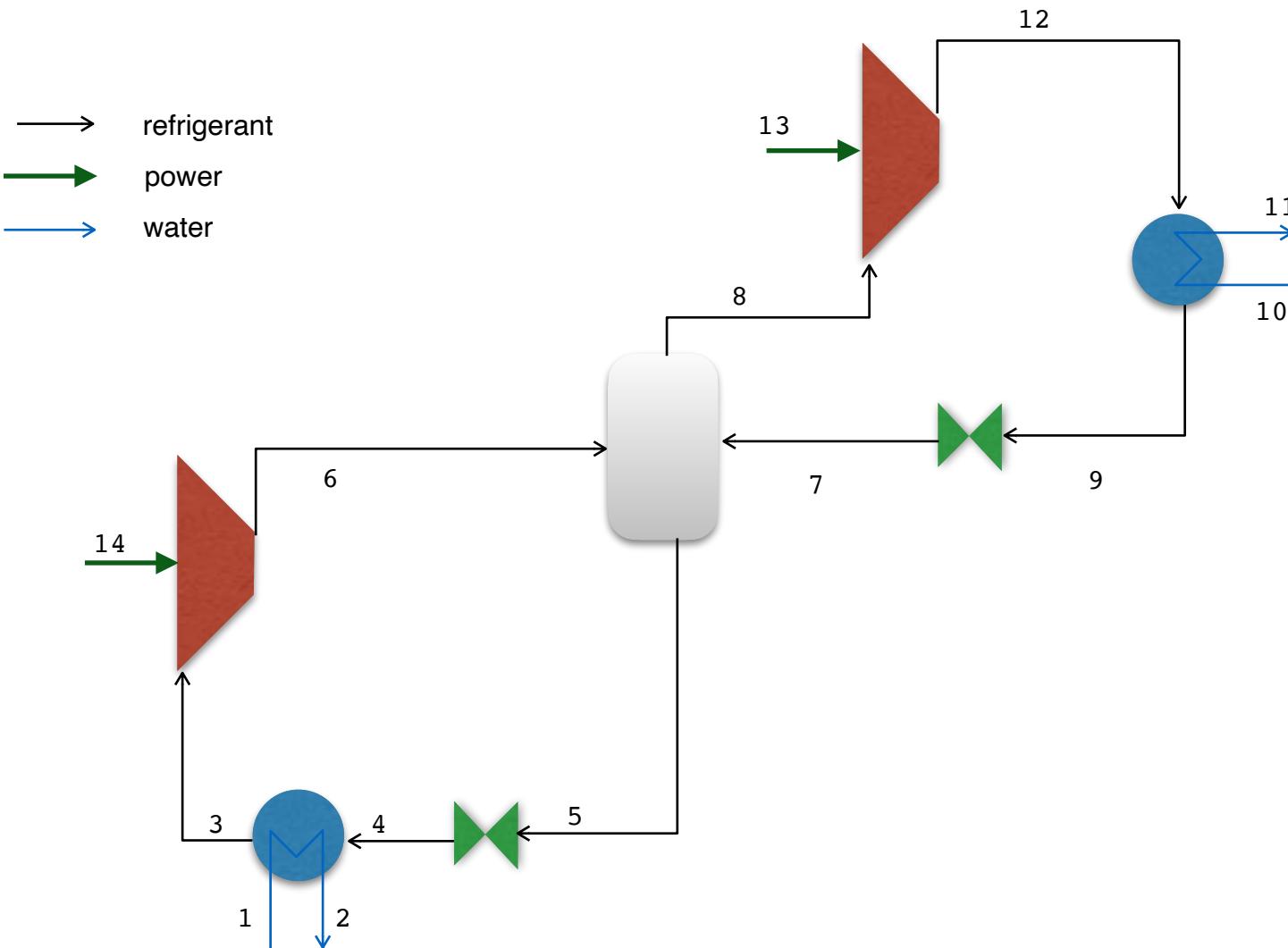


---

# Measurement/specification analysis,


## Data reconciliation and Parameter identification

François Marechal

IPESE

EPFL-STI-IGM

# Two stages heat pump simulation



# Incidence Matrix of a Unit model

$$n_v \text{ variables} = n_x + n_p$$

|                 | $n_x$ state variables                | $n_p$ parameters |                                                                          |
|-----------------|--------------------------------------|------------------|--------------------------------------------------------------------------|
| Mass balance    | xxxxxx                               | xxxxxx           | xxxxxx                                                                   |
| Energy balance  | xxxxxxxxxxxxxxxxxxxxxxxx             |                  |                                                                          |
| Model           | xxxxxx                               | xxxxxx           | xx                                                                       |
| Const Equations |                                      | xxxxxx           | x                                                                        |
| Specifications  | x<br>x<br>x<br>x<br>x<br>x<br>x<br>x | xx<br>xx         | x                                                                        |
|                 |                                      |                  | <b><math>n_e</math> model equations</b>                                  |
|                 |                                      |                  | <b>DOF</b><br>$n_s = n_v - n_e$ specification equations<br>$x - x^s = 0$ |

To solve the problem :

- 1) square matrix
- 2) independent equations

In the incidence matrix, the element  $(i,j)$  is equal to 1 if variable  $i$  is in equation  $j$   
It indicates the presence (incidence) of a variable  $(i)$  in the equation  $(j)$

# Unit model : Incidence matrix rearranged

F(X) : Equations

$$Ne = Ns + Nb + Nm$$

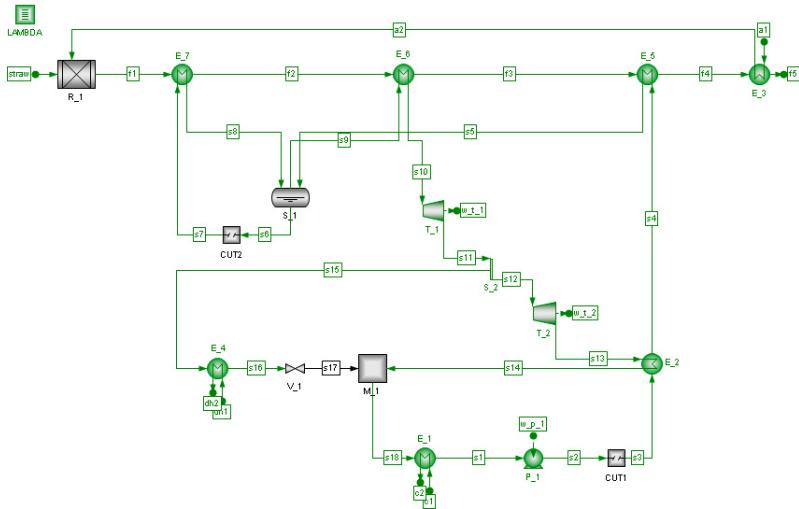
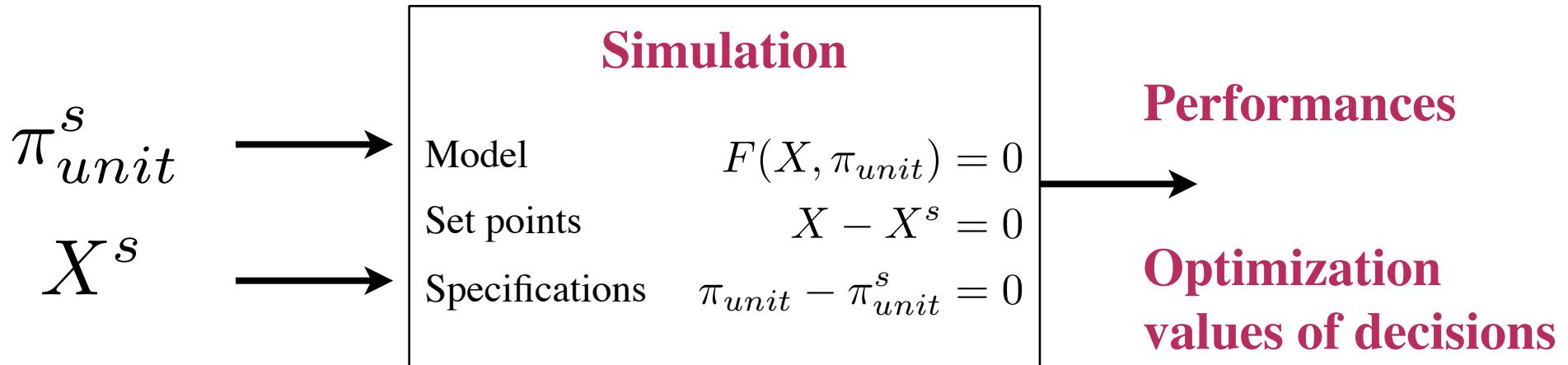
XXXXXXXXXXXXXXXX  
0000000011111  
12345678901234

