Constitutive Equations
in Process flowsheeting
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What are the flows ?

What are the operating conditions (PT)
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Two stages heat pump flow sheet
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Double stage heat pump
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Double stage heat pump Flowsheet
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A process unit model

Modeling the conversion

Characterising the flows in the system Thermodynamic state
Constitutive equations
Simulation ‘
~ Equation
fm(Nn7Tn7Pnyé’n,77Tp) :O >

Simulation equations
®Mass balances

®Energy balances
®Performances equations



Constitutive Equations !

o How to characterize the flow between two unit operations ?
- what is the state of the flow ?

o How to calculate the thermodynamic state of a stream ?

o How to know what is the temperature, the pressure, the enthalpy, the entropy, the
volume, the fugacity, the state (liquid or vapor), the viscosity, the Gibbs free energy ?

o How to define the properties when the flow is a mixture of several compounds ?

o How to calculate the thermodynamic transformations in the process units :
separation, reaction, compression, expansion, pressure drop ?



State variables of a stream : Gibbs Phase rule

o Degrees of freedom of a streams
- For a stream with N compounds

- only N+2 variables are required to characterise the state. (Gibbs phase rule,
Degree of freedom of a flow)

- in which at least one will characterise a flow
¢ ie. 1 extensive variable

e Examples :

T. P, 1,
P h,m,c; for 1=1,...,N—1

PV, ,; for i=1,....N



Thermodynamic properties (other state variables)

e Other State variables
- Density, Specific volume (v)
- Enthalpy (h), entropy (s), Specific Heat (s)
- Viscosity, thermal conductivity, diffusion coefficient,surface tension
e Phase equilibirum (L-V, L-L, L-L-V)
- Saturation point,dew point
- Heat of vaporisation
- Saturating pressure
- Phase distribution coefficient
e Chemical reactions
- Heat of reaction
- Equilibrium constants

e To be calculated by the constitutive equations when N+2 state variables are known



Single stage Heat pump
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For a given refrigerant, the state of the flows can be obtained by using the state diagram of the refrigerant. States
can be calculated if we know P and T (or a) of some flows and the models of the units



Different fluids
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Refrigerants have different relationships between T,Ps,h




Constitutive equation : Equation of state
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Constitutive equations

o To represent properties of the molecule and the interactions forces
between the molecules

- Thermodynamic properties are related with the energy storage mode
in the molecules.
* Nuclear forces

e Links between atoms in a molecule (vibration modes)
- Specific heat
- Heat of formation

- Interactions between molecules
e Attraction/repulsion
* affinity -> equilibrium
® Reactivity



Relation micro/macro scales

e Energy of the molecules
- Translation : perfect gases

- Rotation, vibration
® Contributions to Cp, H, S

¢ Interactions between molecules

- Attraction, repulsion
® Equations of State
e Corrections wrt perfect gases
® Phase changes
e transport phenomena



Estimating thermodynamic properties of a pure component

e Correlations between properties
- ThermodynamicTheory

* Example : Clapeyron  dP, AH, AH
dr ~TAV, (RT*/P,)AZ,
dinP  —-AH,

d(1/T) RAZ,

- Observations : polynomial correlation on experiments :

Cpi(T):ai+bi°T‘|‘C7j'T2+di'TS‘|‘%

- Molecular structure analysis Lmin, <1°< Tmaz,

e Substance sub-sets
® Group contributions



Constitutive equations : Empirical

 Represent properties and interactions forces between the molecules

- For specific substances
e i.e.see NISTweb book, refprop, coolprop
* http://webbook.nist.gov/chemistry/

- May be really detailed, according to the amount of experiments
available
e Applied for pure components
- Difficult to implement in a systematic manner in a software (not
generic)

o Example : Refprop/Coolprop softwares


http://webbook.nist.gov/chemistry/

Thermodynamic Model: Systematic implementation in software

e Equation of state
- Generic mathematical expression with parameters
- Independent of the components
- Mixtures of components
- Constrained by the theory of thermodynamics
e Model parameters
- Fitted from experiments : Compounds data base

- Calculated by "educated” models
o Scientificintelligence



Systematic implementation : Enthalpy calculations

TO : reference temperature

Perfect gas : 25 C | atm
Gas ideal

HE(T,P,x,)= E x,* AH", +jf(z x,*Cp, (T)) AT

Cp(T)=a, +b*T +¢,*T" +d.*T" a;,bi,ci,di from data bases
Liquid ideal

H (T,P,x,)= Exi*AHOfi +j;70(2xi* Cp. (T))dT— Exi * AHvap(T)

