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=L LastTime

= Nucleation in condensation
= Rose’s analysis of dropwise condensation

= Nusselt's analysis of filmwise condensation
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fzi Intended Leamning Objective Today

= Typical condensation enhancement strategies
= Jumping-droplet condensation
= Design principles for lubricant infused surface

= Effect of noncondensable gases
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Condensation Enhancement

Finned Tube Condenser

Gu et al., International Journal of
Heat and Mass Transfer 2020

liquid
film

solid
/////////

FIGURE 9.26 in Carey
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Increase condensation heat transfer area
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Heat flux (Wm™)

2% 10°

1x10°
7%x10%-
5%10°
2X10°-
2% 10°

1x 105:

7%10%
5x10%

3% 10%*
2x10%*

1x10°

— Flat hydrophobic surfaces (dropwise)® 60-65 115,156
— SAM on CuO nanostructure (jumping)””

SAM on Cu (dropwise)”’ — SAM on Cu nanoneedles (jumping)'*®
— Graphene on Cu (dropwise)” — SAM on nanotextured Cu (flooded)’®
== iCVD fluoropolymer (dropwise)* — Finned tube (filmwise)*®

Flat Hydrophobic Coating

AT =T,

sat

- Tl‘urf
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sat
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7
(T Hydrophobic
surf coating
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Subcooling (°C)  Increase contact angle and decrease

contact angle hysteresis

Contact angle cannot be too large, otherwise not enough contact area for heat transfer



=PrL

Condensation Enhancement

EJ{:<:‘\\\

Energy Transport Advances

0 28.11.2024

Heat flux (Wm™)

2% 10° — Flat hydrophobic surfaces (dropwise)® 60-65 115,156
— SAM on CuO nanostructure (jumping)””
SAM on Cu (dropwise)”’ — SAM on Cu nanoneedles (jumping)'*®
" — Graphene on Cu (dropwise)” — SAM on nanotextured Cu (flooded)’®
1x10 . == iCVD fluoropolymer (dropwise)’* — Finned tube (filmwise)>
7x10°-
5%10°
— Surface Structure + Hydrophobic Coating
2X10° 9
Wenzel mode
1x 105:
7Xx10%-
5x10%
— Growth within roughness
2X10% > Suspended mode Partial-wetting mode
s Cho et al., Nat Rev Mater 2016
o
1x102{”
- T T T T T T T T
0.3 0.5 0.7 2 3 5 7 10 20
. Growth above roughness with differing nucleation sites
Subcooling (°C)

Potential flooding issue due to too many nucleation sites
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Coalescence
SE3<SE1+SE2

Coalescence departure

https://doi.org/10.1103/PhysRevLett.103.184501
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QSE3<SE1+SE2

f S

SE

s 2

Coalescence departure

AE,~0AA~0R?

1
KENE pR3U?

Viscous dissipation ignored
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(a)
60 - viscous
40 -
kinetic
20
potential

fotal
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Time (ms)

Appl. Phys. Lett. 103, 161601 (2013)

Only possible when the surface is superhydrophobic
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=PFL Distribution of Droplet Rad
2\ Condensation

= Probability density function

—2/3
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A(T’) — 7"1/3 Tmax = K3 E
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dc =3 | gz AT
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forr, <r < tuax

Average droplet radius

max
1
T = j rA(r)dr = 7 Tmax ~300 um

Te
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Distribution for Jumping Droplet Condensation

0.14
B EXperiment, &= Hin Since contacting neighboring droplet
— 0.12 Theory (Rayleigh), 6 =5 pum 1 . : .
g_ will cause jumping removal, droplet
> 0.1 radius should be around half the
P nearest neighbor distance
= 0.08
3
© 0.06 Jumping-droplet mode will
2 result in smaller average
3 0.041 droplet sizes on the surface
.5 0.02 and better heat transfer
(s
0 1 L
0 10 20 30 40

Nearest neighbor distance (um)
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Different Condensation Mode

Filmwise condensation

Dropwise condensation

Miljkovic et al., Nano Lett. (2013)

Superhydrophobic surface

Jumping-droplet
condensation
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Heat Transfer Enhancement

(b) 120
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Flooded, t = 45 min
w— Flooded Model
& Fimwise Exp
— = Filmwise Model

3.5

Jumping-droplet
>
Dropwise
>

Filmwise

Nano Lett. 2013, 13, 179-187
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How About Low Surface Tension Fluids

Lubricant Infused Surface (LIS)

Functionalized . Lubricating film Test liquid
porous/textured solid (Ilqwd B) (l|qu1d A)

" T ,":“\,r - -
I .'.,‘\:c »'-"“« '
VPR e ey |::>
‘ 4 v 3
o /|.'
Y

Nature volume 477, pages 443-447 (2011)
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Spreading Coefficient Sxy =Vy — Vxy + ¥x)

S,, = 0 implies x can spread on y

Xy —
(I) S;4+0, cloaking (1) S; <0, spreading _ _

Possible ways to fall
-I-Ar SRR B EEE (1) Lubricant cloaking S;; = 0
U S # —vR (V) Siay * —VaiR (1) Droplet spreading Sdz >0

A .A.

vV * 0, miscible
W) va Legend:

@ Impinging Droplet - .
@ Lubricant (V) MlSClble
O Solid Surface

ACS Appl. Mater. Interfaces2017, 9, 42383-42392

(1I1) No infusing S;5 < ¢Vz

(lV) No |nfUS|ng SlS(d) < (p)/dl
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From Week 2
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O ab Oq+0p— Wgp
w,p depends on intermolecular interactions

7202'11'8C 1



=PFL van Oss, Chaudhury, and Good
£\ (vOCG Model)

Langmuir 1992,8, 2877-2879

yiot =y + 2 /VA*V;
vad =va" +vE" — 2\/VALWV§W + 2 /VIVZ +2 /VBWB‘ —2 /VA*VB‘ — 2,/VB+V£

Phenomenological, Lifshitz-van der Waals component + polar component

Metallic interactions not considered
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Diiodomethane (CH,l,) dropped onto a LIS
of methanol infused in SiO2pillar

Methanol dropped onto a LIS of
diiodomethane infused in SiO2pillar

Heptane dropped onto a LIS of
methanol infused in SiO2pillars

18



i:i Condensation Experiment

Water (72 mN/m)

Regular
hydrophobic

LIS
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Toluene (28 mN/m)
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Heat Transfer Enhancement

240
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Water (72 mN/m)

Toluene (28 mN/m)

Condenser Subcooling (K)

Preston, D.J. et al. Sci Rep 8, 540 (2018)
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Langmuir 2018, 34, 4658—-4664
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——1 mm Wick Model ¢ 1 mm Wick Exp.
—2 mm Wick Model = 2 mm Wick Exp.
1—Filmwise Model e Filmwise Exp.
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-
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Heat Flux (kW/m?)
)

Langmuir 2018, 34, 4658-4664

1 2
Subcooling (K)
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