But this does still not explain the

aerodynamic drag scaling: % 5.U.%S




Pressure gradient effect

Consider the flow alonganangle S =7n/(m+1)=m ie. m=0

This is the flow along a flat plate

5

/7~ ™

| !

Uniform flow- no pressure gradient

Vp =0

0. 0.2

0.4 0
u/U

Blasius boundary layer

i 0.8 L.



Pressure gradient effect

Consider the flow along anangle G =7/(m+1) <7 ie. m>0

This is the flow along a « forward wedge »

R 0.8 L.

Eljal a

u/U
Accelerated flow |
favorable pressure gradient

Vp >0

Thinner boundary layer



Pressure gradient effect

Consider the flow alonganangle f=7/(m+1) > 7 ie. m <0
This is the flow along a « forward wedge »

. 0.2 G 0.8 L.

04 0
u/U

Decelerated flow

unfavorable (adverse) pressure gradient Thicker boundary layer

Vp <0



Pressure gradient effect

Adverse pressure gradient : —

P, P.> P, P;~P;

p(x)  p(x+dx)

Resulting pressure force



Pressure gradient effect

Adverse pressure gradient : —>0

P, P.> P p3 >P-

Close to the wall, the viscous effects dominate
The pressure gradient further decreases the velocity
= Detachement



Pressure gradient effect

Favorable pressure gradient: % <0

P, P> <P, p3 <P-

p(x) E_13(X+dx)

Resulting pressure force



Pressure gradient effect

Favorable pressure gradient: P <0

OX

pl pZ < pl p3 <p2

Close to the wall, the pressure gradient further increases
the velocity of the flow = no detachement



Pressure gradient effect

iF 3
H & H &
_._1_ _4
Blasius
_! :
Blasius
0

0. 0.2 04 0.5 0.3 1.

. I}iE {Ii-i- IIIilS I:IiE 1.
U,"l U H‘,"'U



Falkner-Skan solutions

/
/

U J | s
0 N\
- - _{@—H 7(&;”

(a)

VR R R R NN N

—K

(b) (c) (d)

Figure 5.2 Boundary layer flows represented by solutions of the Failkner-Skan equation
for different values of the parameter m: (a) m =0;(b)ym = 1;(c)0 <m < 1;(d) =1/2 <m <0



Falkner-Skan far field solutions
13'64 : Gwrle,ke‘_.- |

F@) = Cz"




Falkner-Skan boundary layer equations

1. Prandtl equations

qj}" ‘lbxy ¢x ¢yy = dU + {bm,

€5=¢p=00ny=0, $; - U(x)as j - o,



Falkner-Skan boundary layer equations

1. Prandtl equations
. dU
¢}" ribxy ¢x ¢yy = + ¢m*

€5=¢p=00ny=0, $; - U(x)as j - o,

2. Self-similar solution

p(x, §) = (Axm")"" f(n) where 7 = HAx""")"2



Falkner-Skan boundary layer equations

1. Prandtl equations

qj}" ‘lbxy ¢x ¢yy = dU + {bm,

J=¢g,=00n§=0, ¢,- Ulx)as - .
2. Self-similar solution
(x, P) = (Axm") f(n) where 5 = Hdx™")"2
3. Falkner-Skan equation
"+ 4m+ ) 7+ m(l - f7?) =0
SO =/10) =0, f(ew) =1



Falkner-Skan boundary layer solutions

f'(n)=u/u
Figure 5.3 Sketch of velocity profiles given by solutions of the Falkner—Skan equation



Falkner-Skan boundary layer solutions




Boundary layer separation

fffffffffffff

I

i

|

|

.!/f
p

EAF A

$ ~ (x — x5)4 so that % ~(x — xg)'?as x - x.



