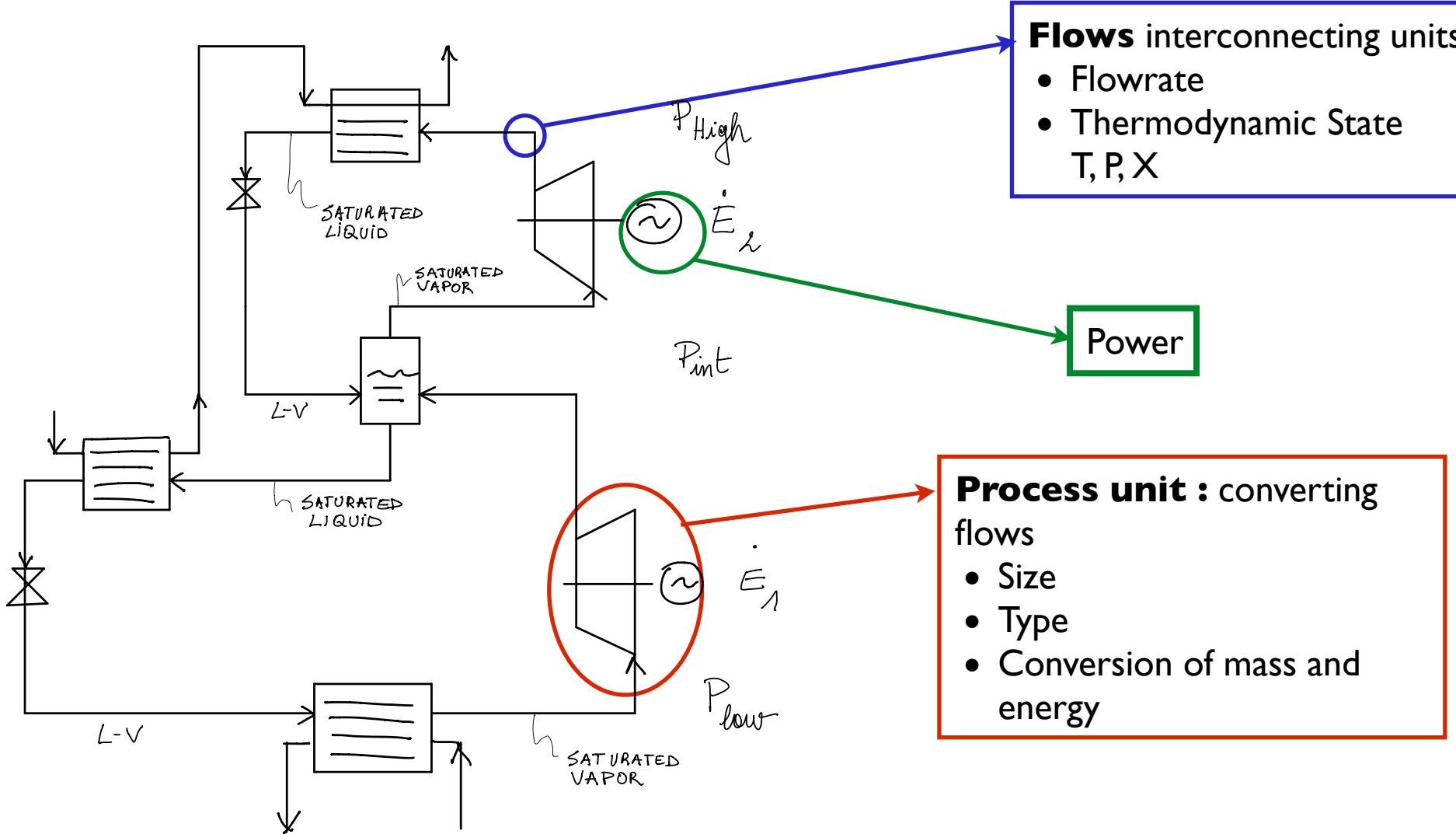

Solving flowsheet



Simultaneous resolution

- compressor model

Model

$$\dot{m}_{out} - \dot{m}_{in} = 0$$

$$x_{out}^j - x_{in}^j = 0$$

$$h_{in} - h(T_{in}, P_{in}, X_{in}) = 0$$

$$s_{in} - s(T_{in}, P_{in}, X_{in}) = 0$$

$$h_{out}^{is} - h(s_{in}, P_{out}, X_{out}) = 0$$

$$h_{out} - h_{in} + \eta_{is} * (h_{in} - h_{out}^{is}) = 0$$

$$T_{out} - T(h_{out}, P_{out}, X_{out}) = 0$$

$$W - \dot{m}_{in} * (h_{in} - h_{out}) = 0$$

Specifications

$$\dot{m}_{in} - \dot{m}_{in}^s = 0$$

$$x_{in}^j - x_{in}^{j,s} = 0$$

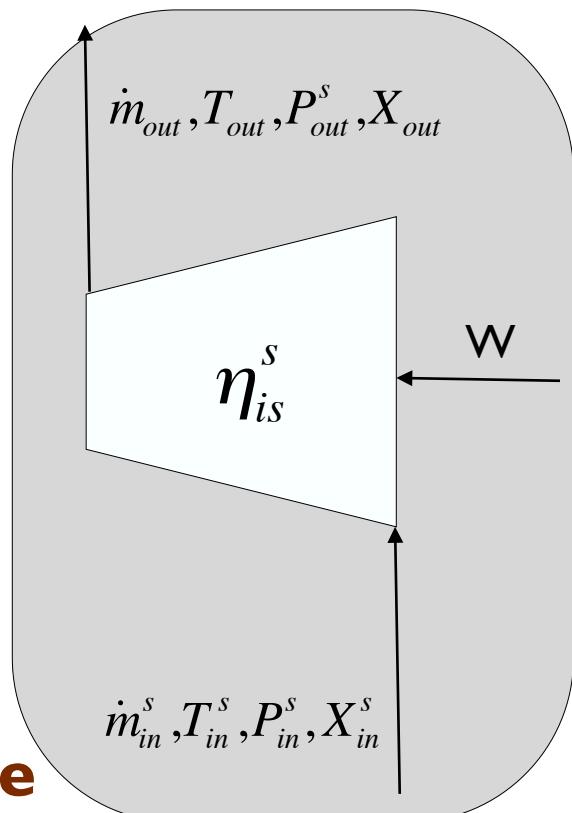
$$T_{in} - T_{in}^s = 0$$

$$P_{in} - P_{in}^s = 0$$

$$P_{out} - P_{out}^s = 0$$

$$\eta_{is} - \eta_{is}^s = 0$$

**constitutive
equations**



Non linear system resolution using Newton Raphson methods

$$F(X, P) = 0$$

$$S(X, P) = 0 \Rightarrow F(X) = 0 \quad (NxN)$$

$$IN(X) = 0$$

Sequential resolution : order of resolution

- Compressor Model

$$\dot{m}_{out} = \dot{m}_{in}^s$$

$$x_{out}^j = x_{in}^{j,s}$$

