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But this does still not explain the 
aerodynamic drag scaling: SU

2
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Pressure gradient effect

Consider the flow along an angle 

This is the flow along a flat plate

Uniform flow- no pressure gradient

=0
Blasius boundary layer



Pressure gradient effect

Consider the flow along an angle 

This is the flow along a « forward wedge »

Accelerated flow

favorable pressure gradient

> 0
Thinner boundary layer



Pressure gradient effect

Consider the flow along an angle 

This is the flow along a « forward wedge »

Decelerated flow

unfavorable (adverse) pressure gradient

< 0

Thicker boundary layer



Adverse pressure gradient : 0




x

p

p1 p2 > p1 p3 >p2

p(x+dx)p(x)

Resulting pressure force

Pressure gradient effect



Adverse pressure gradient :

p1 p2 > p1 p3 >p2

Pressure gradient effect

Close to the wall, the viscous effects dominate

The pressure gradient further decreases the velocity

Detachement

0




x

p



0




x

p
Favorable pressure gradient:

Pressure gradient effect

p1 p2 < p1 p3 <p2

p(x+dx)p(x)

Resulting pressure force



Close to the wall, the pressure gradient further increases

the velocity of the flow  no detachement

0




x

p

p1 p2 < p1 p3 <p2

Favorable pressure gradient:

Pressure gradient effect



0




x

p
0





x

p

Pressure gradient effect

Blasius

F.S. Blasius

F.S.



Falkner-Skan solutions



Falkner-Skan far field solutions



Falkner-Skan boundary layer equations

1. Prandtl equations



Falkner-Skan boundary layer equations

1. Prandtl equations

2. Self-similar solution



Falkner-Skan boundary layer equations

1. Prandtl equations

2. Self-similar solution

3. Falkner-Skan equation



Falkner-Skan boundary layer solutions



Falkner-Skan boundary layer solutions
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Boundary layer separation
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Boundary layer separation



Decollement sur un profil d’aile



Effet du gradient de pression
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Application to sailing
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Application to sailing



Example: Flow around a sphere



Flow around a cylinder

θ

p



Flow around a cylinder



P+

P-

P+

Origin of detachment: pressure gradient

P-

P+

A viscous flow close to the wall opposes the free-stream



P+

P-

P+
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Pressure coefficient

33Chapitre 8: Couches limites



Form drag



Drag coefficient
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x

drag

section, somewhat arbitrary…
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Separation control
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Separation control
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Application to sailing

Foc

Grand Voile
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Thickness effect

Attached

Detached
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A gallery of detached flows
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A gallery of detached flows
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A gallery of detached flows
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𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑢𝑒

𝑑𝑢𝑒
𝑑𝑥

+
1

𝑅𝑒

𝜕2𝑢

𝜕𝑦2

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0

0 = −
𝜕𝑝

𝜕𝑦

Obtained by solution 

of irrotational flow, 

assuming 𝑅𝑒 = ∞

This is a unilateral coupling

Boundary layer deflects outer inviscid flow by 𝛿∗ Inviscid Flow

Boundary 

Layer

𝛿∗

∇2𝜙 = 0

𝛿∗ = න
0

∞

1 −
𝑢

𝑢𝑒
𝑑𝑦Boundary Layer 

Displacement Thickness

Classical Boundary layer
Outer flow dictates boundary layer which does not feedback
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BUT REMEMBER that the wall normal velocity is

not zero in the boundary layer, it is just small!