Boundary layer separation




Decollement sur un profil d’aile

Expériences en soufflerie menées a 'université de Stanford,
|"écoulement est visualisé grace a des fumées :

angle d'incidence | v = 0°

[ DVD ‘Multimedia Fluid Mechanics’, Homsy et al. 2004, Cambridge University Press ]



Décollement sur un profil d’aile

Expériences en soufflerie menées a |'université de Stanford,
|"écoulement est visualisé grace a des fumées :

angle d'incidence | v = 5°

[ DVD ‘Multimedia Fluid Mechanics’, Homsy et al. 2004, Cambridge University Press ]



Décollement sur un profil d’aile

Expériences en soufflerie menées a |'université de Stanford,
I"écoulement est visualisé grace a des fumées :

angle d'incidence | v = 10° |:

[ DVD ‘Multimedia Fluid Mechanics’, Homsy et al. 2004, Cambridge University Press ]



Décollement sur un profil d’aile

Expériences en soufflerie menées a 'université de Stanford,
|"écoulement est visualisé grace a des fumées :

angle d'incidence | v = 15° |:

[ DVD ‘Multimedia Fluid Mechanics’, Homsy et al. 2004, Cambridge University Press ]



Décollement sur un profil d’aile

Expériences en soufflerie menées a ['université de Stanford,
|"écoulement est visualisé grace a des fumées :

angle d'incidence | v = 25° |:

[ DVD ‘Multimedia Fluid Mechanics’, Homsy et al. 2004, Cambridge University Press ]



Décollement sur un profil d’aile

Expériences en soufflerie menées a 'université de Stanford,
|"écoulement est visualisé grace a des fumées :

angle d'incidence | v = 30° |:

[ DVD ‘Multimedia Fluid Mechanics’, Homsy et al. 2004, Cambridge University Press ]



Décollement sur un profil d’aile

Expériences en soufflerie menées a ['université de Stanford,
|"écoulement est visualisé grace a des fumées :

angle d'incidence | v = 35° |:

[ DVD ‘Multimedia Fluid Mechanics’, Homsy et al. 2004, Cambridge University Press ]



Application to sailing
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Application to sailing




Example: Flow around a sphere

Laminar Separation

Transition to Turbulence

A _—Turbulent

4~  Separation

@ OMERA



Flow around a cylinder

|
pla,0) = §pU§O(1 — 4sinf?)

WV

\\/—
\—//

\/




Flow around a cylinder

1
pla,ld) = 2pU30(1 — 4sin 6°)

180

270



Origin of detachment: pressure gradient

A viscous flow close to the wall opposes the free-stream






Pressure coefficient

Cp(V)
I
0 | <— couche limite turbulente Re = 6,6 x 105
1 <— couche limite laminaire Re = 2,4 x 105
9
<«— €coulement potentiel
-3 | |
0 90 180 Ve

05/05/2025



Form drag

180

270



Drag coefficient

Cx

trainée

= pUZA

Shape Effects on Drag e

Research
Center
The shape of an object has a very great
effect on the amount of drag.
Cd=1.28 Cd=1.14
Flat Plate prism Cd= 295

Flow | Bullet

Cd=07 to .5
Sphere

= D Cd= 045
p v 2A /2 Airfoil
A = frontal area All objects have the same frontal area.

Cvg =185 Flal plate

Cp=038  Hamisphete

@ Cyeld2  Hemisphers

Cp = 0,007

—li
—t
——
—
—ll
—
—
—
L
———

y
—

C -



drag

e

section, somewhat arbitrary...

Cy

Plague plane preés du scl Cx
aue zane pre p

"'\ .
— b‘bm 1,27
a N\ s/

09

0,52

0.34

0,2

0,43

0.75

09




Separation control




Separation control




Application to sailing
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Thickness effect

Attached

Detached

40



A gallery of detached flows




A gallery of detached flows




A gallery of detached flows




Classical Boundary layer
Outer flow dictates boundary layer which does not feedback

f du OJv
— t—=

dx Ody
ou Odu | du.| 109%u

ua+v@—ue Tx +EW

0= dap \ Obtained by solution

\ dy of irrotational flow,
assuming Re = o

This is a unilateral coupling

Boundary layer deflects outer inviscid flow by §* Inviscid Flow
Boundary Layer * ” i i
Displacement Thickness 0 -]0 (1 ue> dy
= 9 Boundary

V=0 T T T T mmm————a___ Layer



BUT REMEMBER that the wall normal velocity is
not zero in the boundary layer, it is just small!