$$h_{in} = h(T_{in}^s, P_{in}^s, X_{in}^s)$$

$$s_{in} = s(T_{in}^s, P_{in}^s, X_{in}^s)$$

$$h_{out}^{is} = h(s_{in}, P_{out}^s, X_{out})$$

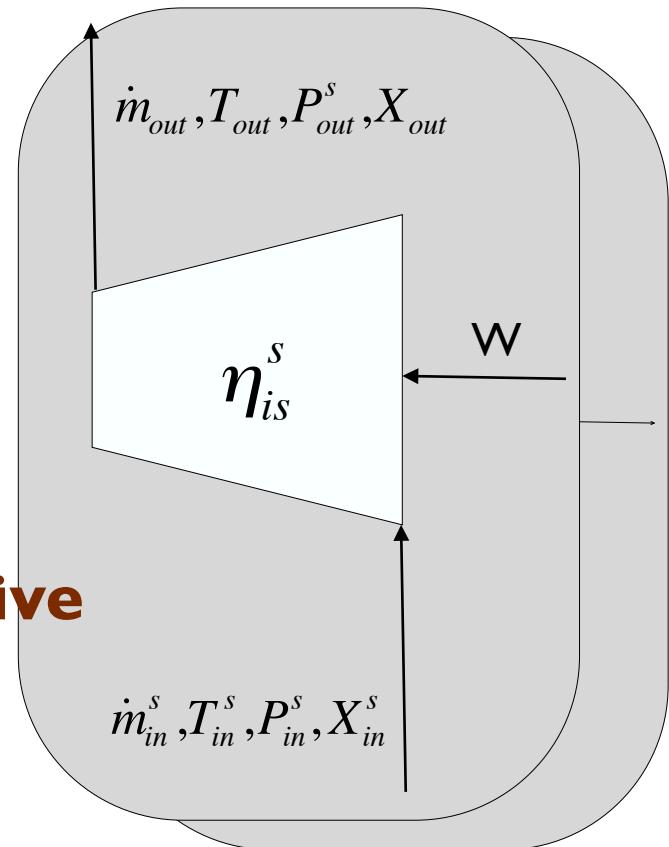
$$h_{out} = h_{in} - \eta_{is}^s * (h_{in} - h_{out}^{is})$$

$$T_{out} = T(h_{out}, P_{out}^s, X_{out})$$

$$W = \dot{m}_{in}^s * (h_{in} - h_{out})$$

mout	x
xout	x
Hin	x
Sin	x
Houtis	x xx
Hout	x xx
Tout	x xx
W	x x x

**Constitutive
equation**

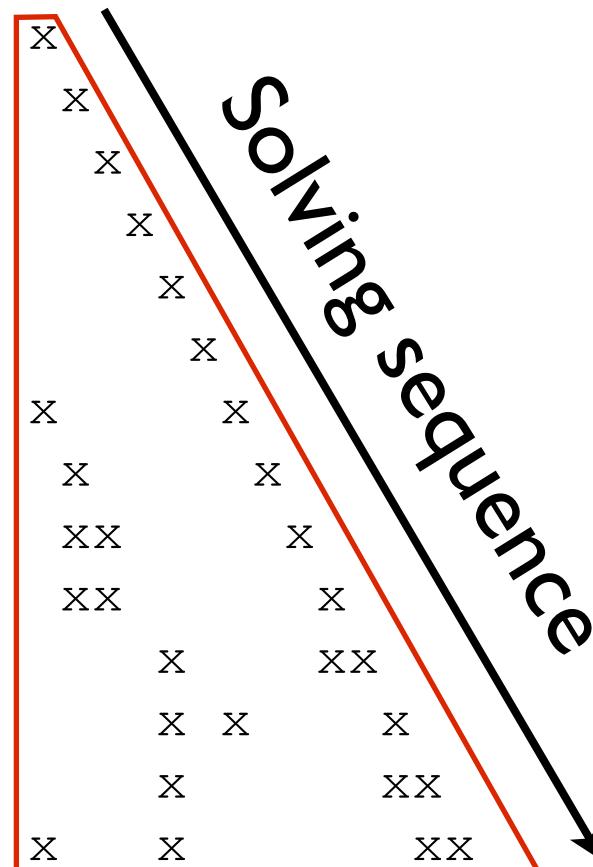


Incidence matrix is arranged to be diagonal inferior

Sequence definition : Value i by Equation j

Explicit form $diag_i = f(diag_k, k = 1, \dots, i - 1)$

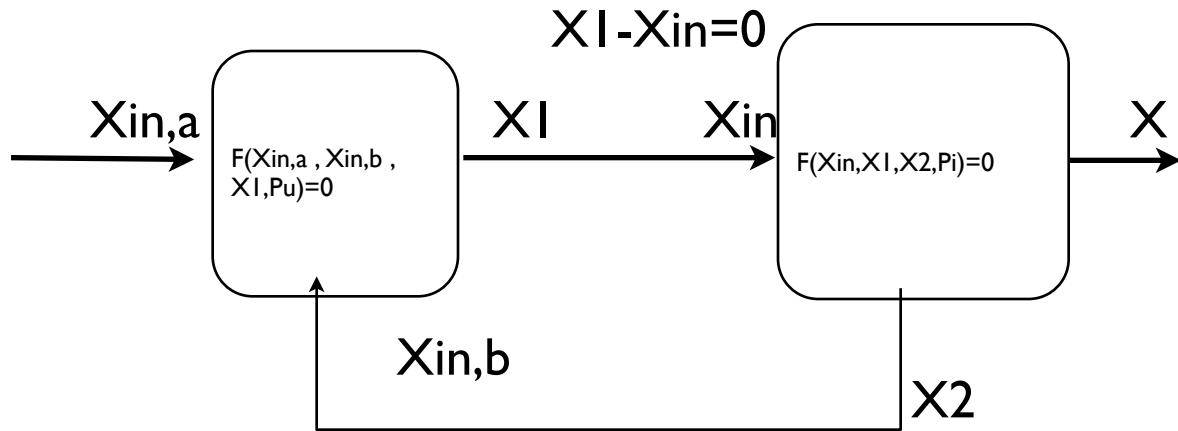
Eq1 -> min
Eq2 -> xin
Eq3 -> Tin
Eq4 -> Pin
Eq5 -> Pout
Eq6 -> Etais
Eq7 -> mout
Eq8 -> xout
Eq9 -> Hin
Eq10 -> Sin
Eq11 -> Houtis
Eq12 -> Hout
Eq13 -> Tout
Eq14 -> W



Solving flowsheets with a sequential and modular approach

Solving Flowsheets : simultaneous approach

- Flowsheet = interconnected modules
 - Simultaneous resolution : needs initial values !



