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Finite wings with AR=b2/S
Sign convention:
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Boundary Layer
Flat plate laminar boundary layer
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water
kinematic viscosity ν = 1× 10−6m2 s−1

density ρ = 1000 kgm−3

air
kinematic viscosity ν = 1.5× 10−5m2 s−1

density ρ = 1.2 kgm−3

sin (x± y) = sinx cos y ± cosx sin y
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cos 2θ = 2 cos2 θ − 1

sin 2θ = 2 sin θ cos θ

sin 3θ = 3 sin θ − 4 sin3 θ

cos 3θ = 4 cos3 θ − 3 cos θ

π∫
0

cos θdθ = 0

π∫
0

sin θdθ = 2

π∫
0

cos2 θdθ =

π∫
0

sin2 θdθ =
π

2

π∫
0

cosnθ

cos θ − cos θ1

dθ = π
sinnθ1

sin θ1

n = 0, 1, 2, . . .

π∫
0

sinnθ sin θ

cos θ − cos θ1

dθ = −π cosnθ1 n = 1, 2, 3, . . .



1. During the design and development of the McDonnell Douglas F/A-18 Hornet (Figure 1),
several wind tunnel tests were conducted. A 16% scaled down model was tested at low speed
(Ma∞ = 0.08), providing measurements for the lift coefficient CL as a function of the angle of
attack α, the lift versus drag coefficient, and the coefficient of moment CM,c/4 with respect to
the 25% mean chord as a function of α (Figure 2). Consider the final version of the airplane in
horizontal flight with constant velocity U∞and assume that the model was properly scaled
and dynamic similarity is assured. The F/A-18 has a maximum take-off mass m = 23 500 kg,
a wing area S = 38m2, a wingspan b = 12.3m, a length l = 17.1m, and each of its two engines
provide a maximum thrust T = 79.2 kN. The 25% mean chord is located at a distance from
the front of 60% of the airplane length. Assume that the air density at the flight altitude is
ρ = 1.23 kgm−3.

Figure 1: Schematic representation of the McDonnell Douglas F/A-18 Hornet
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Figure 2: a.) Lift coefficient in function of the angle of attack, b.) pitching moment coefficient with
respect to the 25% mean chord, c.) lift versus drag coefficient.
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(a) Retrieve the data from the graphs in Figure 2 and load them into Matlab.
Note: You can use image_digitizer.m to digitize the data points from the plots or use the
file F18Hornet.mat from Moodle directly.

(b) Compute and plot drag coefficient CD as a function of the angle of attack α. What is the
highest CD of the airfoil?
Note: The data points are spaced unequally and need to be interpolated onto the same α spacing be-
fore they can be multiplied with one another. Use interp1(x,y,xq,’linear’,’extrap’)
to convert between the different graphs.

Solution: By combining together the plots for the polar curve and the CL as a function of
α, we obtain the CD data:

CD,max = 1.47 at α = 43.72◦
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(c) Compute and plot the aerodynamic efficiency ηaero in terms of the lift-to-drag ratio CL/CD.
At which angle does the airplane have the highest CL/CD-ratio?

Solution: The aerodynamic efficiency is defined as ηaero = CL/CD. By combining the CL

and CD plots we get ηaero as a function of α.

ηaero,max = 6.33 at α = 9.85◦
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(d) Compute and plot the center of pressure relative to the length of the airplane xcp/l as a
function of the angle of attack α. Where is the center of pressure located for α = 0◦?

Solution: Consider the following sketch for the geometry of the problem:

The origin of the x- and y-axis is located at the front of the airplane. Following the
definition of the center of pressure:

Mcp = N(xcp − xc/4) +Mc/4 = 0

By defining the average chord length as c = S/b and using:

CN = CL cosα + CD sinα,

we find that the location of the center of pressure is

xcp = 0.6l − SCM,c/4

bCN

.

xcp(α = 0◦) = 0.73 l
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(e) Calculate the minimum steady flight speed, the stalling velocity ustall, of the airplane.
What is the value of the stall angle αstall? Calculate the thrust needed to maintain flight
at these conditions.
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Solution:

CL,max = 1.79

ustall =

√
2W

ρSCL,max

= 74.2m s−1 = 267.1 km s−1

αstall = 37.84◦

CD,stall = 1.19

Tstall = Dstall =
1

2
ρu2

stallSCD,stall = 151 700N

(f) Calculate the maximum velocity of the airplane. Determine the Mach number Ma, the
angle of attack α, and the lift L at these flight conditions? Can you see any problems
arising from these results?

