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Formula sheet
Cylindrical coordinates
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Potential flow

vr =
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Uniform parallel flow w = ϕ+ iψ = U∞e
−iα z

Potential vortex in z0 w = − iγ

2π
ln(z − z0)

Point source or sink in z0 w =
Q

2π
ln(z − z0)

Source-sink doublet in z0 w =
µ

2π(z − z0)

dw

dz
= u− iv

Milne-Thomson circle theorem:

g(z) = w(z) + w

(
a2

z

)

Thin airfoil theory

For a camber line with:
dyc

dx
= A0 +

∞∑
n=1

An cosnθ

x

c
=

(1− cos θ)

2
we know:

k = 2U∞

[
(α−A0)

cos θ + 1

sin θ
+
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n=1

An sinnθ

]

A0 =
1

π
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0
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An =
2

π

π∫
0
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cosnθdθ

Cl = 2πα+ π(A1 − 2A0)

Cm,1/4 = −π
4
(A1 −A2)
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1

4
+

π

4Cl

(A1 −A2)

Finite wings with AR=b2/S
Sign convention:

if induced velocity points downward: w(y) > 0, αi(y) > 0

if induced velocity points upward: w < 0, αi < 0

Prandtl’s lifting-line theory

U∞αi(y0) = w(y0) = − 1

4π

b/2∫
−b/2

(dΓ/dy)

y − y0

dy

α(y0) = αeff(y0) + αi(y0)

Elliptical loading Γ(y) = Γ0

√
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(
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b

)2

w =
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2b

αi =
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πAR

CD,i =
C2

L

πAR

y =
b

2
cos θ

General loading Γ(θ) = 2bU∞

∞∑
n=1

An sinnθ

w(θ) = U∞

∞∑
n=1

nAn

sinnθ

sin θ

CL = πA1 AR

CD,i =
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L

πAR
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∞∑
n=2

n (An/A1)
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Boundary Layer
Flat plate laminar boundary layer
δ

x
=

5√
Rex

boundary layer growth

Cf =
1.328√
Rex

skin friction drag coefficient

Flat plate turbulent boundary layer
δ

x
=

0.37

Re1/5x

boundary layer growth

Cf =
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Re1/5x

skin friction drag coefficient

Miscellanous
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water
kinematic viscosity ν = 1× 10−6m2 s−1

density ρ = 1000 kgm−3

air
kinematic viscosity ν = 1.5× 10−5m2 s−1

density ρ = 1.2 kgm−3

sin (x± y) = sinx cos y ± cosx sin y

cos (x± y) = cosx cos y ∓ sinx sin y

cos 2θ = 2 cos2 θ − 1

sin 2θ = 2 sin θ cos θ

sin 3θ = 3 sin θ − 4 sin3 θ

cos 3θ = 4 cos3 θ − 3 cos θ

π∫
0

cos θdθ = 0

π∫
0

sin θdθ = 2

π∫
0

cos2 θdθ =

π∫
0

sin2 θdθ =
π

2

π∫
0

cosnθ

cos θ − cos θ1

dθ = π
sinnθ1

sin θ1

n = 0, 1, 2, . . .

π∫
0

sinnθ sin θ

cos θ − cos θ1

dθ = −π cosnθ1 n = 1, 2, 3, . . .



1. Consider a clockwise and a counterclockwise potential vortex of strength G along y separated
by a distance D.

streamlines
equipotential lines

q
D

x

y

(a) Find the resultant complex potential w(z).

Solution:
With (0, 0) in the middle between the vortices:

w(z) =
iG

2π
ln

(
z − i

D

2

)
− iG

2π
ln

(
z + i

D

2

)
If the considered the strength positive if clockwise the following result is also correct.

w(z) = −iG

2π
ln

(
z − i

D

2

)
+

iG

2π
ln

(
z + i

D

2

)

The sign of G needs to change in the different terms and the sign in front of i
D

2

(b) Sketch the streamlines and equipotential lines in the above graph. Use a marker or
colours (not red) to clearly distinguish between both and do not forget to add a legend.

(c) Find the magnitude and direction of the velocity u⃗q at point q in between the two vortices
in function of the parameters G and D.

Solution:
Considering G positive for the counterclockwise rotating vortex and the origin in between
the vortices:

u− iv =
dw

dz
(z)

=
iG

2π

1(
z − iD

2

) − iG

2π

1(
z + iD

2

)
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In this coordinate system z(q) = 0.

up − ivp =
dw

dz
(p)

= −iG

2π

1

iD
2

− iG

2π

1

iD
2

= − 2G

πD

uq = − 2G

πD
vq = 0

Alternatively, from the symmetry of the set-up, we know that the induced velocity is in

the negative x-direction and has a magnitude of 2
G

2πD/2
=

2G

πD

(d) Now, add a horizontal uniform free stream flow with velocity u∞ =
1

2
|u⃗q| to the vortex

pair, with u⃗q the velocity found in the previous part. Find the new resultant complex
potential w(z).

Solution: ! Solutions depend on the choice of the origin of the coordinate system !

The complex potential for the flow is w(z) =
iG

2π
ln

(
z − i

D

2

)
− iG

2π
ln

(
z + i

D

2

)
+ u∞z

(e) Find the location of all stagnation points. Write your solution(s) in function of the
parameters G and D.

Solution: Considering G positive for the counterclockwise rotating vortex and the origin
in between the vortices:

u− iv =
dw

dz
(z) =

iG

2π

1(
z − iD

2

) − iG

2π

1(
z + iD

2

) + u∞

The vertical velocity component along the x-axis is zero everywhere. There will be 2
stagnation points. The stagnation points will be on the x-axis. We need to find the
x-location for which the u velocity component is zero.

0 = u(x, y = 0)

=
iG

2π

(
1

x− iD
2

− 1

x+ iD
2

)
+ u∞

=
iG

2π

(
iD

x2 +D2/4

)
+ u∞

⇒ 2GD

π

(
1

4x2 +D2

)
= u∞

⇒ x = ±

√
GD

2πu∞
− D2

4
with u∞ = 0.5up =

G

πD

⇒ x = ±
√

D2

4

stagnation points in (x, y) = (±D
2
, 0)
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(f) Sketch the new streamline pattern in the graph below.

D

streamlines

equipotential lines

D
u∞

y

(g) Find the pressure coefficient in point q

Solution:
The velocity in point q was (uq, vq) = (− 2G

πD
, 0) before including the horizontal uniform

free stream u∞ = G
πD

. The new velocity components in point q are thus (uq, vq) =
(− G

πD
, 0) = (−u∞, 0) and the pressure coefficient cp(q) = 1− (u2

q/u
2
∞) hence cp = 0.

(h) Find the total circulation Γ in the area enclosed by the large rectangle in the figure below.

Solution: Γ = 0

(i) Find the total circulation Γ in the area enclosed by the circle in the figure below.

Solution: Γ = −G
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