$F(X, P) = 0$: Models

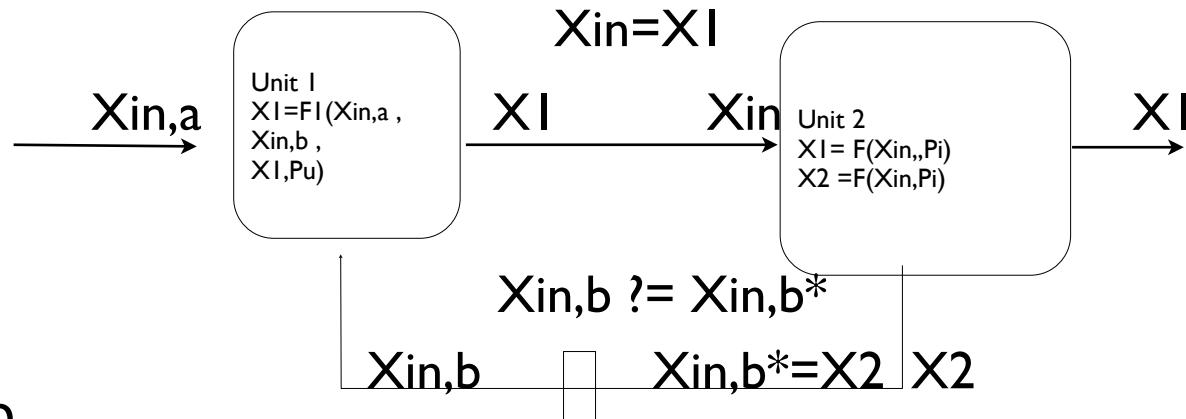
$X_s - X^* = 0$: Specifications (system)

$P_s - P = 0$: Specifications (system)

$X_i - X_j = 0$: Links (unit interconnections)

Solving Flowsheets : sequential

- Flowsheet = interconnected modules
 - Sequential



0. Locate $X_{in,b}$
1. Guess $X_{in,b}$
 2. Solve unit 1 $\Rightarrow X_1$
 3. Solve unit 2 $\Rightarrow X_2$
 4. Test $X_{in,b} ?= X_2$
yes \Rightarrow out
 5. Propose a new value to $X_{in,b}$
& Goto 2.

Defining a resolution sequence

Solving flowsheets Sequential Modular Approach

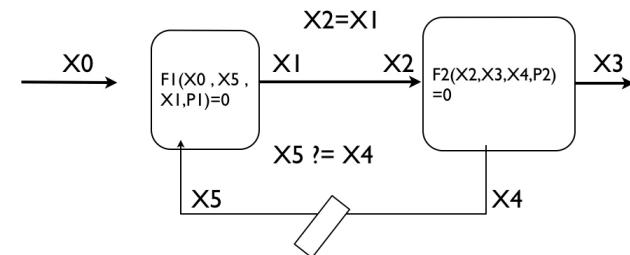
Conclusions

- Flow sheet can be solved

- simultaneously
 - in sequence

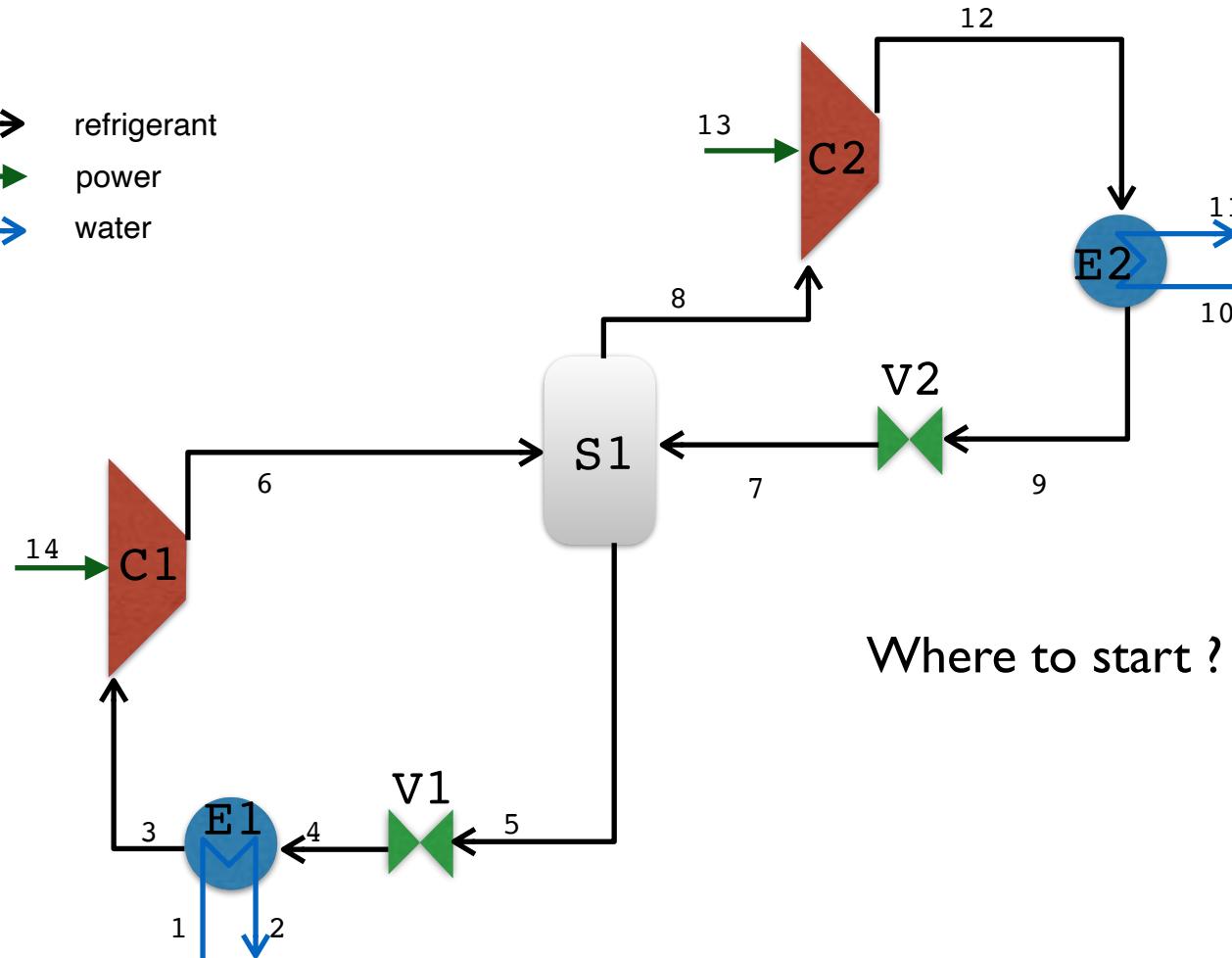
- Open Questions

- Defining a resolution sequence
 - define an ordered list of equation solving
 - Identify loops (i.e. calculated values that are needed to solve the sequence)
 - » Tear the loops and guess an initial value
 - » Iterate (do the sequence of internal loop) until convergence of the loop by solving $x=f(x)$
 - Find X^0 to solve $F(X)=0$
 - this is typically done by using resolution sequence :
 - » X^0 is built up progressively
 - more X^0 are calculated while adding $F_i(X)=0$ in the list of equations