X : Variables

Nv state

Ni intermediate

Np parameters



$$Nx = Nv + Ni + Np$$

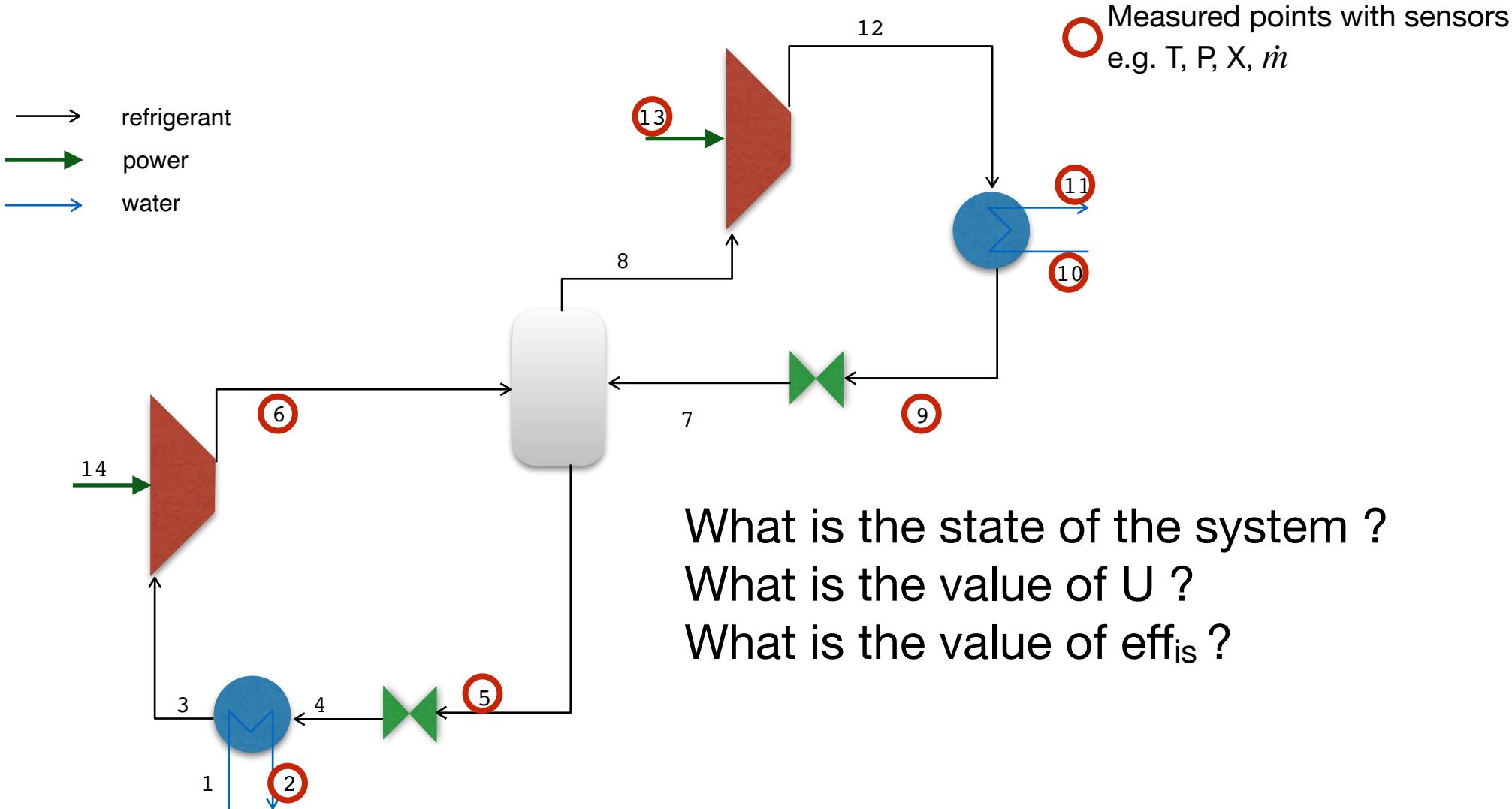
|                                     |      |    |    |
|-------------------------------------|------|----|----|
|                                     | Eq1  | x  |    |
|                                     | Eq2  | x  |    |
|                                     | Eq3  | x  |    |
|                                     | Eq4  | x  |    |
|                                     | Eq5  | x  |    |
|                                     | Eq6  | x  |    |
| Ns Specifications<br>X-Xs=0         | Eq7  |    |    |
|                                     | Eq8  | x  | x  |
| Nb Balances<br>B(Xin)-B(Xout)=0     | Eq9  | xx | x  |
|                                     | Eq10 | xx | x  |
| Nm Models<br>M(X,P)=0               | Eq11 | x  | xx |
|                                     | Eq13 | x  | xx |
| Nc Constitutive equations<br>C(X)=0 | Eq14 | x  | xx |
|                                     | Eq12 | x  | x  |

DOF analysis

$$Ne = Nx$$

# Process models & decision support




Model is defining the level of detail

What are the X we want to know ?

- Streams ?
- Unit parameters ?  $\pi_{unit}$

- The process model and the unit models define the expected level of detail
  - i.e. the data we want to generate with the model
- Unit models require Parameters with fixed values
  - What are the values of the parameters ?
    - Literature => correlations, experience
    - From experiments/observation
      - sensors => measured values
      - => Observed states
      - => Calculated parameters
  - Calibration on existing equipment
    - Parameter fitting

# Two stage heat pump : measures and system state



# Goals of the lecture

---

- How to calibrate models using measurements
  - Where to place measurements
  - Virtual sensors by process models
  - Data reconciliation
    - correct the values of the measurement
  - Parameter identification

# Measurement and parameter identification

## 1. Measured values

$$X^m \longrightarrow$$

## 2. Identification

Model

$$F(X, \pi_{unit}) = 0$$

Measurements

$$X - X^m = 0$$

## 3. Identified parameters

$$\pi_{unit}$$

## 4. Specified parameters

$$\pi_{unit}^s \longrightarrow$$

$$\pi_{unit}^s = \pi_{unit}$$

## 5. Simulation

Model

$$F(X, \pi_{unit}) = 0$$

Set points

$$X - X^s = 0$$

Specifications

$$\pi_{unit} - \pi_{unit}^s = 0$$

## 6. Performances

$$X^s \longrightarrow$$

## 7. Optimization

# Unit model : Incidence matrix rearranged

F(X) : Equations

$$N_e = N_{\text{obs}} + N_b + N_m$$

XXXXXXXXXXXXXXXX  
0000000011111  
12345678901234

|                                                                       |  | Eq1        | Eq2         | Eq3        | Eq4        | Eq5         | Eq6         | Non Measured variables |
|-----------------------------------------------------------------------|--|------------|-------------|------------|------------|-------------|-------------|------------------------|
| N <sub>obs</sub> Measures<br>$X - X_{\text{obs}} = 0$                 |  | $\text{X}$ | $\text{X}$  | $\text{X}$ | $\text{X}$ | $\text{X}$  | $\text{X}$  | Non Measured variables |
| N <sub>b</sub> Balances<br>$B(X_{\text{in}}) - B(X_{\text{out}}) = 0$ |  |            | $\text{X}$  |            |            | $\text{X}$  |             |                        |
| N <sub>m</sub> Models<br>$M(X, P) = 0$                                |  |            | $\text{XX}$ |            | $\text{X}$ |             | $\text{X}$  |                        |
| N <sub>c</sub> Constitutive equations<br>$C(X) = 0$                   |  | $\text{X}$ | $\text{X}$  |            |            |             | $\text{XX}$ |                        |
|                                                                       |  |            |             | $\text{X}$ |            | $\text{X}$  |             |                        |
|                                                                       |  |            |             |            | $\text{X}$ |             |             |                        |
|                                                                       |  |            |             |            |            | $\text{XX}$ |             |                        |
|                                                                       |  |            |             |            |            |             | $\text{X}$  |                        |

Measured variables

X : Variables

N<sub>v</sub> state

N<sub>i</sub> intermediate

N<sub>p</sub> parameters

$$N_x = N_v + N_i + N_p$$

DOF analysis

$$N_e = N_x$$

# Analysing the specification or measurements sets

---

## – Goals

- From a flowsheet **flowsheet** with a pre-specified set of specification
  - what are the DOF, are there enough specs?
  - if no where to place the missing specifications?
  - If yes what are the extra specifications ?

