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1. Consider a clockwise and a counterclockwise potential vortex of strength G along y separated
by a distance D.

Y ==——streamlines
= equipotential lines

(a) Find the resultant complex potential w(z).

Solution:
With (0, 0) in the middle between the vortices:

()—ﬁln _2 —Eln +'Q
R DY s

If the considered the strength positive if clockwise the following result is also correct.

()——gln _D —|—§ln —l—'Q
w(z) = z—1 o 2t

The sign of G needs to change in the different terms and the sign in front of 22

(b) Sketch the streamlines and equipotential lines in the above graph. Use a marker or
colours (not red) to clearly distinguish between both and do not forget to add a legend.

(c) Find the magnitude and direction of the velocity #, at point q in between the two vortices
in function of the parameters G and D.
Solution:
Considering G positive for the counterclockwise rotating vortex and the origin in between
the vortices:

) dw
u— v = 5(2)

G 1 WG 1
_zn(z—zg) 21 (2 +1i2)
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In this coordinate system z(g) = 0.

dw
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Alternatively, from the symmetry of the set-up, we know that the induced velocity is in
G 2G

the negative z-direction and h itude of 2 ——~ =
€ negative r-direction an as a magnitude o 27TD/2 D

: . . . L.

(d) Now, add a horizontal uniform free stream flow with velocity u,, = 3 |iZ,| to the vortex
pair, with 4, the velocity found in the previous part. Find the new resultant complex
potential w(z).

Solution: ! Solutions depend on the choice of the origin of the coordinate system !

) D ' D
The complex potential for the flow is w(z) = ;—G In (z — 25) — ;—G In (z + z;) + UooZ
m m

(e) Find the location of all stagnation points. Write your solution(s) in function of the
parameters G and D.

Solution: Considering G positive for the counterclockwise rotating vortex and the origin
in between the vortices:
dw e 1 e 1

R a2} B S Fa)

+ Uso

The vertical velocity component along the z-axis is zero everywhere. There will be 2
stagnation points. The stagnation points will be on the z-axis. We need to find the
z-location for which the u velocity component is zero.
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(f) Sketch the new streamline pattern in the graph below.
: -

= streamlines

equipotential lines =

(g) Find the pressure coefficient in point ¢
Solution:
The velocity in point ¢ was (u,, v,) = (— 2%, 0) before including the horizontal uniform
free stream u., = -%. The new velocity components in point ¢ are thus (uy,v,) =
(—5,0) = (—uc, 0) and the pressure coefficient ¢,(q) = 1 — (u2/uZ,) hence ¢, = 0.

(h) Find the total circulation I' in the area enclosed by the large rectangle in the figure below.
Solution: I' =0

(i) Find the total circulation I in the area enclosed by the circle in the figure below.
Solution: I' = -G
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