Solution: The airplane has two engines and thus the maximum thrust is Tmax = 2T .

CD,min = 0.053

umax =

√
2Tmax

ρSCD,min

= 360.6m s−1 = 1298.2 km s−1

Mau,max = 1.05

αCD,min
= 4.93◦

CL,CD,min
= 0.14

LCD,min
=

1

2
ρu2

maxSCL,CD,min
= 413 596N ̸= W

The maximum velocity reached is supersonic Mau,max > 1 where compressible flow effects
have to be taken into account. However, the CL, CD, and CM,c/4 distribution were deter-
mined at low Mach numbers (Ma∞ = 0.08) where the flow is considered incompressible.
The wind tunnel test were not properly scaled and dynamic similarity is not warranted.
If the prediction holds true, the lift generated at these flight conditions does not match
the weight and thus the airplane cannot maintain altitude.

(g) What is the angle of attack that maximises CL/CD? Calculate the lift-to-drag ratio, velocity,
lift L, and drag D of the airplane.

Solution:

αmax eff = 9.85◦

CL/CD|max = 6.33

umax eff =

√
2W

ρSCL,max eff

= 137.4m s−1 = 494.6 km s−1

Lmax eff = W = 230 535N

Dmax eff =
W

CL/CD|max
= 36 332N

(h) At an altitude of h = 4000m both engines are turned off (T = 0N) and the airplane
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glides to the ground. Calculate the distance that the airplane is able to glide at maximum
lift-to-drag ratio.

Solution: If x is the traveled distance:

CL/CD =
x

h
=

1

tanα
xmax eff = CL/CD|max h = 25 381m

ME-445 exercise 04 5 / 8



2. To analyse the aerodynamic performance of an airfoil wind tunnel experiments are conducted
and pressure measurements for a range of angles α at different chordwise positions taken.
A total of 36 pressure sensors is distributed over the surface of the airfoil (see Figure 3).
The measurements were carried out for 52 angular positions of α = [−21◦, 21◦]. The airfoil
is a NACA0015 with a chord length of c = 0.3m. The incoming flow has a velocity of
U∞ = 30m s−1 with a density of ρ = 1.2 kgm−3.

U∞

Figure 3: NACA0015 airfoil with integrated pressure sensors in red

(a) Load the file NACA0015.mat into Matlab containing the 36 chordwise positions of the
pressure sensors of the lower and upper side of the airfoil, the angle of attack variations,
and the recorded pressure data for each sensors and angle. Compute and plot the
resulting normal force coefficient Cn as a function of α based on the pressure data. What
is the slope ∂Cn/∂α of the linear part of the curve?

Solution:

∂Cn

∂α
= 8.51× 10−4 rad−1
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(b) Compute and plot the lift coefficient polar. What is the maximal lift coefficient of this
airfoil and at what angle of attack does it occur?

Solution:

Cl,max = 0.77 at α = 19◦
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(c) Compute and plot the pitching moment coefficient at quarter chord Cm,c/4. What is the
slope ∂Cm/∂α of the linear part of the curve?

Solution:

∂Cm,c/4

∂α
= 4.46× 10−5 rad−1
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(d) Determine the aerodynamic centre of the airfoil.

Solution: Moment balance between quarter chord and the aerodynamic centre:

Cm,AC = Cm,c/4 −
(
1

4
− AC

)
Cn

deriving in function of α:

∂Cm,AC

∂α
=

∂Cm,c/4
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−

(
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)
∂Cn

∂α
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with m0 :=
∂Cm,c/4

∂α
, a0 :=

∂Cn

∂α
and

∂Cm,AC

∂α
= 0 follows:

0 = m0 −
(
1

4
− AC

)
a0

AC =
1

4
− m0

a0
= 0.198
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