- Model is defined by :

$$F(X_{state}) = 0 \Rightarrow \text{equipment model}$$

$$L(X_{state}) = 0 \Rightarrow \text{linking equations}$$

$$T(X_{state}) = 0 \Rightarrow \text{constitutive equations}$$

$$S(X_{state}) = 0 : X_{state} - X_{state}^{specified} = 0 \Rightarrow \text{Specification of the value of state variables}$$

where

$$X_{state} = \{x_{StateVariables}, x_{UnitParameters}, y_{decision} \in \{0, 1\}\}$$

- $S(X_{state})$  is the set of specification
  - context
  - operating set points
  - Market specifications
  - Model parameters
- $S(X_{state})$  needs to be consistent with the model

## 1. Measured values

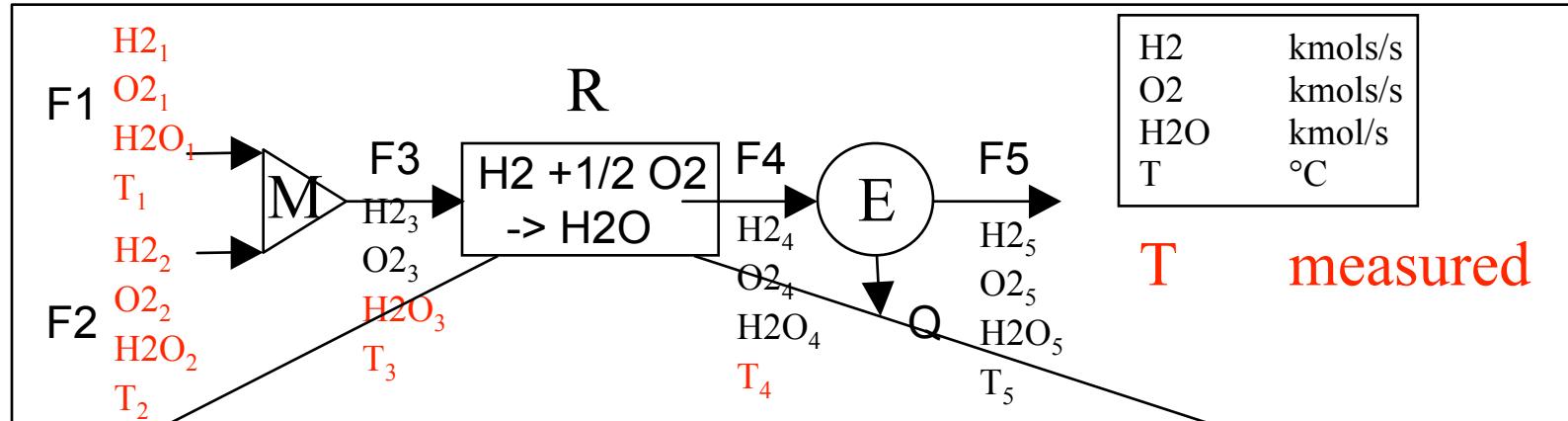
$$X^m \longrightarrow$$

## 2. Identification

Model  $F(X, \pi_{unit}) = 0$   
Measurements  $X - X^m = 0$

## 3. Identified parameters

$$\pi_{unit}$$


- Do we have enough measurement
  - can the model be solved ?
  - do we need more measurements ?
  - what do we do if we have more measurements ?

---

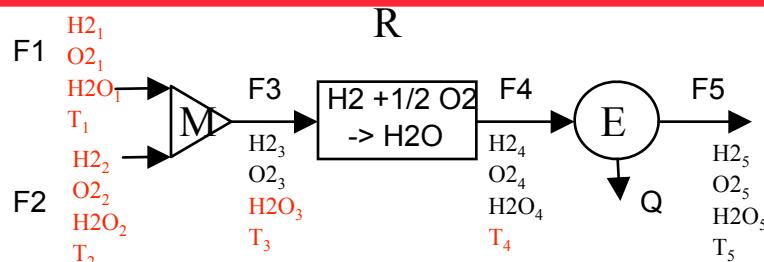
Do we have enough measurement/specifications ?

# Example of a simplified system

## Hydrogen combustion with pure oxygen



**Mass balance:**


$$\begin{aligned} H_2_3 - U - H_2_4 &= 0 \\ O_2_3 - 1/2 U - O_2_4 &= 0 \\ H_2O_3 + U - H_2O_4 &= 0 \end{aligned}$$

**Energy Balance :**  $\sum x_3 * (h_{x_3}^\circ + h_{x_3}(T_3)) - \sum x_4 * (h_{x_4}^\circ + h_{x_4}(T_4)) = 0$

Canonical form :  $F(x) = 0 \Rightarrow Ax = c$

# Incidence matrix

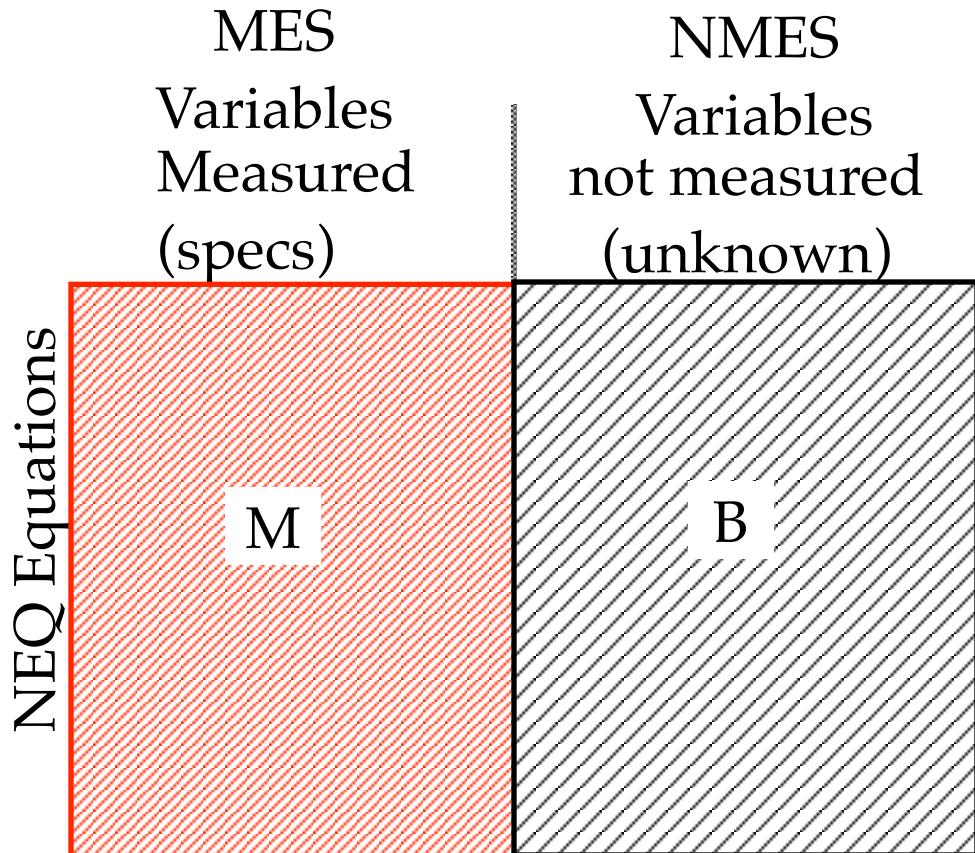
## Combustion



Incidence Matrix :  $a_{i,j} = 1$  if variable  $j$  occurs in equation  $i$

$$A \ X = C$$

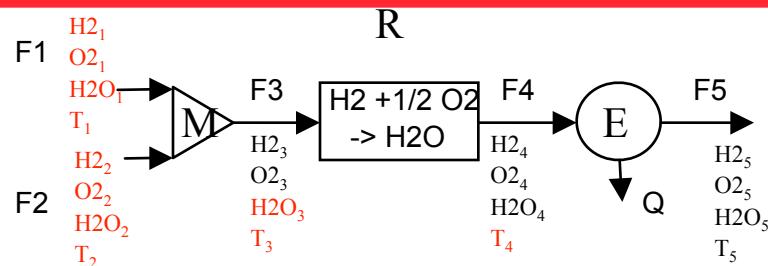
Variables : 22 in which 11 measures  $\Delta = 11$