A

10 1.0

086 F-—-———— e ———— o o
o
vU

05 + 05 1=

s

— | -

3 6

T v
n—y‘w{\}x n:y\j;

It therefore makes sense to correct the potential
flow which has to meet a small transpiration
velocity at the walll




More gquantitatively

Starting from the incompressibility equation and adding and substracting the same derivative of the
velocity (in the spirit of Von Karmén integral equations):

Jv ou e,  Oue

8_377(_%4_65:) 0T’

we obtain, after integration up to an y ( and y are independent variables) the velocity is:

N o (Y Ol
() = 0(0) = - ; (@ — te)dy — §—-

so, if 7 is large enough and as ©(0) = 0 we obtain the behavior for large enough :

_ d o~ _Ole
0(y) =~ £(u651) T

This velocity must be multiplied by Re~/2: and § = Re~ /2. Now, we write the velocity in the ideal fluid
as a Taylor expansion near the wall for small 7:

_Jv _

5m
U= @(5:,0)+y8—@ o= 0(,0) — o

-+ ...
o

matching this velocity and the boundary layer velocity show that:

o -
5(z,0) = Re—l/Q%('&eO’l)




The viscous-inviscid coupling has two
Interpretations

X,

\Q
Fvyvyyy
]
%)

il

The potential flow flows on an effective
wall, slighlty displaced by 0

=L

X,

U, (x))

\Q
FVVVVYVYY
[
7

The potential flow flows on wall crossed
through transpiration velocity



Interactive Boundary layer
Potential flow and boundary layer are solved in a coupled way

D
Boundary Layer
Displacement Thickness e == —-— — T T TR
== 1 Boundary D~
Lo | T o
0 te Potential Flow
ou 1 V2 =0  inD-Ds Easier to Solve
- — _ 2
ot tuVu=-Vp+ Re Veu ou ou B dp 1 0%u Correction to purely inviscid models
" ox v dy  dx " Re 0y? Accounts for Drag Force
. Applicable to Moderate Reynolds Regimes
Potential Flow PP y 9
INTERACTIVE Predicts Separation and Stall
BOUNDARY Predicts Instabilities and Turbulence
LAYER

Boundary
Layer



s, 2002)

urrie,

Photos adapted from

(G

T
TATAVAN LT
LT,
AR
7

Dk
AATATATATa:

i
FATAVAY TS

TATATAVAV AT

vy

A7
TATATATAVAVATATATAYA Y
TATATA YAV APATATATAEY

VAATATATAVATANATATA VLAY,
i3
TATATATAVATATATATAAY
ATATAYATAVATaT)

o

TATATATATLYAY

TATATATAY

i

How to solve potential flow?

ions

Finite Element

c
O
-
=

(@)
v
©
=
ey
=
(q°]
[ e
<

Thin Airfoil Theory
Exact Solut

A

O —C

4

49




Example of potential flow solver

2 T T

1 AoA=10°

O i i

Q.
% il
= |
g — Analytical Solution
> Panel Method

-4 1 1 1 1 1 1

0 0.2 0.4 0.6 0.8 1

X



How to solve the boundary layer ?

Similarity Solution

flll +ff” +,8(1 _fIZ) =0

Falkner-Skan Solution

Momentum Integral

Karman-Pohlhausen Method

. d_@ +(H+2)6 ld_U _ & Thwaites Method
Equation dx Ude 2 T _
wo-Equation Method
ETC.
¥ T
. . . V)1 — : Explicit Dufort-Frankel Scheme
Flnlteleference » ::::I:.;:::::::::-:“:::::iz:I:::::: Siohe
. n, | b Implicit Crank-Nicolson Scheme
Solution y [ | ;
] it e i— ¢ - Implicit Keller-Box Scheme
Y1 .

ETC.

51




Boundary Layer Solution. Direct or Inverse?

v(x,0) = vy (x)

u—-+v

ou du du, 1 0%u <
p— ue R + P —
ox dy dx  Redy?

u(x,0) = ug(x) Direct or Standard Form

Q Breaks Down for Separated Flow

Goldstein Singularity
(Goldstein,1948)



Separated Boundary Layer Example-Direct Solution

Test Case Re U (x) v, ()| us(x) u(0,y)
Separated Flow- Direct | 10® | 1+ 0.1x — 0.2x? 0 0 Blasius Profile
©x-velocity - - BL Momentum Thickness