It therefore makes sense to correct the potential

flow which has to meet a small transpiration 

velocity at the wall
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More quantitatively
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The viscous-inviscid coupling has two

interpretations

The potential flow flows on an effective 

wall, slighlty displaced by δ

The potential flow flows on wall crossed

through transpiration velocity
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Potential Flow

Boundary 

Layer

𝜕𝒖

𝜕𝑡
+ 𝒖. ∇𝒖 = −∇𝑝 +

1

𝑅𝑒
∇2𝒖

∇2𝜙 = 0

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

𝑑𝑝

𝑑𝑥
+

1

𝑅𝑒

𝜕2𝑢

𝜕𝑦2

Correction to purely inviscid models

Easier to Solve

Applicable to Moderate Reynolds Regimes

Predicts Separation and Stall

Predicts Instabilities and Turbulence

Accounts for Drag Force

Potential Flow

Boundary 

Layer

INTERACTIVE
BOUNDARY

LAYER

𝛿∗

𝛿∗ = න
0

∞

1 −
𝑢

𝑢𝑒
𝑑𝑦

Boundary Layer 

Displacement Thickness 𝑣𝑤

𝑖𝑛 𝔻

𝔻

𝔻𝛿∗

−𝔻𝛿∗

Interactive Boundary layer
Potential flow and boundary layer are solved in a coupled way
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𝜆 𝛾
Thin Airfoil Theory

Exact Solutions

Analytical Solution

Finite Element

Panel Method

𝐹 = 𝑈(𝜁 +
𝑎2

𝜁
)

𝑧 = 𝜁 +
𝑐2

𝜁

Photos adapted from 
(Currie, 2002) 

𝛾 𝜆

How to solve potential flow?
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Example of potential flow solver
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Similarity Solution 𝑓′′′ + 𝑓𝑓′′ + 𝛽 1 − 𝑓′2 = 0

Momentum Integral 
Equation

𝑑𝜃

𝑑𝑥
+ 𝐻 + 2 𝜃

1

𝑈

𝑑𝑈

𝑑𝑥
=
𝐶𝑓

2

Falkner-Skan Solution

Karman-Pohlhausen Method

Thwaites Method

Two-Equation Method

Finite Difference 
Solution

Explicit Dufort-Frankel Scheme

Implicit Crank-Nicolson Scheme

Implicit Keller-Box Scheme

ETC.

ETC.

How to solve the boundary layer ?
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Boundary Layer Solution. Direct or Inverse?

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑢𝑒

𝑑𝑢𝑒
𝑑𝑥

+
1

𝑅𝑒

𝜕2𝑢

𝜕𝑦2

𝑣 𝑥, 0 = 𝑣𝑤(𝑥)

𝑢 𝑥, 0 = 𝑢𝑠(𝑥)

𝑢 𝑥,∞ = 𝑢𝑒(𝑥)

Direct or Standard Form

Breaks Down for Separated Flow

Goldstein Singularity

(Goldstein,1948)
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Separated Boundary Layer Example-Direct Solution

u

Goldstein 

Singularit

y
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Boundary Layer Solution. Direct or Inverse?

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑢𝑒

𝑑𝑢𝑒
𝑑𝑥

+
1

𝑅𝑒

𝜕2𝑢

𝜕𝑦2

𝑣 𝑥, 0 = 𝑣𝑤(𝑥)

𝑢 𝑥, 0 = 𝑢𝑠(𝑥)

න
0

∞

1 −
𝑢 𝑥, 𝑦

𝑢𝑒 𝑥
𝑑𝑦 = 𝛿∗ 𝑥

Inverse Form

Separated Solution

Idea by (Catherall and 

Mangler,1966)
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Verification-Stagnation Point Flow- Inverse Solution
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Separated Boundary Layer Example-Inverse Example

u

x
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Boundary Layer Solution. Direct or Inverse?

𝑓′′′ + 𝑓𝑓′′ + 𝛽 1 − 𝑓′2 = 0Falkner-Skan Example 𝑢𝑒 𝑥 = 𝑐𝑥
𝛽

2−𝛽
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IBL Coupling Algorithms: Direct Coupling
->Natural but unstable! [does not overcome separation]

(Lagrée, 2010)

Direct Direct
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IBL Coupling Algorithms: Inverse Coupling
->Impractical

(Lagrée, 2010)

Inverse Inverse
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IBL Coupling Algorithms: Semi-Inverse Coupling
-> the way to go!