|                 |   | H <sub>2</sub>   | O <sub>2</sub> | H <sub>2</sub> O | T | H <sub>2</sub> | O <sub>2</sub> | H <sub>2</sub> O | T | H <sub>2</sub> | O <sub>2</sub> | H <sub>2</sub> O | T | H <sub>2</sub> | O <sub>2</sub> | H <sub>2</sub> O | T | H <sub>2</sub> | O <sub>2</sub> | H <sub>2</sub> O | T |   |
|-----------------|---|------------------|----------------|------------------|---|----------------|----------------|------------------|---|----------------|----------------|------------------|---|----------------|----------------|------------------|---|----------------|----------------|------------------|---|---|
| Bi an Matière   | M | O <sub>2</sub>   | X              |                  |   | X              |                |                  |   |                |                |                  |   |                |                |                  |   |                |                |                  |   |   |
| Bi an Matière   | M | H <sub>2</sub>   | X              |                  |   | X              |                |                  |   | X              |                |                  |   |                |                |                  |   |                |                |                  |   |   |
| Bi an Matière   | M | H <sub>2</sub> O | X              |                  |   | X              |                |                  |   | X              |                |                  |   |                |                |                  |   |                |                |                  |   |   |
| Ri an thermique | M |                  | X              | X                | X | X              | X              | X                | X | X              | X              | X                |   |                |                |                  |   |                |                |                  |   |   |
| Bi an Matière   | R | O <sub>2</sub>   |                |                  |   |                |                |                  |   |                |                |                  | X |                |                |                  |   |                |                |                  |   |   |
| Bi an Matière   | R | H <sub>2</sub>   |                |                  |   |                |                |                  |   |                |                |                  | X |                |                |                  |   |                |                |                  |   |   |
| Bi an Matière   | R | H <sub>2</sub> O |                |                  |   |                |                |                  |   |                |                |                  | X |                |                |                  |   |                |                |                  |   |   |
| Ri an Matière   | F | O <sub>2</sub>   |                |                  |   |                |                |                  |   |                |                |                  | X |                |                |                  |   |                |                |                  |   |   |
| Ri an Matière   | F | H <sub>2</sub>   |                |                  |   |                |                |                  |   |                |                |                  | X |                |                |                  |   |                |                |                  |   |   |
| Ri an Matière   | F | H <sub>2</sub> O |                |                  |   |                |                |                  |   |                |                |                  | X |                |                |                  |   |                |                |                  |   |   |
| Di an thermique | C |                  |                |                  |   |                |                |                  |   |                |                |                  | X | X              | X              | X                | X | X              | X              | X                | X | X |

only 10 are needed

Equations 12

# Structural analysis : re-arrange the matrix


variables : measured (= specified) or not (to be calculated)



- 1) **NEQ < NMES** : no solution  
(NMES-NEQ) Equations are missing to calculate unknown variables
- 2) **NEQ = NMES** : all the unknowns can be calculated (just calculable system)
- 3) **NEQ > NMES** : too many equations  
**(redundant system)**  
in this case some measured values can be recalculated using the value of the other

# Incidence Matrix

## Example : combustion

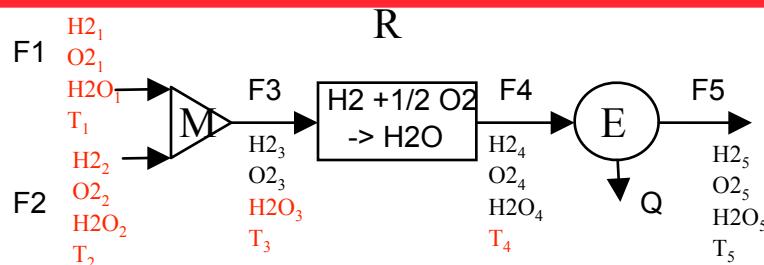


|                  |         |
|------------------|---------|
| H <sub>2</sub>   | kmols/s |
| O <sub>2</sub>   | kmols/s |
| H <sub>2</sub> O | kmol/s  |
| T                | °C      |

T measured

## Measured variables: 11

unknown variables : 11


## system equations: 12

|            |           | G   |   |   |   | H  |   |   |   |
|------------|-----------|-----|---|---|---|----|---|---|---|
|            |           | G   |   | H |   | G  |   | H |   |
| Filière    | Matière   | O2  | X | X | X | O2 | X | X | X |
|            |           | H2  | X | X | X | H2 | X | X | X |
| Elastomère | Thermique | M   | X | X | X | X  | X | X | X |
|            |           | O2  | X | X | X | X  | X | X | X |
| Liaison    | Matière   | H2  | X | X | X | X  | X | X | X |
|            |           | H2O | X | X | X | X  | X | X | X |
| Elastomère | Thermique | F   | X | X | X | X  | X | X | X |
|            |           | O2  | Y | Y | Y | Y  | Y | Y | Y |
| Elastomère | Matière   | H2  | X | X | X | X  | X | X | X |
|            |           | H2O | X | X | X | X  | X | X | X |
| Filière    | thermique | F   | X | X | X | X  | X | X | X |
|            |           | O2  | X | X | X | X  | X | X | X |

## Square system ?

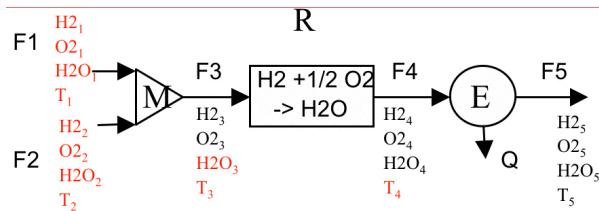
# Rearrange the matrix

## Exemple : combustion



|                  |         |
|------------------|---------|
| H <sub>2</sub>   | kmols/s |
| O <sub>2</sub>   | kmols/s |
| H <sub>2</sub> O | kmol/s  |
| T                | °C      |
|                  | mesures |

1) regroup measured and unknowns ( $M+B$ )


2) Reorganise the B matrix (unknowns) by line and column permutations in order to have :

- 1 element on each diagonal position
- regroup in sub-systems (square or rectangles)