- - BL Displacement Thickness - - BL 99% Thickness

0.2

0.4

0.6

0.8

1 0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

r ﬁ;’ﬁ”:%“:fj“:‘g —r—1r % =
I / 1
s
. —-x=0.2
I -x=0.4 T
/ +x=0.574 (Separation Point)
0 0.005 0.01 0.01

53



u—-+v

Boundary Layer Solution. Direct or Inverse?

ou ou_ du, 10% u(x, 0) = ug(x) Inverse Form

. u(x,y) , Idea by (Catherall and
(1 u.(x) >dy =8 Mangler,1966)
\

Separated Solution

ox oy Y ax TRedy? {




Verification-Stagnation Point Flow- Inverse Solution

[x=0.295- HS —x=0.619- HS —x=1- HIS

- x=0.295-FD - x=0.619- FD » x=1-FD

Test case Re 0*(x) V() Uug(x) u(0,y) (0, Yoo )
Stagnation flow | 10000 0.01168 0.02 | 0.001 + 0.1z | Hiemenz Flow Profile 0.001
o©x-velocity -- BL Momentum Thickness u
- - BL Displacement Thickness - - BL 99% Thickness 1 1 r
0.04 0.8 0.8
0.6 0.6
=
0.02 0.4 0.4
0.2 02+
0 0 0 .
0 0.2 0.4 0.6 0.8 1 0 0.01

0.02 0.03 0.04 0.05 0.06
y
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Separated Boundary Layer Example-Inverse Example

‘ Test case Re

*(2)

Vy (I)

us(z)

u(0,y)

u(0, Yoo)

‘ Separated flow | 10000

0.01 + 0.222

0.02

0.01

Pohlhausen Polynomial

-x=0 -x=0.6

-x=0.2-x=0.8
—x=0.4-x=1
011 012 0i3 0.4
y

0.4

0.3

> 0.2

0.1

>0.2

0.1-

Ox-velocity

-- BL Momentum Thickness

- - BL Displacement Thickness - - BL 99% Thickness

u
B15

0.5

u
~0.01

03"

10.005

-0.005

-0.01

-0.015

-0.02

0.4



Boundary Layer Solution. Direct or Inverse?

B
nr 17 2\ — 22—
Falkner-Skan Example "+ 7+ ,3(1 —f ) =0 U, (x) = cx2-F
0.8 T T T T T ! 1.2 T T T T T T T T
No Solution { Solution
0.6 - aEmRY
unseparated g
solution /0 _fHdn
0.4 i 09 \ -
asi™® )o
3 inc®
£"(0) f'(m)
02F _
separated :j:l)
ok solPtlon i —a_0i
: —=-0.1988
-- B=-01
02k i
I : | ! 0.2 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8
-0.3 0.1 0.2 0.3 n

o7



IBL Coupling Algorithms: Direct Coupling
->Natural but unstable! [does not overcome separation]

Direct Direct
Yuw T C}l |deal Fluid Ue Boundary Layer 01

(Lagrée, 2010)



IBL Coupling Algorithms: Inverse Coupling
->Impractical

Inverse Inverse
Y T 07 Boundary Layer e |deal Fluid 01

(Lagrée, 2010)



IBL Coupling Algorithms: Semi-Inverse Coupling
-> the way to go!

Inverse
n n
01 =3 Boundary Layer i U5 1,

(U%L - U?) e 5?“

Yu + 5?-)' Ideal Fluid }) u”

T Direct I

(Lagrée, 2010)



Convergence of IBL Algorithm

1071 1 F
3]
1072¢ ]
1073¢ 1
10 20 30 40 50 60 70 80
iteration
. . - +
(51').;;1 = (¢; ): + A [(uif)e (ufnv) ]
E =

16+

1.4

1.2 ¢

J.8 ¢

0.2

0.6}
0.4

Iteration: = = u, (Upper Side):suessas u, (Lower Side)

1 — = Uiy (Upper Side) «++we= Uiy, (Lower Side)

= e - . - e e === -

- -—

T

(=T

ufm} j' B (uﬁ):r ’ uiknv '.-‘_7 (u](;): ’
(eonr) * (i one)

