =

δF(X, Y )
δX

F(X, Y ) process model



Sensitivity analysis : Variance of the results

In detail

€ 

Yi = M −1( )
ij
D j

j=1

m+ n+ p

∑

= M−1( ) ij
j=1

m

∑ Pjj y j* − M−1( ) i n+ m+k
k=1

p

∑ Ck

€ 

Xi = M−1( )
n+ i j

Dj
j=1

m+n + p

∑

= M −1( )n +i j
j=1

m

∑ Pjj y j
* − M −1( )n +i n +m+ k

k=1

p

∑ Ck

€ 

or si Z = aj X j
j=1

m

∑ alors var Z( ) = aj
2 var X j( )

j=1

m

∑

Measurement

Calculated

Variance calculation if then   

The variance is calculated as a sensitivity to 
the variance of the measurement

Sensitivity of the measured value

Sensitivity of the precision

Sensitivity of the measured value

Sensitivity of the precision



Sensitivity of solutions

€ 

M δV
δY * +

δM
δY * V −

δD
δY * = 0⇒ δV

δY * = M−1

P
0
0

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

M δV
δP +

δM
δP V −

δD
δP = 0

⇒

δY
δP
δX
δP
δΛ
δP

% 

& 

' 
' 
' 
' 
' 
' 

( 

) 

* 
* 
* 
* 
* 
* 

= M −1

Y *

0
0

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 
−

1 0 0
0 0 0
0 0 0

% 

& 

' 
' 
' 
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) 

* 
* 
* 

Y
X
Λ

% 

& 
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' 
' 

( 

) 

* 
* 
* 

*% 

& 

' 
' 
' 
' 

( 

) 

* 
* 
* 
* 

to measurement

How much a calculated value is influenced by the value of 
a measurement



Sensitivity of solutions

€ 

M δV
δY * +

δM
δY * V −

δD
δY * = 0⇒ δV

δY * = M−1

P
0
0

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

M δV
δP +

δM
δP V −

δD
δP = 0

⇒

δY
δP
δX
δP
δΛ
δP

% 

& 
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' 
' 
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= M −1

Y *

0
0
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to measurement accuracy

How much a calculated value is influenced by the accuracy of a measure



A posteriori variance
Standard deviation of the calculated variables =f(P,Y*)

€ 

var Yi( ) = M −1( ) ij Pjj{ }2 var y j*( )
j=1

m

∑

€ 

var Xi( ) = M−1( )nmes + i j
Pjj{ }

2

var y j
*( )

j=1

m

∑

€ 

avec var y j
*( ) = 1

Pjj

€ 

var Yi( ) =
M −1( ) ij

2

var y j
*( )j=1

m

∑

var Xi( ) =
M−1( )

nmes + i j

2

var y j
*( )j=1

m

∑

With



Data reconciliation : conclusion

– Corrects the measurement values (most probable 
consistent) value


– Consistent with heat and mass balances & 
thermodynamics


– Considers balances as additional measures (virtual 
sensors)


– A posteriori precision of each value (measured and non 
measured)


– Precision of performance indicators

– Sensitivity of measurements on performance indicators

– Quality of sensors 



Parameter identification



Measurement and parameter identification

2. Identification

F (X,�unit) = 0

X �Xm = 0

Xm

⇡unit

1. Measured values

Model
Measurements

3. Identified parameters

5. Simulation
F (X,�unit) = 0

X �Xs = 0

�unit � �s
unit = 0

⇡s
unit

6. Performances

7. OptimizationXs

Model
Set points
Specifications

⇡s
unit = ⇡unit4. Specified parameters



In a perfect world

2. Identification

1. Measured values

Model Fu(Xi,e, πp,u,e) = 0 ∀e ∈ {ne} ∀u ∈ {nu}
Measurements Xi,e − Xm

i,e = 0

3. Identified parameters

Xm
i,e

πp,u,e

measured value of  in experiment eXi

value of parameter  in experiment eπu



Parameter identification from a set of experiments

2. Identification

1. Measured values

s.t. 
 : number of measured values
 : number of set of experiments
 : number of units
 : number of state variables in the  model

min
Xi,e,πp,u

ne

∑
e=1

nm

∑
i=1

(Xi,e − Xm
i,e)2

σ2
i

Fu(Xi,e, πp,u) = 0 ∀e ∈ {ne} ∀i ∈ {ns} ∀u ∈ {nu}
nm
ne
nu
ns

3. Identified parameters

Xm
i,e

and , Xi,e ∀i ∈ {ns}∀e ∈ {ne} πp,u ∀u ∈ {nu}



Validity of the parameter identification

• Number of parameters (p)

• Number of measurement set (n)

• Regression coefficient


• Regression validity : Fischer test

The coe⇥cient of determination R2 is a popular indicator of the quality of a
regression:

R2 =
�

(Ŷi � Ȳ )2�
(Yi � Ȳ )2

(11)

where

Ȳ =
1
n

n⇥

i=1

Yi (12)

R2 is always a figure between 0 and 1. A perfect fit of the data by the model
(Ŷi = Yi) will result in a R2 of 1 while if b1 = b2 = ... = bp the resulting R2 will
be 0.

However a high R2 does not guarantee that the regression is statistically
significant. This is especially true when the number of observations n is small.
In the extreme case, a model with n � 1 independent variables perfectly fits n
observations (R2 = 1). This shows that R2 can be improved by adding indepen-
dent variables which will not necessarily means that the quality of our model has
improved. Consequently, the coe⇥cient of determination of a regression gives
a first indication of its quality but is insu⇥cient to validate its significance. In
order to validate the developed correlation, we should take into account the
degrees of freedom of the regression (p� 1) and of the residuals (n� p). This is
achieved using the F statistic defined as:

F =
(n� p)R2

(p� 1)(1�R2)
(13)

If the F value is higher than F (p � 1, n � p, 1 � �) at a given level of sig-
nificance �, the regression can be considered as statistically significant and the
null hypothesis (H0) in the test below can be rejected.

H0: ⇥j = 0 against H1: not all ⇥j = 0 j = 1, ..., p� 1

2.2.1 Determining if a given factor as a significant impact on energy
consumption

We have seen above that adding independent variables to a model will improve
the R2 of the regression. However, this will not improve the quality of the
model. Indeed, the impact of significant variables might be diluted by the
presence of variables that are unsignificant and consequently not desired. This
might also create confusion in our comprehension of the system we are modelling.
Consequently, the regression should include only significant variables in order
to have good predictive capability. In that context, we might ask ourselves if all
the independent variables we have included in the model are relevant to predict
the energy consumption and how to know it?

The way to deal with that question is to test the validity of each of the
coe⇥cients of the model using the following hypothesis:
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