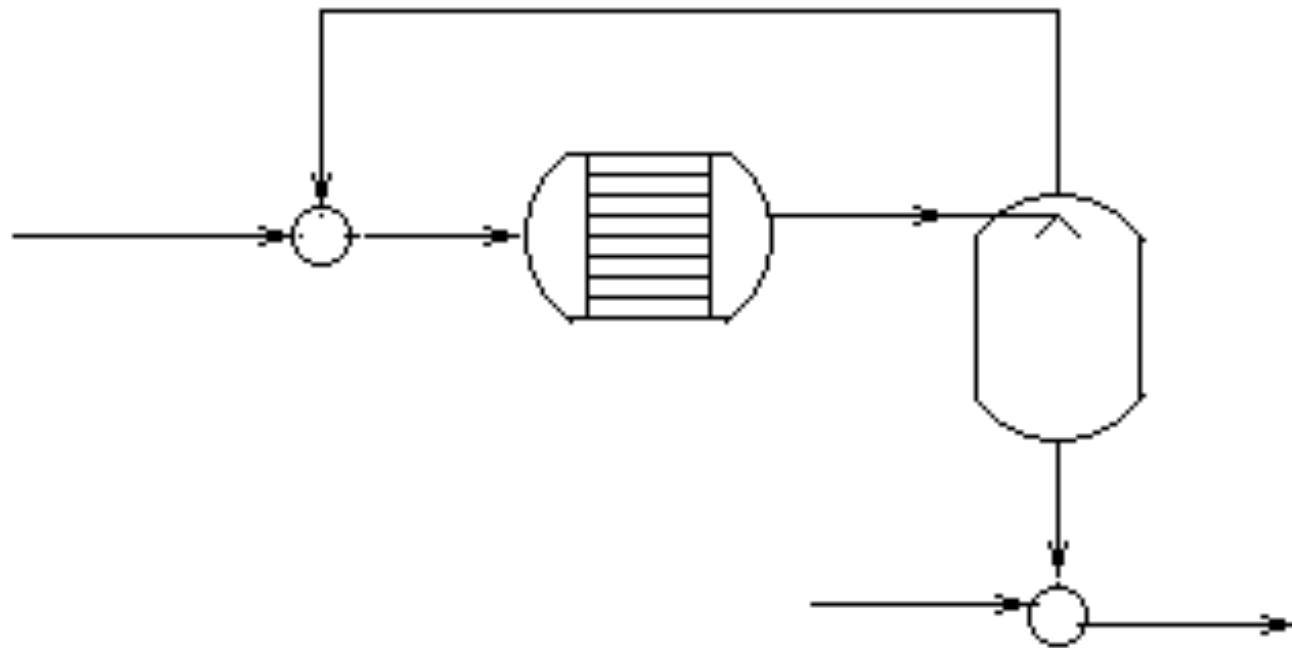
Two stages heat pump : initialisation

- refrigerant
- power
- water



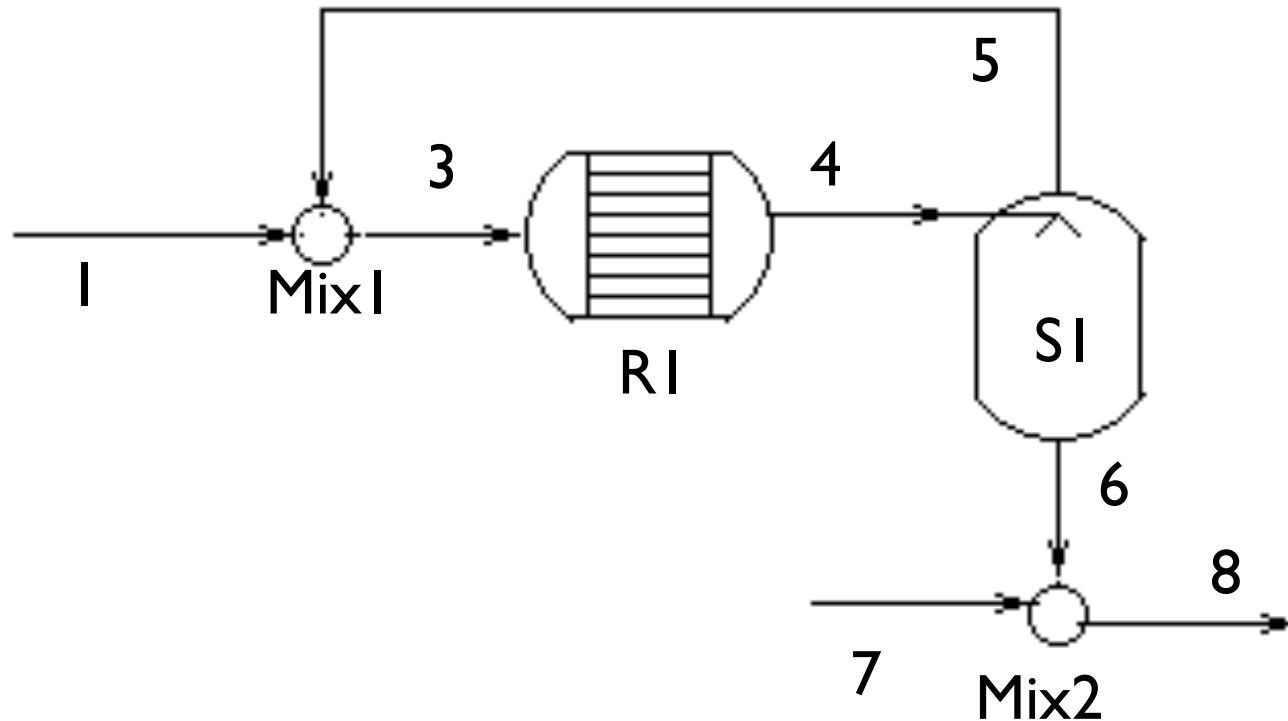
Where to start ?

Example : Flowsheet



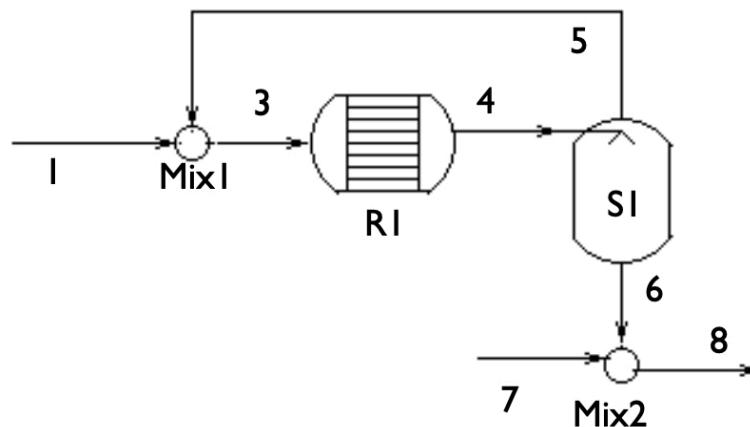
Step I : describe what you want to know

- Name the streams
 - what you want to know
- Name the units - define the model of the unit operation
 - what is modeling the thermodynamic transformations in the system