60

0.2 0.4 0.6 0.8 1

Porous Membrane with Porosity
0.9 and Re,, = 1 Test Case,
Angle of Attack: 3°

T T T T

0.06 -

Iteration:
1

0.04 -

0.02 -

-0.02 -

-0.04 -

-0.06 -




Re = 1000,

Angle of attack 3°

Re = 1000,

Angle of attack 8°

Comparison IBL-DNS

o

0.8

0.6

0.4

0.2

62



0.5

0.4

0.3

0.2

0.1

Circulation

Re = 1000,

Impermeable

—DNS
-|BL
-- Potential Flow

IBL predicts ‘ "
separation here | i

-

7,

DNS predicts
Separation here

AoA (°)

63



Inviscid
Analysis

Boundary
Layer
Analysis

{

IBL is the machinery behind XFOIL

(Drela, 1989)

BL Mass Defect

—

—

N N+Ny—1
Z aij¥j — Wo = —Ueyi + VooXi — Z b;jo;
\j=1 j=1
a6 6 du, C
Y 2y Ll T
[ aE U, dE 2
dH* 7] due Cf
2H** +H*(1—H)]|— =2Cp, —H" =
6 IT: +1 + H*( )]ue iz Cp 5

din  df dReg
— = (Hy) ——=—(Hg,60) (In Laminar Regime)

| d¢ ~ dRe, d&

H* = H*(Hy, Mg, Reg), H** = H™*(Hy, M,), Cr = C¢(Hy, M,, Reyp), etc.

1 1
Y(x,y) = Uy — VeoX + ﬁj v(s)Inr(s;x,y)ds +§j o(s)Inr(s;x,y)ds

—

')i'ol Y.
i
~ a3
o ‘ 2
(’ l:j—r__r‘l’ N"Nw
\ Nt N N2
s uHTy

Inverse Viscous-Inviscid Coupling
By Newton’s Iteration



IBL is the machinery behind XFOIL

(Drela, 1989)

_LNV109A Exp't
MACH = 0.100
. AE = 0,375 10°
1.5 RLFA = 3.459 40
-1. cL = 0.791% 0.7%
CP Y, co = 0.01686 0.0169
H = -0.0524 ~-0.060
-1.0 L/C = ll6.9$
-0.5
g.o
0.5
1.0

Fig. 9 LNVI109A calculated and experimental pressure distribu-
tions. '



Hydrodynamics 13
Waves




Waves

Z A
Air
Dynamic boundary conditions
Kinematic boundary conditions
V
/ T_) Potential flow /
U

Water



General case: two fluids

/ /

P2, P,

4




General case: two fluids

/ /

V
T Potential flow //
U

Dynamic boundary conditions

Kinematic boundary conditions

Potential flow



o0k wWhE

Linear waves dispersion relation

Equations and boundary conditions
Base state

Linearized equations

Normal mode expansion
Dispersion relation

Analysis of the dispersion relation



1. Equations

Aq)l — O
Potential flow
Aq)z = (
0, 00
Ul — %7 vl - E Velocity field
(‘)(1)2 6@2
Uy=—= Vo= —=
27 Hp T 0.




1. Boundary conditions

(I)l:O‘dltZ:—OO
Gy =0at 2 =40

at z =mn7-

far-field



1. Kinematic boundary condition

n(x,t)

Kinematic condition : impermeability (no penetration)
No fluid particles going across the interface through the normal direction

V,=adnldt cos(a)



1. Kinematic boundary condition

> <

Kinematic condition : impermeability (no penetration)
No fluid particles going across the interface through the normal direction

V,=adnldt cos(a)

u,,=Vv, cos(a)+



1. Kinematic boundary condition

> <

Kinematic condition : impermeability (no penetration)
No fluid particles going across the interface through the normal direction

V,=adnldt cos(a)

} onlot=v - u, tan(a) = | anlot=v - u,anlox
u,,= Vv, cos(a)-u, sin(a)



1. Kinematic boundary conditions

(I)l:O‘dltZ:—OO

far-field
Gy =0at 2 =40
9, 0
Ul—n — Vl — —?7
9, 0
Uyt — Vo =



1. Dynamic boundary conditions

0
P — D= o at z =
| 2 = —7 9 al < =17J
On )3/2
O
n:(_aﬂ?al)
1+ 021

C=V.n




1. More equations

00, Ui +VP P

Y | > | o -z =
00, U;+Vy P

| | gz =
(% 2 P2

2nd Bernouilli relations



2. Base state

(1)120f
(I)Q:O
n=_0
Py = —=p1gz



3. Perturb and linearize
perturbation expansion

R = () Hep
b, = Heo
Uy = Heuq
Vi =0 TEV] |
0, _ Hews e 1
Vs =0 Hevs
Py |=—p1gz Hem
Py |= —pagz  Hepo
i = Heo