. 038
Tcrlt _ T
AHvap (T) = AHvapi(Tib) *( Térit _ b )

Mixture liquid - vapor T = T'%% (P, x;)

Hild_v(T’Paxi) = *HEZ(T’P"XZ') + (1 — a)*Hild(T’P’xi)




Systematic implementation : Entropy calculation

e Fora gas state

dT
is— op L — (38),dp
o 0f TCpi(T)dT ny P;
SZ—S,L- - T — nﬁ

e This shows that the properties can be deduced if we know
- the correlation equations
- the data characterising the components
- the fundamental rules of thermodynamics.




Equation of state : explanation

e Interactions between molecules :
- Attraction : lowers the pressure for the same volume
- Repulsion : minimum volume, quasi incompressible
e Perfect gases : link betweenT, P,V
PV = nRT = PV — nRT =0

o Example : van der Waals equation

RT a
V—-—b V?

Repulsion Attraction

P =



Equation of state : derived from van der Waals eq.

Redlich-Kwong —

Soave P —

RT a(T)

Peng-Robinson P —

V—b V(V+0b)+0bV -0

The best equation depends on the type of fluid
21



Parameters calibration : Values of a(T) and b '/

_ RT a(T)
P=v—" V(V +0)

e Atthe critical point

7,7,

=Tc

e 2 equations to calculate aand b at T=Tc
e aand/or b may be a function of T
e e.g.a(T) calibrated to fit a given property like Pvap

The value of a and b can be calculated if we know the critical conditions (Tc and Pc) of the fluid.When there is a dependence to the T, experiments are
needed.



Soave example cont.

Equations of state detailed example P= el — al)
V-b V(V+b)
PV aP bP . -
= — A = > B=— Z is the conpressibility factor
RT (RT) RT
7’ -7Z"+(A-B-B)Z-AB=0
V
0 0 f(&) dv
H-H U-U Pv-RT l\oV)r PV-RT .
= + = + Thermodynamics
RT RT RT RT RT % Maths
%
0 f((Tﬁ) — P)dv
H-H" ,\ dT)y ,PV-RT
RT RT RT

H-H° v oP
—7Z—-1+ T(—) =P 3 dVv
RT . oT /,



Properties of pure components

o Where to find the properties of the pure components
(e.g. parameters a and b of a compound in the equation of state)

- Literature : dedicated papers

- Compilations : Tables & Graphs
® ¢.g. ASHRAE (http://www.ashrae.org )

Cpi(T):ai+bi-T+ci-T2+di.T3_|_%

- Thermodynamic Data bases Toin. <T < Ty,
® ¢.g. DIPPR ( www.aiche.org/dippr)

- Estimation methods is required because
e Millions of substances...
® mixtures ...

® extrapolate properties using models
® to predict missing information


https://www.ashrae.org/
http://www.aiche.org/dippr

Single component values .

e Minimum information needed (values used in empirical
correlations)
- Critical properties
* ¢, Pc Vc

- Acentric Factor w (how far of a sphere the molecule is ?)
Pt (T = 0.7-T.,)
P,

W; — —lOglo( ) —1

- Boiling temperature Teb
- Fusion temperature Tfus



Corresponding states ¢

e Reduced coordinates
- Tr=T/Tc Pr=P/Pc  vr=v/vc

e in reduced coordinates phase diagrams coincide for
simple compounds :Ar,CH4,N2,02

e For non polar substances or non spherical substances a
3rd parameter is needed.



Example : corresponding states

Properties of CH4, C2H6, C3H8 and C4H 10 are identical in reduced coordinates
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Fig. 3.3 Facteur de compressibilité du méthanc (A), de I'éthane (=), du propane (o) ct du n-butanc (e);
représentation en coordonndes réduites.
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Corresponding states !

o Two detailed equations for the property F of two compounds
- F1for w1 near 0 (e.g. argon : Spheric)
- F2 for w2 near 1 (e.g. n-butane : Non spheric)

e The estimation of a given thermodynamic property F(T,P) fora
compounds with known ,Tcand Pc is calculated by :

- Tr=T/Tc et Pr=P/ Pc
e property F is computed by corresponding state :
- F=F1+(w-w1) /(w2-w1) (F2 - F1)
o1 = F(Tr, Pr) for reference compound 1
o2 = K(Tr, Pr) for reference compound 2



Equations of state detailed example

Equation of Soave : estimating properties

b RT a(T)
" V-=b V(V+b)
a_=0.42748 (RT).