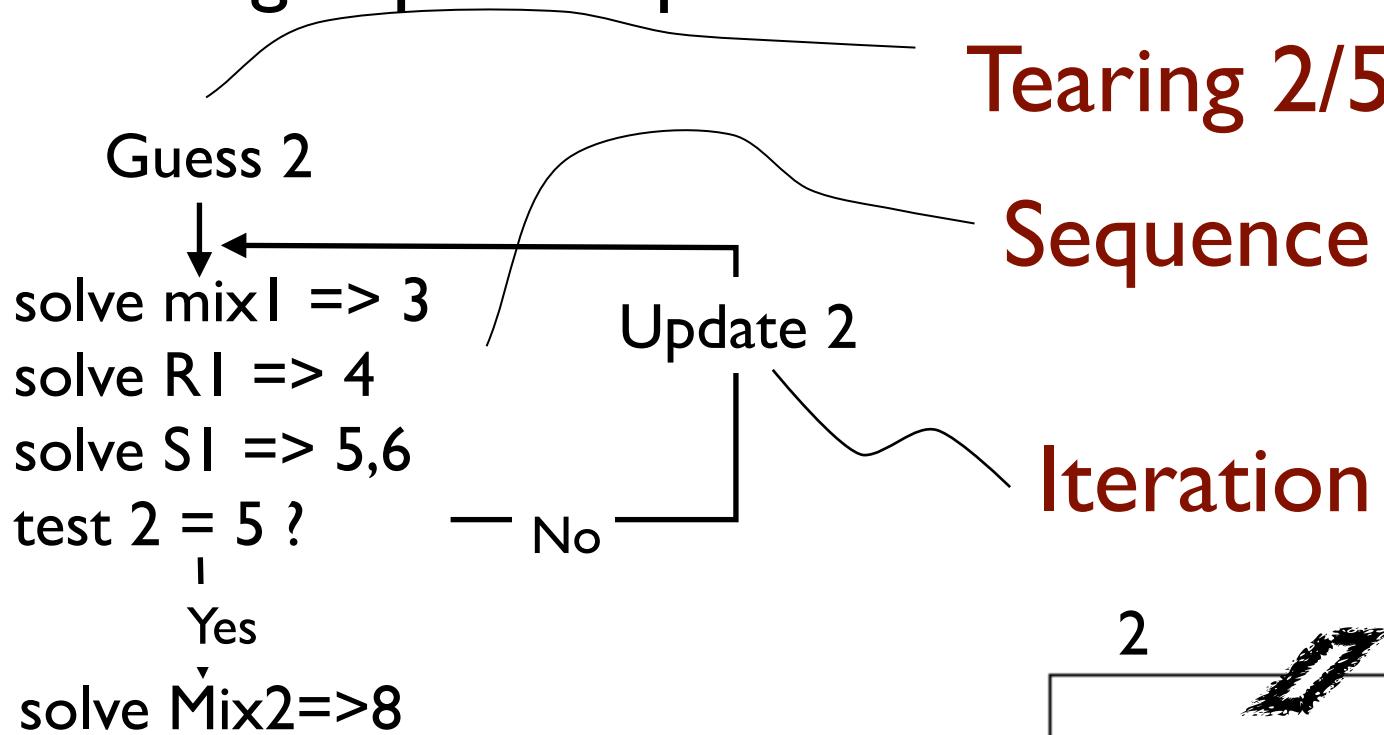
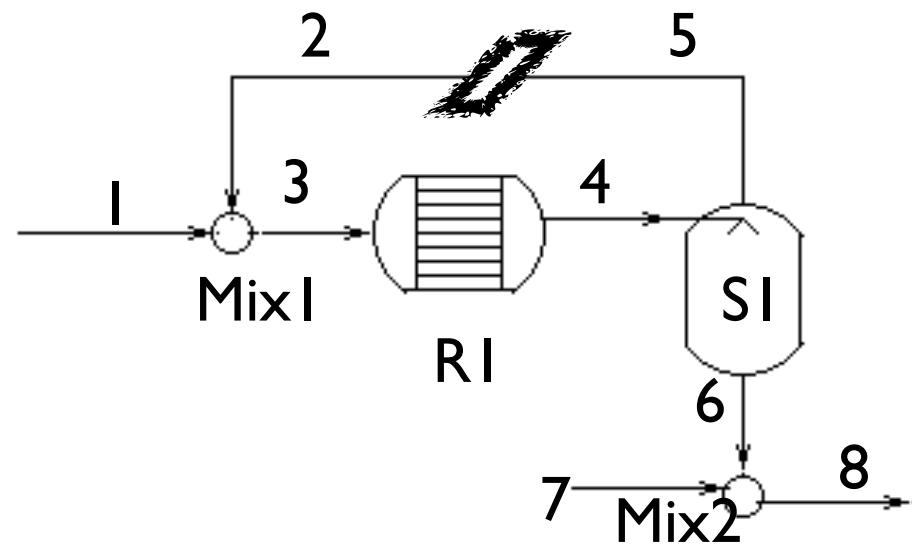
Step II : define a sequence

- A unit model u calculates the output knowing the input :
$$U_{\text{out}} = f_u(U_{\text{in}})$$
- Order of resolution sequence
 - 1.set all units to unsolved and set X_{in} as known
 - 2.0 Identify units u that is not solved for which all the U_{in} are known : For each u identified
 - 2.1. Calculate $U_{\text{out}} = f_u(U_{\text{in}})$
 - 2.2. Mark U_{out} as known and u as solved
 - 2.3. Back to 2.0.



Solving flowsheets :sequence definition

- Tearing : open loops when units are not solved



Resolution sequence

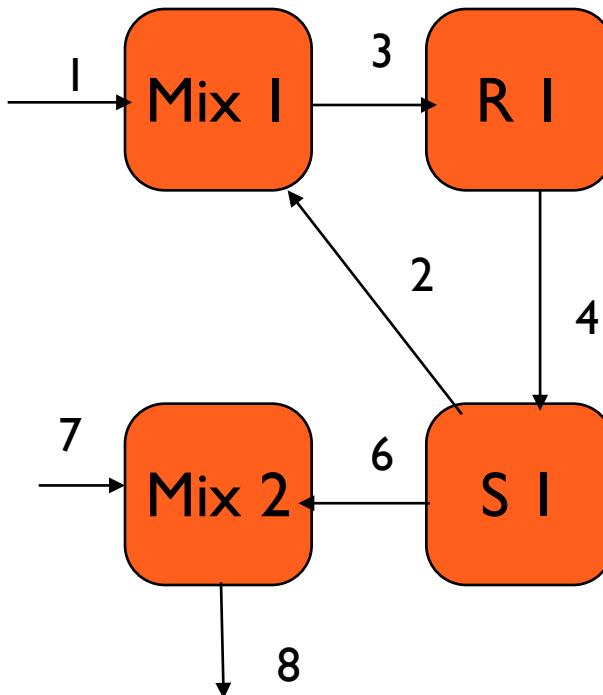
- Defining a resolution sequence
 - Identify the teared streams (where to open the loops)
 - Define an **ordered** list of **units** to solve
 - Define the **streams** calculated by the **units**
 - Define the tears to be solved