system equations: 12

| measured/specified variables: 11 |   |                  |                  |                  |                  |                |                |                |                |   |   | Non measured : 11 |                |   |                |                  |
|----------------------------------|---|------------------|------------------|------------------|------------------|----------------|----------------|----------------|----------------|---|---|-------------------|----------------|---|----------------|------------------|
|                                  |   |                  |                  |                  |                  |                |                |                |                |   |   |                   |                |   |                |                  |
|                                  |   |                  | 3                | 1                | 2                | 1              | 2              | 2              | 1              | 2 | 3 | 3                 | 3              | R | 4              | 4                |
|                                  |   |                  | H <sub>2</sub> O | H <sub>2</sub> O | H <sub>2</sub> O | O <sub>2</sub> | H <sub>2</sub> | O <sub>2</sub> | H <sub>2</sub> | T | T | O <sub>2</sub>    | H <sub>2</sub> | U | O <sub>2</sub> | H <sub>2</sub> O |
| Bilan Matière                    | M | H <sub>2</sub> O | X                | X                | X                |                |                |                |                |   |   | O <sub>2</sub>    | H <sub>2</sub> |   | O <sub>2</sub> | H <sub>2</sub> O |
| Bilan Matière                    | M | O <sub>2</sub>   |                  |                  |                  | X              | X              |                |                |   |   |                   |                |   |                |                  |
| Bilan Matière                    | M | H <sub>2</sub>   |                  |                  |                  | X              | X              |                |                |   |   | X                 |                |   |                |                  |
| Bilan thermique                  | M |                  | X                | X                | X                | X              | X              | X              | X              | X | X | X                 | X              |   |                |                  |
| Bilan Matière                    | R | O <sub>2</sub>   |                  |                  |                  |                |                |                |                |   |   | X                 | X              | X | X              |                  |
| Bilan Thermique                  | R |                  | X                |                  |                  |                |                |                |                |   |   | X                 | X              | X | X              | X                |
| Bilan Matière                    | R | H <sub>2</sub>   |                  |                  |                  |                |                |                |                |   |   | X                 | X              |   |                |                  |
| Bilan Matière                    | R | H <sub>2</sub> O | X                |                  |                  |                |                |                |                |   |   | X                 | X              |   |                |                  |
| Bilan Matière                    | E | O <sub>2</sub>   |                  |                  |                  |                |                |                |                |   |   | X                 | X              | X | X              |                  |
| Bilan Matière                    | E | H <sub>2</sub>   |                  |                  |                  |                |                |                |                |   |   | X                 | X              | X | X              |                  |
| Bilan Matière                    | E | H <sub>2</sub> O |                  |                  |                  |                |                |                |                |   |   | X                 | X              | X | X              |                  |
| Bilan thermique                  | E |                  |                  |                  |                  |                |                |                |                |   |   | X                 | X              | X | X              | X                |

# Incidence matrix analysis



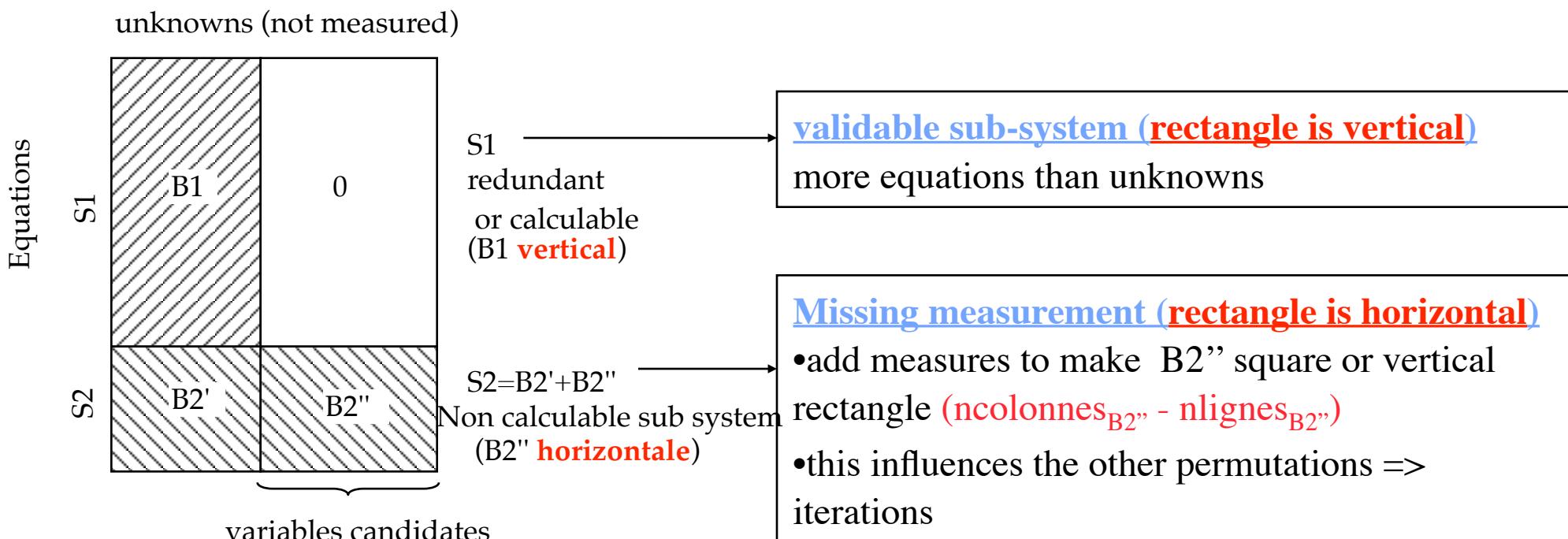
|                 |       | 3 1 2 1 1 2 2 1 2 3 4       | 3 3 R 4 4 4 5 5 5 5 W       |
|-----------------|-------|-----------------------------|-----------------------------|
|                 |       | H2O H2O O2 H2 O2 H2 T T T T | O2 H2 O2 H2 O2 H2 O2 H2 T Q |
| Bilan Matière   | M H2O | X X X                       |                             |
| Bilan Matière   | M O2  | X X                         | X                           |
| Bilan Matière   | M H2  | X X                         | X X                         |
| Bilan thermique | M     | X X X X X X X X             | X X                         |
| Bilan Matière   | R O2  |                             | X X                         |
| Bilan Thermique | R     | X                           | X X X                       |
| Bilan Matière   | R H2  |                             | X X                         |
| Bilan Matière   | R H2O | X                           | X X X X X X                 |
| Bilan Matière   | E O2  |                             | X X X X X X X X             |
| Bilan Matière   | E H2  |                             | X X X X X X X X             |
| Bilan Matière   | E H2O |                             | X X X X X X X X             |
| Bilan thermique | E     |                             | X X                         |

Redundant = 1 (nb equations - nb unmeasured variables)

Redundant  
nbeq > nb var => possibility to correct measures/eliminate specification

just calculable  
NEQ (7) = NMES(7)

T4 can not be corrected/eliminated


not calculable  
NEQ (1) < NMES(2)  
Add at least 1 measure (2-1)  
T<sub>5</sub> or Q

# Generalisation : In case of complex systems

## 1) Reorganise the B matrix ( unknowns - equations)

Reorganise the B matrix (unknowns) by line and column permutations in order to have:

- 1 element on each diagonal position
- regroup in sub-systems (square or rectangles)

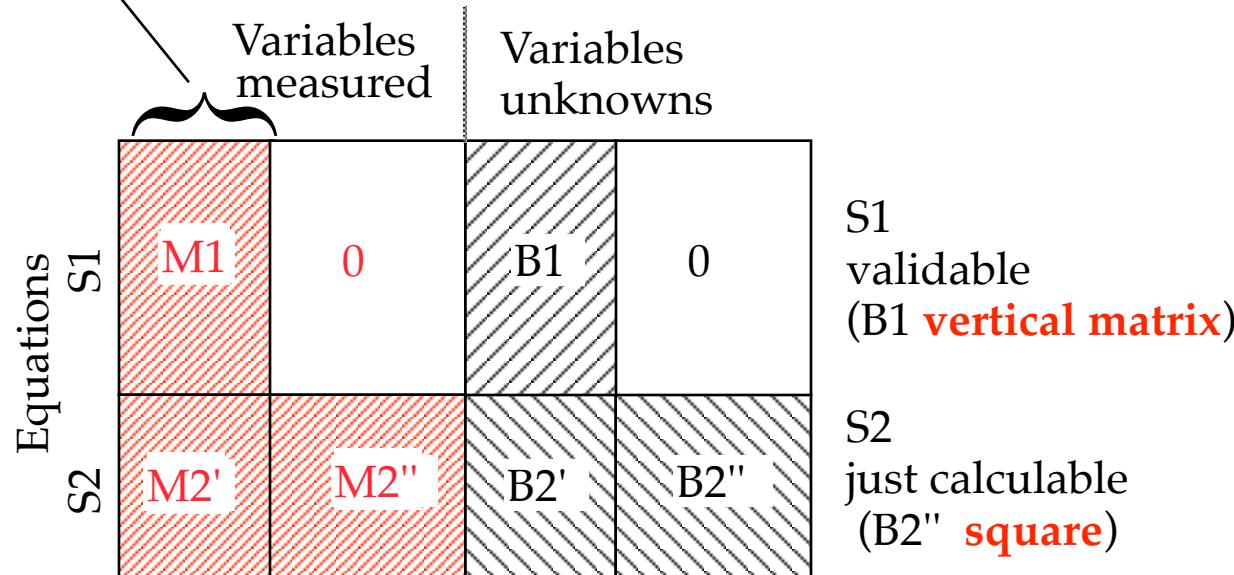


# Analogy measurements and DOF analysis

---

## DoF analysis

- Specifications
- Over-specified
  - Specs to be suppressed
- under specified
  - Add specs


