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Figure 3.19 in Carey

Wenzel state

Liquid penetrates through the surface 

structure underneath the droplet, yet 

not spreading further



Hemi-Spreading State
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Liquid penetrates into surface structures 

ahead of macroscopic contact lines



Cassie-Baxter State
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Figure 3.23 in Carey

Air/vapor trapped between the roughness 

elements underneath the droplet



Conditions for Air Pocket Formation
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Schellenberger et al., Physical Review Letters 2016

Capillary pressure 

preventing liquid from 

entering surface structures
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Figure 3.24 in Carey



Omniphobic Surfaces
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Liu et al., Science 2014



Omniphilic Surfaces
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Mercury on flat surface

Mercury on prefilled 

structured surface

Wilke et al., PNAS 2021



▪ Explain and apply the Fick’s Law of Diffusion

▪ Apply heat and mass transfer analogy to convective mass transfer

▪ Explain the coffee ring effect

Intended Learning Objectives Today
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Reading materials: Lienhard Chapter 11, Bird Chapter 17



Fundamental Picture of Evaporation in Air
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Near field (high vapor concentration)

Far field (low vapor concentration)

Water

Air

Liquid 

water

Evaporative cooling tower



Fundamental Picture of Evaporation in Vapor
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Near field (high pressure)

Far field (low pressure)

Vapor chamber cooler



Fundamental Picture of Evaporation
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Low  (high vapor concentration)

Far field (low vapor concentration)

Water

Air

Liquid 

water

Far field (low pressure)

Near field (high pressure)

Air → Diffusion Limited Vapor → Kinetically Limited



▪ Moist air modeled as a binary mixture: water vapor + dry air

▪ Molecular diffusion:

Transport of Water Vapor in Air
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Fick’s law wiki page

Molecules in the mixture move around randomly

Spontaneous mass transfer from more concentrated 

region to less concentrated region



Fick’s Law of Diffusion for Moist Air
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𝜔𝑣

x
𝑑𝜔𝑣/𝑑𝑥
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Diffusion Coefficient
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𝑗vd = −𝜌𝐷va
𝑑𝜔v

𝑑𝑥



Mixture Mass Average Velocity
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Fick’s Law in 3D
2

3
.0

9
.2

0
2

4

17

Applying the gradient operator 𝛁 onto a scalar field gives you the direction and in which 

the scalar value increases most quickly

The magnitude determines how fast the increase is in that direction



Molar Form
2

3
.0

9
.2

0
2

4

18



▪ Temperature

▪ Total gas pressure

▪ Composition of the mixture

▪ Correlation can be found in literature (Eq. 11.34 in Lienhard)

What Affects 𝑫𝐯𝐚
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Convective Mass Transfer
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Convective Mass Transfer
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Applying the divergence operator 𝛁 ⋅ onto a vector field gives you the local sink term 

for the field flux:

𝛁 ⋅ (𝐌𝐚𝐬𝐬 𝐟𝐥𝐮𝐱 ) = local mass “outgoingness”

𝛁 ⋅ (𝐄𝐧𝐞𝐫𝐠𝐲 𝐟𝐥𝐮𝐱) = local energy “outgoinness”



Convective Mass Transfer
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∇ ⋅ 𝜓 Ԧ𝐴 = 𝜓 ∇ ⋅ Ԧ𝐴 + ∇𝜓 ⋅ Ԧ𝐴



Heat and Mass Transfer Analogy
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A
Δ𝜌v

A

Δ𝑇



Heat and Mass Transfer Analogy
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Heat and Mass Transfer Analogy
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Heat and Mass Transfer Analogy
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A
Δ𝜌v A

Δ𝑇



Heat and Mass Transfer Analogy
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Example
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Nu𝑥 = 0.332 Re𝑥
3
Pr

Sh𝑥 = 0.332 Re𝑥
3
Sc

Lienhard, Figure 11.12



Coffee Ring Effect
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CC BY-NC

https://creativecommons.org/licenses/by-nc/3.0/


Coffee Ring Effect
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Yunker et al., Nature (2011) Karim et al., Scientific Reports (2019)

Printed electronics



Contact Line Pinning
2

3
.0

9
.2

0
2

4

31

Deegan et al., Physical Review E (2000)



Evaporative Transport
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Lightening rod



Evaporative Transport
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Lightening rod



Mass Conservation
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Fluid Flow
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▪ Fick’s Law of Diffusion

▪ Heat and mass transfer analogy

▪ Coffee ring effect

What We Learned Today
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▪ Consider gas as a large number of 
randomly moving particles that 
collide with one another every now and 
then

▪ Collisions are elastic: kinetic energy 
is conserved before and after

▪ Ideal gas: molecules with negligible 
sizes and not interacting with each 
other other than collision

Crash Course on Kinetic Theory of Gases
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Credit: A. Greg
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