$$X^{guess} - F(X^{guess}) = 0$$

Defining the sequence : Graph representation

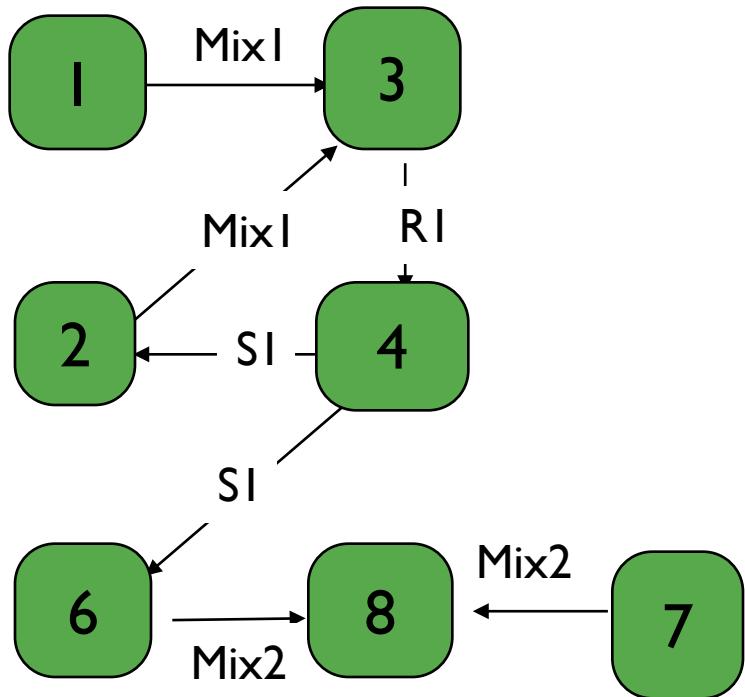
Rheogram

primal representation



Streams to compute units
Variables to compute equations

dual representation

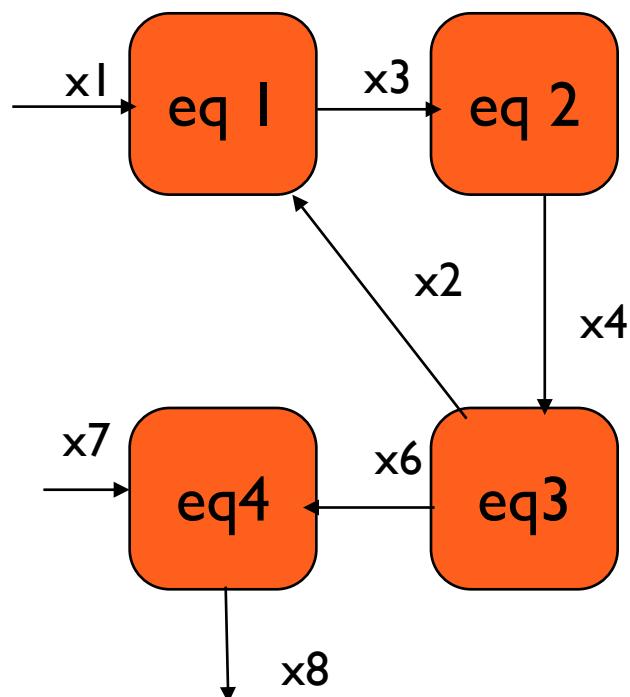


Units to compute streams
Equations to compute variables

Systematic definition : Graph representation

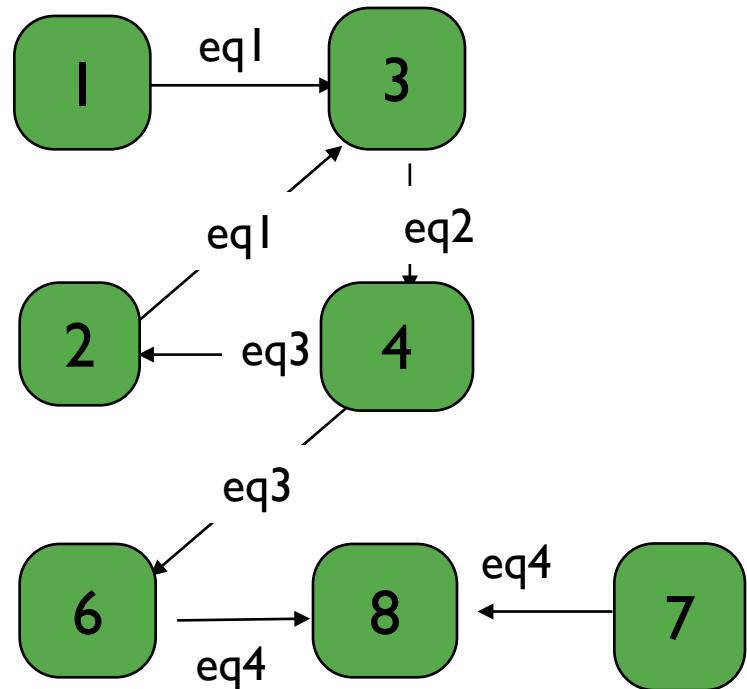
Analogy with equations set $y = f(x)$

primal representation



Streams to compute units
Variables to compute equations

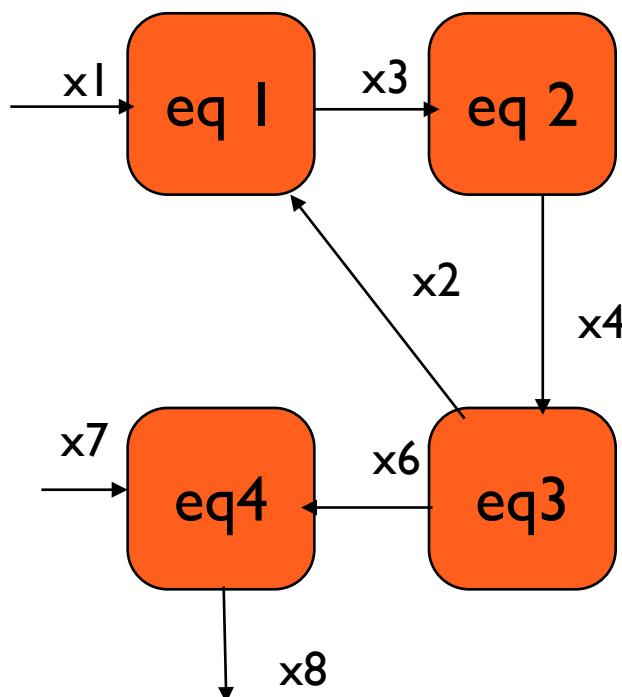
dual representation



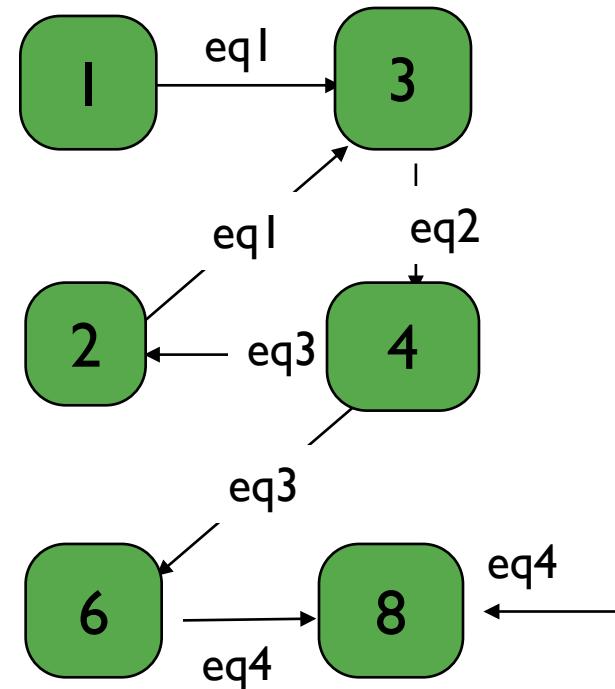
Units to compute streams
Equations to compute variables

Defining anteriors

- x_3 : needs x_1 & x_2 and is obtained by solving eq 1
 - x_1 and x_2 are anteriors of x_3 : each time I see x_3 I can replace it by x_1, x_2
- x_4 : needs x_3 and is obtained by solving eq 2
 - x_3 is an anterior of x_4 : each time I see x_4 I can replace it by x_3