## Measurements systems analysis

- Measures
- Redundancy
  - more information available
- Missing measurements
  - add measures

# Redundant measurements

Redundant measurement may be reconciled

$$\text{Redundancy number} = n^{\text{lines}}_{B1} - n^{\text{columns}}_{B1}$$

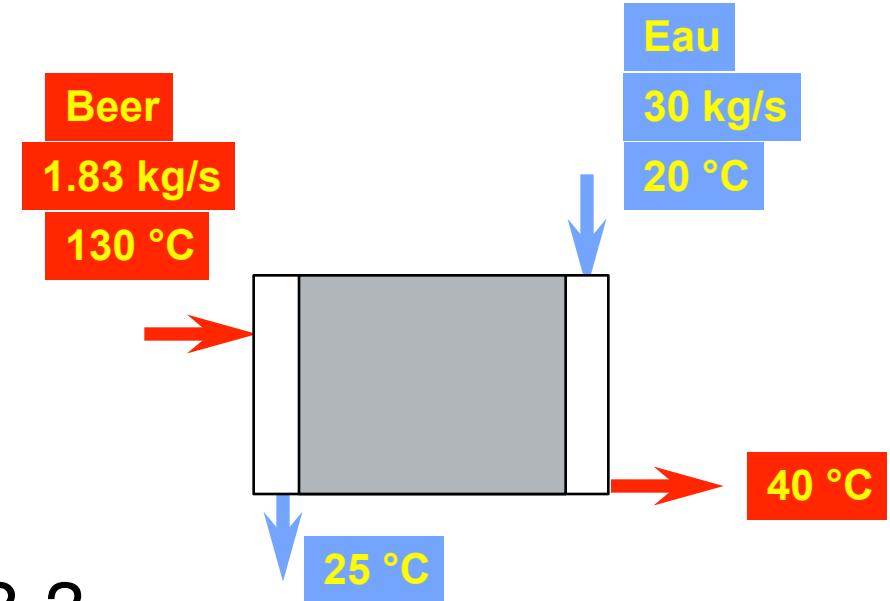


measurement that can  
not be reconciled  
and are considered as  
perfectly known

variables just  
calculable

A redundant measurement can be corrected using the values of the other measurements and the model equations

---


## Data reconciliation

What is happening when I have more measures  
than the minimum number needed ?

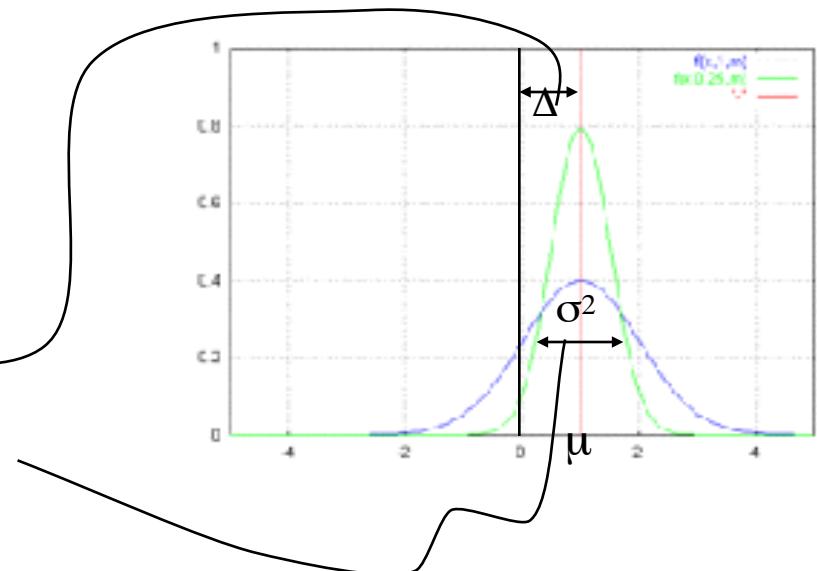
# What is the heat transfer coefficient of the heat exchanger?

Are the measurements consistent ?

- Equations: 3
  - 2 energy balances
  - $Q=UA \Delta T_{lm}$
- State variables: 8
  - 4 temperatures
  - 2 flows
  - 2 parameters  $Q, U$
- Degrees of Freedom :  $5 = 8-3$
- Measures : 6
  - do not add losses in as a DOF !



$$C_p = \text{water}$$


# Choosing the good measure

8 variables - 3 equations => 5 measures over 6 have to be fixed

|         |                     | Measure   | 1     | 2     | 3     | 4     | 5          | 6     |
|---------|---------------------|-----------|-------|-------|-------|-------|------------|-------|
| Flow 1  | kg/s                | 30.00     | 32.95 | 30.00 | 30.00 | 30.00 | 30.00      | 30.00 |
| T in    | °C                  | 20.00     | 20.00 | 19.51 | 20.00 | 20.00 | 20.00      | 20.00 |
| T out   | °C                  | 25.00     | 25.00 | 25.00 | 25.49 | 25.00 | 25.00      | 25.00 |
| Q 1     | kW                  | 627.      | 689.  | 689.  | 689.  | 627.  | 627.       | 627.  |
| Flow 2  | kg/s                | 1.83      | 1.83  | 1.83  | 1.83  | 1.67  | 1.83       | 1.83  |
| T in    | °C                  | 130.      | 130.  | 130.  | 130.  | 130.  | 121.9      | 130.  |
| T out   | °C                  | 40.00     | 40.00 | 40.00 | 40.00 | 40.00 | 40.00      | 48.07 |
| Q 2     | kW                  | 689.2     | 689.2 | 689.2 | 689.2 | 627.4 | 627.4      | 627.4 |
| ΔT ML   | °C                  | 51.3      | 51.3  | 51.7  | 51.1  | 51.3  | 48.7       | 58.3  |
| U       | W/m <sup>2</sup> /K | 134       | 133   | 135   | 122   | 129   | 108        |       |
| Measure | corrected           | Specified |       |       |       |       | Calculated |       |

# Measurement system

- Classify variables
  - Measured - non measured
  - Redundant - non redundant
  - Calculable - non calculable
  - Specified
- Measures => sensors
  - Exact (mean value)
  - Precision-Accuracy (standard deviation)
- Redundancy
  - Multiple sensors
  - Mass and energy balances



# Data reconciliation problem

$$\min_{X,Y} \sum_{i=1}^{n_{mes}} \left( \frac{y_i - y_i^*}{\sigma_i} \right)^2$$

subject to

$$\begin{aligned} & s.t. \quad \text{MassBalance}(X, Y) = 0 \\ & \quad \text{EnergyBalance}(X, Y) = 0 \\ & \quad \text{Thermodynamic}(X, Y) = 0 \\ & \quad \text{ConstitutiveEquations}(X, Y) = 0 \\ & \quad \text{Performance}(X, Y, \pi) = 0 \\ & \quad \text{Inequalities}(X, Y) \geq 0 \end{aligned}$$