(Lagrée, 2010)

Inverse

Direct
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𝑥 𝑥

𝛿∗𝑢

𝐸

8070605040302010

10−3

10−2

10−1

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

Convergence of IBL Algorithm

𝑢𝑖𝑛𝑣(𝑈𝑝𝑝𝑒𝑟 𝑆𝑖𝑑𝑒) 𝑢𝑖𝑛𝑣(𝐿𝑜𝑤𝑒𝑟 𝑆𝑖𝑑𝑒)

𝑢𝑒 (𝑈𝑝𝑝𝑒𝑟 𝑆𝑖𝑑𝑒) 𝑢𝑒(𝐿𝑜𝑤𝑒𝑟 𝑆𝑖𝑑𝑒)

Porous Membrane with Porosity 

0.9 and 𝑅𝑒𝑝 = 1 Test Case,

Angle of Attack: 3°
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Comparison IBL-DNS

𝑅𝑒 = 1000,

𝑅𝑒 = 1000,

Angle of attack 3°

Angle of attack 8°
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Circulation

𝑅𝑒 = 1000, Impermeable
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IBL is the machinery behind XFOIL

෍

𝑗=1

𝑁

𝑎𝑖𝑗𝛾𝑗 −Ψ0 = −𝑢∞𝑦𝑖 + 𝑣∞𝑥𝑖 − ෍

𝑗=1

𝑁+𝑁𝑤−1

𝑏𝑖𝑗𝜎𝑗

Ψ 𝑥, 𝑦 = 𝑢∞𝑦 − 𝑣∞𝑥 +
1

2𝜋
න𝛾 𝑠 ln 𝑟(𝑠; 𝑥, 𝑦) 𝑑𝑠 +

1

2𝜋
න𝜎 𝑠 ln 𝑟(𝑠; 𝑥, 𝑦) 𝑑𝑠

Inviscid 

Analysis

𝑑𝜃

𝑑𝜉
+ 𝐻 + 2 −𝑀𝑒

𝜃

𝑢𝑒

𝑑𝑢𝑒
𝑑𝜉

=
𝐶𝑓

2

𝜃
𝑑𝐻∗

𝑑𝜉
+ 2𝐻∗∗ + 𝐻∗ 1 − 𝐻

𝜃

𝑢𝑒

𝑑𝑢𝑒
𝑑𝜉

= 2𝐶𝐷 − 𝐻∗
𝐶𝑓

2Boundary 

Layer 

Analysis 𝐻∗ = 𝐻∗ 𝐻𝑘, 𝑀𝑒 , 𝑅𝑒𝜃 , 𝐻∗∗ = 𝐻∗∗ 𝐻𝑘, 𝑀𝑒 , 𝐶𝑓 = 𝐶𝑓 𝐻𝑘,𝑀𝑒 , 𝑅𝑒𝜃 , 𝑒𝑡𝑐.

BL Mass Defect

𝑑 ෤𝑛

𝑑𝜉
=

𝑑 ෤𝑛

𝑑𝑅𝑒𝜃
𝐻𝑘

𝑑𝑅𝑒𝜃
𝑑𝜉

(𝐻𝑘, 𝜃) (In Laminar Regime)

Inverse Viscous-Inviscid Coupling 

By Newton’s Iteration

(Drela, 1989)
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IBL is the machinery behind XFOIL
(Drela, 1989)
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Hydrodynamics 13

Waves
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Waves

Potential flow

z

x

Dynamic boundary conditions

Kinematic boundary conditions

V

U

Air

Water
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ρ2, φ2

ρ1, φ1

z

x

General case: two fluids
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General case: two fluids

Potential flow

Potential flow

z

x

Dynamic boundary conditions

Kinematic boundary conditions

V

U
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Linear waves dispersion relation

1. Equations and boundary conditions

2. Base state

3. Linearized equations

4. Normal mode expansion

5. Dispersion relation

6. Analysis of the dispersion relation
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1. Equations

Potential flow

Velocity field
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1. Boundary conditions

far-field

?
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1. Kinematic boundary condition