Streams to compute units
Variables to compute equations



Units to compute streams
Equations to compute variables

=> Sequence of solving equations if anteriors are known

Mottard Algorithm

From streams anteriority table

For each stream : what are the streams needed to compute its value by solving 1 unit

→ 1.- Suppress streams that have no anteriors (you know them)

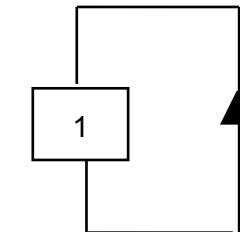
2.- Replace the streams that have only one anterior by their anterior

(if X_3 depends only of X_2 and X_2 depends only of X_1 , X_3 depends only of X_1)

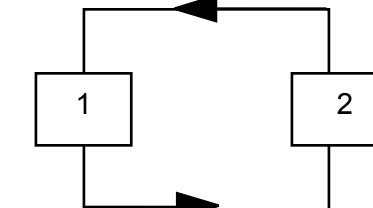
3.- when a stream depends of himself
Open loop by tearing

mark the teared stream as known =>

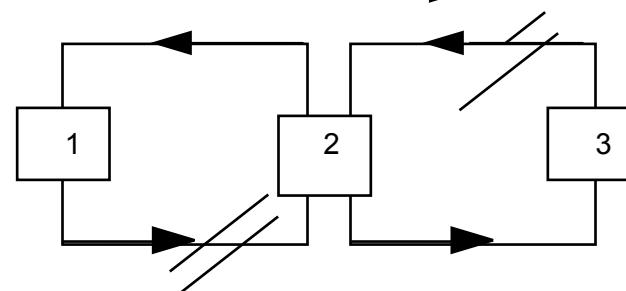
consider that the teared stream has no anterior back to 1.



4.- when an anterior stream depends of his anterior
Open loop by tearing



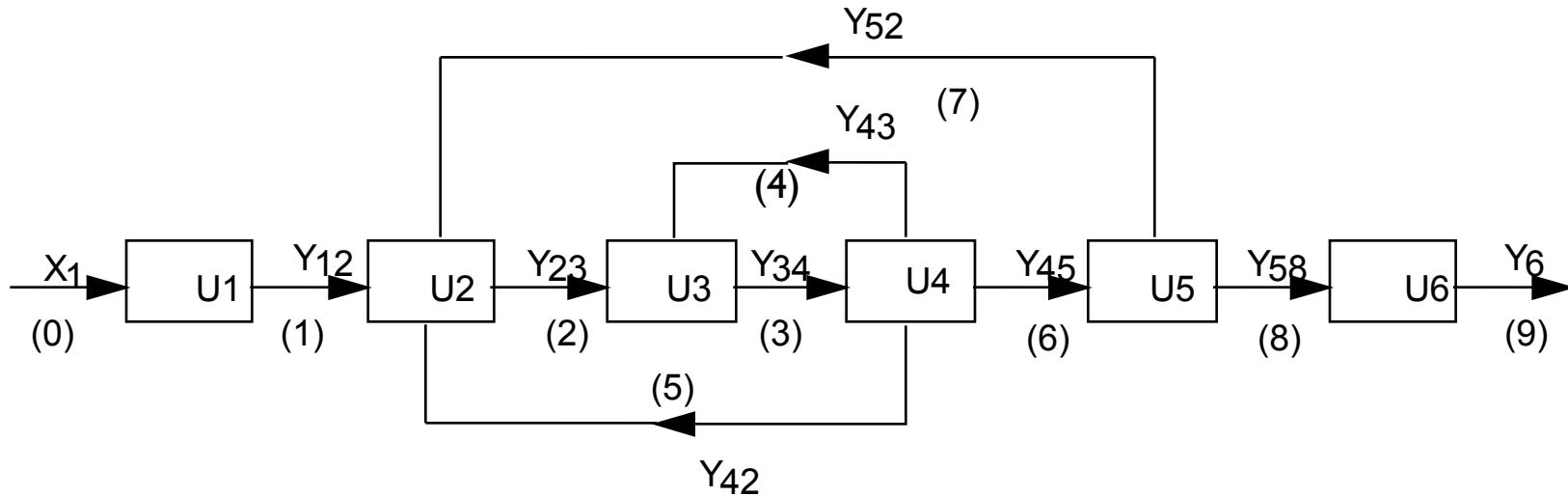
5.- Tear streams with the highest number of anterior