C

a= ac[l + (0.48 +1.574w - 0.176002)(1 B \/T_)]2
RTC acentric facor

P

C

b =0.08664

TC) P07 (1) are characteristics of the molecules



Group Contribution !

e When a compound is unknown

- group contribution methods : a molecule is represented
by constitutive groups :
® CH3,CH2,CH and C
o CH3CO, CH2CO

- Properties are calculated by correlations between
groups contributions

- see UNIFAC method for thermodynamic properties
https://en.wikipedia.org/wiki/UNIFAC



Extending the equations to mixture

Mixing rules

N N
A = ZCE‘Z Z:Ejai,j
2 J
N
1

Combinaison rules ai,j — \/aiaj (]- B 52,])

5i,j are interaction coefficient between compound i and |
0; ; parameters are calibrated to fit measurements using parameter identification techniques

31



Parameter identification

o Fit parameters o; ;to represent measured data (e.g. Dechema)
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Liquid-Vapour equilibrium

, repartition between gas and liquid state : K; = i f(T,P,x,y)
X

- Liquid

e Compute a=a(T,xi) and b=h(xi)

e ComputeAand B

e Compute Zin liquid phase

e Compute fugacity in the liquid state : ¢il
- Gas phase

e Compute a=a(T,yi) and b=h(yi)

e ComputeAand B

e Compute Z gas phase

e Compute fugacity in the gas phase : ¢iV

o =>Ki= (PIL/(PIV

33



Soave example cont. : fugacity coefficient

PV aP bP RT a(T)
_ — P= -
RT A (RT)’ 5= RT V-b V(V+b)

7’ -7Z°+(A-B-B>)Z-AB=0

RTd(In¢) = VdP = d(PV) - PdV

=>ln¢=fd(PV)_Pdv=PV—f | v + [ a(T)
RT RT V-b RT*V(V +b)
vZ-1

Ing=7Z-1-InZ-

00]

A Z+B
=7-1-In(Z-B)-21n 22
B Z




Liquid-Vapor Equilibrium

Relation between the composition in the liquid and the gas
Equilibrium : liquid & gas

pi Yi - P=ri-xi- [

KooV _f
Yo P p;
frl = (LS oy [Uf : (I;—Ps)}
i : T

*LS _ pS *S
i =Py

fiS  fugacity of pure substance at saturation at the temperature of the mixture

fugacity coefficient of saturated vapor under the same conditions
saturated vapor pressure of component i (calculated using the vapor equation of state)

PlS with Lee-Kesler Method : Pltg =f(0) +o -f(l)

.0964
O =5.92714 — g 019,6 8 128862 InT, +0.169347 - TS

15.
O =15.2518 — 5 ;875 —13.4721 - InT, + 0.43577 - TS

with

P T
P, = — (reduced pressure) and T, = — (reduced temperature).
P, T,

V —
lmp;‘S:Z—l—an—/ %22_1—1n(z—3)—%m¥

o]

f is the fugacity : the trend that the molecule has to escape (fugare) from the state it is.

https://en.wikipedia.org/wiki/Lee—Kesler_method



Thermodynamic properties : Chemical equilibrium calculation

e Chemical reations

gaA+£bB o ch—'_ng
- Equilibrium : Min Gibbs free energy

J2 V P RT
8= 8ref =RTI(®)=|PV ], - [PAV- [ —dP
V0O—>00 PO—>0



Conclusion : Constitutive equations

e Equations of state

- computes thermodynamic properties knowing the N+2 state variables (one is
defining the flow)

 Parameters of the equations
- Data bases (measures + calibration)
- Corresponding states (estimates by interpolation)
- Group contribution (based on the chem. formula)
- Mixing rules to represent behaviour of mixtures

e Standard form => easy to change fluid without changing equations (only values
of parameters are changed).

e Flowsheeting software like Aspen give hints on choosing thermodynamic
models

- based on the type of compounds and the typical conditions (high P for example)



Constitutive equation

o The choice of the dependent state variable is important

-2000 -1500 -1000 -500 (4
HCkJ/kg)