η(x,t)

x

V
┴

= ∂η/∂t cos(α)

z

α

No fluid particles going across the interface through the normal direction

Kinematic condition : impermeability (no penetration)

V
┴

V
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1. Kinematic boundary condition

η(x,t)

x

V
┴

= ∂η/∂t cos(α)

y

α

No fluid particles going across the interface through the normal direction

Kinematic condition : impermeability (no penetration)

u
┴1= v1 cos(α)+

V
┴

V

u

v

u
┴1
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1. Kinematic boundary condition

η(x,t)

x

V
┴

= ∂η/∂t cos(α)

y

α

No fluid particles going across the interface through the normal direction

Kinematic condition : impermeability (no penetration)

u
┴1= v1 cos(α)- u1 sin(α)

V
┴

V

u

v

u
┴1

∂η/∂t=v1- u1 tan(α)    ∂η/∂t=v1- u1∂η/∂x
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1. Kinematic boundary conditions

far-field

-

-
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1. Dynamic boundary conditions
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1. More equations

2nd Bernouilli relations

= 0

= 0
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2. Base state
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3. Perturb and linearize

perturbation expansion

Variables Small perturbationBase state
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3. Linearized equations

perturbed potential flow
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3. Perturbed kinematic boundary conditions
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3. Perturbed kinematic boundary conditions
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3. Flattened kinematic boundary conditions

Taylor expansion around 0:
0

transforms a b.c. at an unkwown interface into a fixed place!
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3. Perturbed dynamic boundary conditions

Replace P1=-gρ1z, …

flatten

and linearize

g
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3. Perturbed and linearized Bernouilli

Perturbed 2nd Bernouilli relations

Linearized 2nd Bernouilli relations
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4. Normal mode expansion

Fourier transform in x and t
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4. Normal mode expansion

Solution to Laplace equation:
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4. Normal mode expansion

Solution to Laplace equation:

z

2

1
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4. Normal mode expansion

Solution to Laplace equation:
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4. Normal mode expansion

Replace in boundary conditions

This is an eigenvalue problem iωX=MX!
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5. Dispersion relation

•Neutral if for all ω, Im(ω)=0:

•Unstable if  there exists one ω, Im(ω)>0

•Stable (or damped) if  for all ω, Im(ω)<0:

The flow considered is not damped, we have 

neglected dissipation by neglecting viscosity
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Instability analysis:

1. Equations and boundary conditions

2. Base state

3. Linearized equations

4. Normal mode expansion

5. Dispersion relation

6. Analysis of the dispersion relation
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Dispersion relation

ρ2

ρ1
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Dispersion relation

z
ρ2

ρ1
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Dispersion relation

Capillary wavenumber:

Length scale:

Time scale

One single non-dimensional parameter
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Dispersion relation

gravity capillary

shallow water

Deep water

~
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t

x

Difference between group velocity v and 

phase velocity c
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Dispersion relation

gravity capillary

shallow water

Deep water
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Dispersion relation

wavenumber kCapillary wavenumber kc

capillary wavesgravity waves

s
h

a
ll

o
w

 w
a

te
r

d
e

e
p

 w
a
te

r

c

c~(gh)1/2

c~k1/2c~k-

1/2

kc=10; h=1
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Trajectories below the waves

exp(-ky)

2π/k

ch(ky)
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Stokes drift!
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Why are the waves parallel to the shore?

h

λ

T=10s; ω=0.62
c~(gh)1/2

λ~T(gh)1/2
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Refraction and diffraction of waves

Satellite view Namibian coast
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Nonlinear waves, wavebreaking

The celerity increases with the depth
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Dispersion relation

wavenumber kCapillary wavenumber kc

capillary wavesgravity waves

s
h

a
ll

o
w

 w
a

te
r

d
e

e
p

 w
a
te

r

c

c~(gh)1/2

c~k1/2c~k-

1/2

kc=10; h=1

min(cφ)~20cm/s



Conditions for wave pattern formation?
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Vduck<cmin   ?>