measured value

standard deviation

$F(Y, X) = 0$

Knowledge about the process

Virtual sensors

# Problem resolution : constrained NLP Optimisation

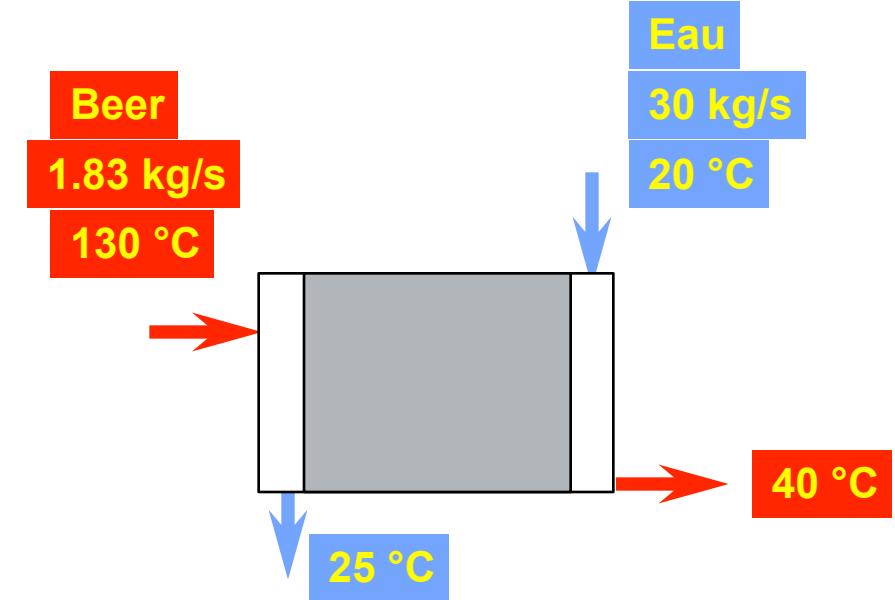
$$\underset{x_i, y_i, \lambda_i}{\text{Min}} L = \sum_i \left( \frac{y_i - y_i^*}{\sigma_i} \right)^2 + 2 * \sum_j \lambda_j * \underbrace{f_j(y_i, x_i)}_{\text{virtual sensor}} \quad \begin{array}{l} \text{Lagrange multiplier} \\ \text{Lagrange Formulation} \end{array}$$

$$\underset{X, Y, \Lambda}{\text{Min}} L = (Y - Y^*)^t P (Y - Y^*) + 2 * \Lambda * F(X, Y) \quad \text{Matrix representation}$$

$$\Rightarrow \nabla L = 0 \quad \text{Gradient set to zero}$$

$$\text{soit} \quad \frac{\delta L}{\delta \Lambda} = F(Y, X) = 0$$

$$\frac{\delta L}{\delta X} = 2 * \Lambda * B = 0 \quad \text{avec} \quad b_{i,j} = \frac{\delta f_i(Y, X)}{\delta x_j}$$


$$\frac{\delta L}{\delta Y} = (Y - Y^*) * P + \Lambda * A = 0 \quad \text{avec} \quad a_{i,j} = \frac{\delta f_i(Y, X)}{\delta y_j}$$

$X$  = non measured,  $Y$  = measured

$F(Y, X) = 0$  : Set of modeling+ specification equations

# What is the heat transfer coefficient of the heat exchanger?

- Equations: 3
  - 2 energy balances
  - $Q=UA \Delta T_{lm}$
- State variables: 8
  - 4 temperatures
  - 2 flows
  - 2 parameters  $Q, U$
- Degrees of Freedom :  $5 = 8-3$
- Measures : 6



# data reconciliation results

---

|               |      |    | Mes.                | $\sigma$ | Vali.  | $(M-V)/\sigma$ |
|---------------|------|----|---------------------|----------|--------|----------------|
| Flow 1        | kg/s | M1 | 30.00               | 1.50     | 30.30  | -0.197         |
| T in          | °C   | T1 | 20.00               | 0.50     | 19.81  | 0.371          |
| T out         | °C   | T2 | 25.00               | 0.50     | 25.19  | -0.371         |
| Q 1           | kW   |    | 627.4               |          | 680.6  |                |
| Flow 2        | kg/s | M2 | 1.83                | 0.10     | 1.81   | 0.215          |
| T in          | °C   | T3 | 130.00              | 1.00     | 129.96 | 0.044          |
| T out         | °C   | T4 | 40.00               | 1.00     | 40.04  | -0.044         |
| Q 2           | kW   |    | 689.2               |          | 680.6  |                |
| A             |      |    | m <sup>2</sup>      | 100      |        |                |
| $\Delta T$ LM |      |    | °C                  | 51.40    |        |                |
| U             |      |    | W/m <sup>2</sup> /K | 132      |        |                |
|               |      |    |                     |          | SSQ=   | 0.3643         |


# What are the most probable values of the measured values ?

All measures are considered

|         |                     | Mesures       | 1     | 2     | 3          | 4     | 5     | 6     |           |
|---------|---------------------|---------------|-------|-------|------------|-------|-------|-------|-----------|
| Flow 1  | kg/s                | 30.00         | 32.95 | 30.00 | 30.00      | 30.00 | 30.00 | 30.00 | 30.30     |
| T in    | °C                  | 20.00         | 20.00 | 19.51 | 20.00      | 20.00 | 20.00 | 20.00 | 19.81     |
| T out   | °C                  | 25.00         | 25.00 | 25.00 | 25.49      | 25.00 | 25.00 | 25.00 | 25.19     |
| Q 1     | kW                  | 627.          | 689.  | 689.  | 689.       | 627.  | 627.  | 627.  | 680.6     |
| Flow 2  | kg/s                | 1.83          | 1.83  | 1.83  | 1.83       | 1.67  | 1.83  | 1.83  | 1.81      |
| T in    | °C                  | 130.          | 130.  | 130.  | 130.       | 130.  | 121.9 | 130.  | 129.96    |
| T out   | °C                  | 40.00         | 40.00 | 40.00 | 40.00      | 40.00 | 40.00 | 48.07 | 40.04     |
| Q 2     | kW                  | 689.2         | 689.2 | 689.2 | 689.2      | 627.4 | 627.4 | 627.4 | 680.6     |
| ΔT ML   | °C                  | 51.3          | 51.3  | 51.7  | 51.1       | 51.3  | 48.7  | 58.3  | 51.40     |
| U       | W/m <sup>2</sup> /K |               | 134   | 133   | 135        | 122   | 129   | 108   | 132       |
| Measure | Corrected           | Specification |       |       | Calculated |       |       |       | Validated |

# Results validity

---



# Results analysis

---

- How to use the results
  - Sum of square residuals
    - is there a lot of corrections ?
    - Is the model (what we know) valid ?
      - e.g. a leakage is apriori not modeled
  - Are the bounds activated
    - Is the model valid
  - Sensitivity analysis
    - One can calculate the precision of the value of measured and unmeasured values
  - Corrections analysis
    - Failling sensors => Gross errors (if big corrections => remove the sensor)
    - Sensor calibration
  - Importance of the sensors on the results

# Sensitivity

When the solution is obtained, we have

$$\nabla L = 0 \equiv \begin{bmatrix} P & 0 & A^T \\ 0 & 0 & B^T \\ A & B & 0 \end{bmatrix} * \begin{bmatrix} Y \\ X \\ \Lambda \end{bmatrix} = \begin{bmatrix} \underbrace{P Y^*}_{\text{weight x measure}} \\ 0 \\ -C \end{bmatrix}$$

Or  $MV = D$  D is the set of measured values

And  $V = M^{-1}D$  Sensitivity of the calculated variable w.r.t to D

P is the weight of the measures  $(\frac{1}{\sigma^2})$

$$A = \frac{\delta F(X, Y)}{\delta Y} \quad B = \frac{\delta F(X, Y)}{\delta X} \quad F(X, Y) \text{ process model}$$

# Sensitivity analysis : Variance of the results

---

In detail

*The variance is calculated as a sensitivity to the variance of the measurement*

Measurement 
$$Y_i = \sum_{j=1}^{m+n+p} (M^{-1})_{ij} D_j$$
  
$$= \sum_{j=1}^m \underbrace{(M^{-1})_{ij}}_{\substack{\text{Sensitivity of the measured value} \\ \text{Sensitivity of the precision}}} P_{jj} y_j^* - \sum_{k=1}^p (M^{-1})_{i+n+m+k} C_k$$

Calculated 
$$X_i = \sum_{j=1}^{m+n+p} (M^{-1})_{n+i-j} D_j$$
  
$$= \sum_{j=1}^m \underbrace{(M^{-1})_{n+i-j}}_{\substack{\text{Sensitivity of the measured value} \\ \text{Sensitivity of the precision}}} P_{jj} y_j^* - \sum_{k=1}^p (M^{-1})_{n+i-n+m+k} C_k$$

Variance calculation if  $Z = \sum_{j=1}^m a_j X_j$  then  $\text{var}(Z) = \sum_{j=1}^m a_j^2 \text{var}(X_j)$