A teared stream has no anterior

Guess the value and restart in 1

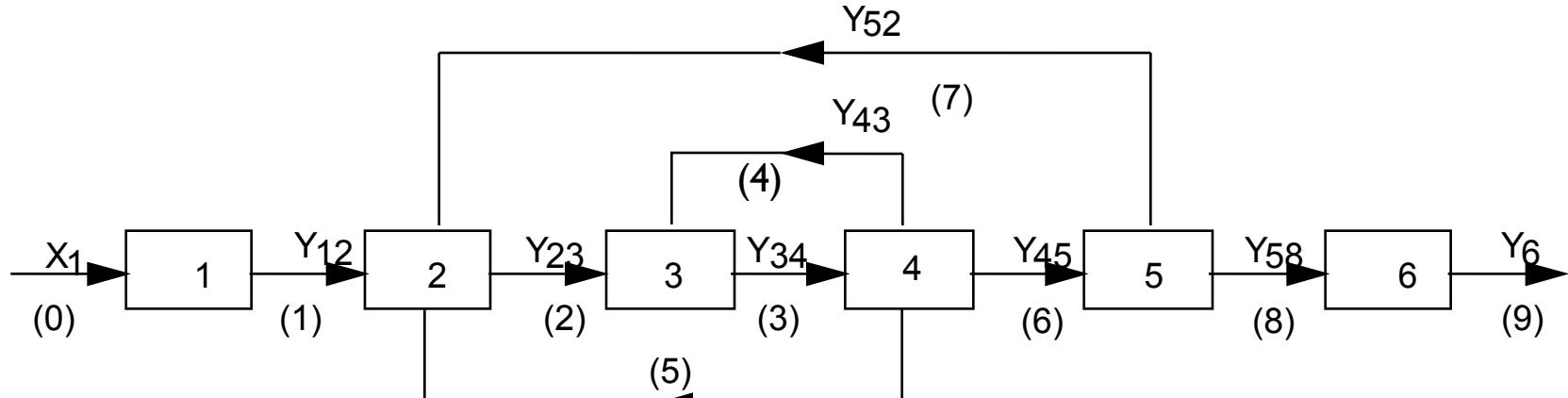
APPLICATION OF THE MOTTARD ALGORITHM



STREAMS	ANTERIOR STREAMS	
0	-	-
1	0	-
2	1,5,7	1,5,7
3	2,4	2,4
4	3	3
5	3	3
6	3	3
7	6	6
8	6	6

STREAMS	ANTERIOR STREAMS	
2	5, 7	
3	2, 4	
4	3	
5	3	
6	3	
7	6	
8	6	

APPLICATION OF THE MOTTARD'S ALGORITHM

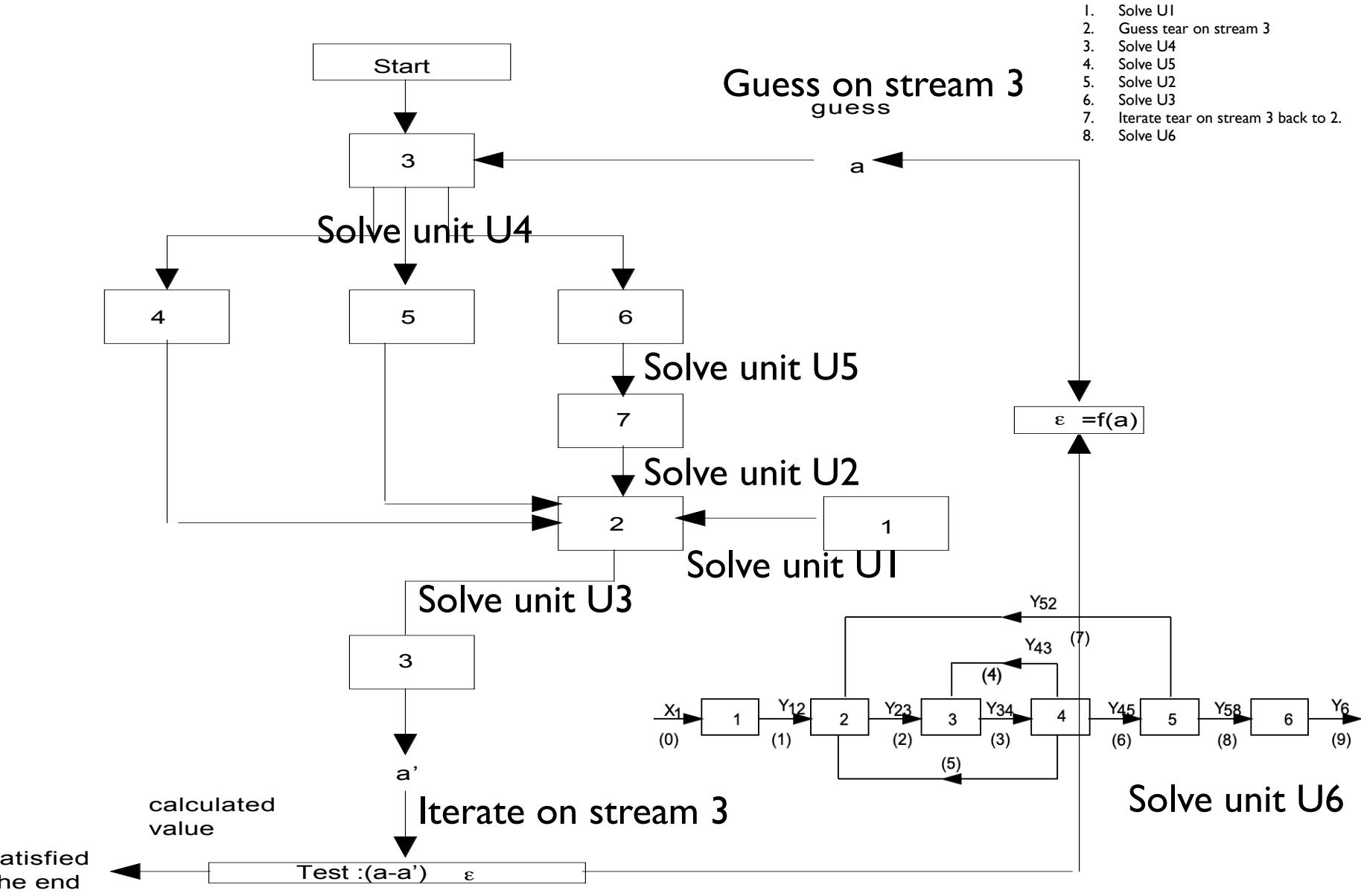


STREAMS	ANTERIOR STREAMS	
2	5,7	3,3
3	2,4	2,3
4	3	3
5	3	3
6	3	3
7	6	3
8	6	3

STREAMS	ANTERIOR STREAMS	
2	3	3
3	2,3	

STREAMS	ANTERIOR STREAMS	
3	3	

Calculation sequence



Types of tearing streams

- Depending on the process unit calculation model
 - Mass flow (N_c Variables)
 - e.g. if the temperature is specified
 - Temperature, Pressure (2 Variables)
 - e.g. if the flow is specified
 - Total (N_c+2 variables)
 - Typical case
- Tearing Equations : (X is an array)
 - Substitution form

$$X_{tear}^{k+1} = X_{tear}(X_{tear}^k)$$

- Equation form

$$X_{tear}^{k+1} - X_{tear}(X_{tear}^k) = 0$$

Conclusions

- Defining a resolution sequence
 - Define the anterior (information needed to compute an information)
 - Eliminate what is known
 - define an ordered list of equation/unit solving
 - Identify loops (i.e. calculated values that are need to solve the sequence)
 - Guess a value
 - Iterate (do the sequence of internal loop) until convergence of the loop ($x=f(x)$)
 - » Simple substitution
 - » Newton Raphson : $x-f(x)=0$

Some remarks

- The units are not always $out=f(in)$
 - calculation mode or specifications can sometimes calculate $in=f(out)$
- Use to find the initial values for a simultaneous resolution
 - tear convergence not needed if good initial guess
- Understanding the problem helps to improve the method
 - principles remain the same