# Sensitivity of solutions

---

## to measurement

How much a calculated value is influenced by the value of a measurement

$$M \frac{\delta V}{\delta Y^*} + \frac{\delta M}{\delta Y^*} V - \frac{\delta D}{\delta Y^*} = 0 \Rightarrow \frac{\delta V}{\delta Y^*} = M^{-1} \begin{bmatrix} P \\ 0 \\ 0 \end{bmatrix}$$

# Sensitivity of solutions

---

How much a calculated value is influenced by the accuracy of a measure

to measurement accuracy

$$M \frac{\delta V}{\delta P} + \frac{\delta M}{\delta P} V - \frac{\delta D}{\delta P} = 0$$

$$\Rightarrow \begin{bmatrix} \frac{\delta Y}{\delta P} \\ \frac{\delta Y}{\delta X} \\ \frac{\delta Y}{\delta P} \\ \frac{\delta Y}{\delta \Lambda} \\ \frac{\delta Y}{\delta P} \end{bmatrix} = M^{-1} \begin{bmatrix} \begin{bmatrix} Y^* \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} Y \\ X \\ \Lambda \end{bmatrix}^* \end{bmatrix}$$

# A posteriori variance

Standard deviation of the calculated variables =  $f(P, Y^*)$

$$\text{var}(Y_i) = \sum_{j=1}^m \left\{ \left( M^{-1} \right)_{ij} P_{jj} \right\}^2 \text{var}(y_j^*)$$

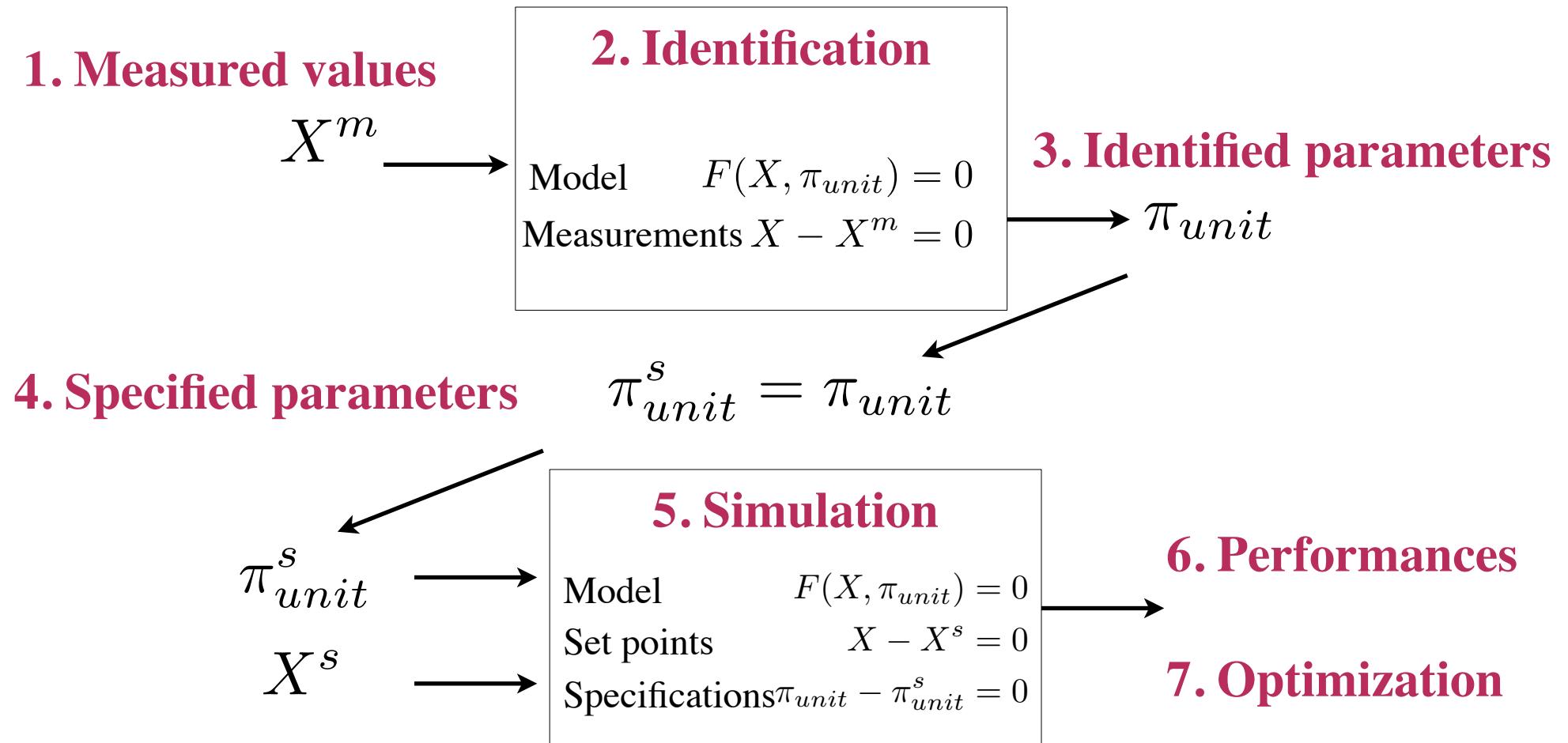
With  $\text{var}(y_j^*) = \frac{1}{P_{jj}}$

$$\text{var}(X_i) = \sum_{j=1}^m \left\{ \left( M^{-1} \right)_{n_{mes} + i j} P_{jj} \right\}^2 \text{var}(y_j^*)$$

$$\text{var}(Y_i) = \sum_{j=1}^m \frac{\left( M^{-1} \right)_{ij}^2}{\text{var}(y_j^*)}$$

$$\text{var}(X_i) = \sum_{j=1}^m \frac{\left( M^{-1} \right)_{n_{mes} + i j}^2}{\text{var}(y_j^*)}$$

# Data reconciliation : conclusion


---

- Corrects the measurement values (most probable consistent) value
- Consistent with heat and mass balances & thermodynamics
- Considers balances as additional measures (virtual sensors)
- A posteriori precision of each value (measured and non measured)
- Precision of performance indicators
- Sensitivity of measurements on performance indicators
- Quality of sensors

---

# Parameter identification

# Measurement and parameter identification



# In a perfect world

---

## 1. Measured values

measured value of  $X_i$  in experiment e

$$\downarrow \quad X_{i,e}^m$$

## 2. Identification

$$\text{Model } F_u(X_{i,e}, \pi_{p,u,e}) = 0 \quad \forall e \in \{n_e\} \quad \forall u \in \{n_u\}$$

$$\text{Measurements } X_{i,e} - X_{i,e}^m = 0$$



$$\pi_{p,u,e}$$

value of parameter  $\pi_u$  in experiment e

## 3. Identified parameters

# Parameter identification from a set of experiments

## 1. Measured values

$$X_{i,e}^m \quad \begin{array}{c} \longrightarrow \\ \downarrow \end{array}$$

## 2. Identification

$$\min_{X_{i,e}, \pi_{p,u}} \sum_{e=1}^{n_e} \sum_{i=1}^{n_m} \frac{(X_{i,e} - X_{i,e}^m)^2}{\sigma_i^2}$$

$$\text{s.t. } F_u(X_{i,e}, \pi_{p,u}) = 0 \quad \forall e \in \{n_e\} \quad \forall i \in \{n_s\} \quad \forall u \in \{n_u\}$$

$n_m$  : number of measured values

$n_e$  : number of set of experiments

$n_u$  : number of units

$n_s$  : number of state variables in the model

$$\downarrow$$

## 3. Identified parameters $\pi_{p,u} \quad \forall u \in \{n_u\}$ and $X_{i,e}, \forall i \in \{n_s\} \forall e \in \{n_e\}$

# Validity of the parameter identification

---

- Number of parameters (p)
- Number of measurement set (n)
- Regression coefficient

$$R^2 = \frac{\sum(\hat{Y}_i - \bar{Y})^2}{\sum(Y_i - \bar{Y})^2} \quad \bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$$

- Regression validity : Fischer test

Fisher value from a table

$$F = \frac{(n - p)R^2}{(p - 1)(1 - R^2)} > F(p - 1, n - p, 1 - \alpha)$$

$\alpha$  : signficativity level