Variables Base state Small perturbation



3. Linearized equations

Agbl — O
perturbed potential flow
Ay = 0
Uy = % U] = %
or 07z
U9y = % Vg = %
or 0z




3. Perturbed kinematic boundary conditions

o =0at z = -0

Py =0at z =+
) 80 do t
—€ U EV1 = €e— adl 2 = €0
gy T =
6’0 o t
—E U €EVo = €e— adl 2 = €0
25, T =




3. Perturbed kinematic boundary conditions

o =0at z = -0

Py =0at z =+




3. Flattened kinematic boundary conditions

dpr _ do at 2
o = €0
0z ot
% — Jo at z = €0
0 Ot )
Taylor expansion around O: gb(EO-) — ¢(O) (EO')% 0
% — g—i at 2 =10
Joy o B
- =7 at 2 =10

=transforms a b.c. at an unkwown interface into a fixed place!



3. Perturbed dynamic boundary conditions

(P +ep

—PQ—EPQ)\

82

— —f)/ga >

(102 (3))

Replace P,=-gp,z, ... ﬂ and linearize
0°0
= p)o+ (=)l

9 (ﬂQ

flatten

d

Rz

(p2 = p1)go + (p1 = pa2)l,

0%

! 012




3. Perturbed and linearized Bernouilli

Perturbed 2" Bernouilli relations

oo P1

I
8t+p1

9,

92 P2 _



4. Normal mode expansion

Fourier transform in x and t

01 = filz)exp(i(ke — wi)).
0y = falz)exp(i(kz — wi)).
o = Cexp(i(kx — wt)),

k is the wavenumber and w the frequency (in rad

A =2r/k T =2m/w
f=w/(27)




4. Normal mode expansion

Solution to Laplace equation:



4. Normal mode expansion

Solution to Laplace equation:

¢ = (aexp(kz) + fexp(—kz))exp(i(kx — wt))

1

¢ = (aexp(kz) + Bexp(—kz))exp(i(kx — wt))



4. Normal mode expansion

Solution to Laplace equation:

01
02

Aexp(kz)exp(i(kr — wt)),
Bexp(—kz)exp(i(kx — wt)),
Cexp(i(kx — wt)).




4. Normal mode expansion

Replace in boundary conditions

9(/02 — /01)0 +iwp A —iwp B = ”kaC
kA = —iwC
—kB = —w(C

This is an eigenvalue problem iwX=MX!

kg(pr — p1)C +w’pC 4w pC = 7k°C



5. Dispersion relation

o _ Zhglps = pr) + o
P11 P2

eUnstable if there exists one w, Im(w)>0 )02 > )01

*Neutral if for all w, Im(w)=0: o1 > P2

-Stable (or damped) if for all w, Im(w)<O:

The flow considered is not damped, we have
neglected dissipation by neglecting viscosity



o0k wWhE

Instablility analysis:

Equations and boundary conditions
Base state

Linearized equations

Normal mode expansion
Dispersion relation

Analysis of the dispersion relation



Dispersion relation

o _ Zhglpr = pr) £0K

P11 P2




Dispersion relation

2 o _ Zkglpr—p) + 9k
p1tpe

]{3
w* = tanh(kH) (f)/p | gk)




Dispersion relation

]{3
w* = tanh(kH) (7 | gk’)
P

Capillary wavenumber: kc = Pg/f)/

Length scale: k= k/kc

Time scale W= W/\/%

~

One single non-dimensional parameter H = H]{C

P~

5 = tanh(kH) (123 | 1’%)




Dispersion relation

" = tanh(kH) (7%3 + Z%)

~ A~y

gravity k<1 capillary |
shallow water
k< 1/H +k +k*V H
Deep water
> 1/H +VE +iVE




Difference between group velocity v and
phase velocity c




Dispersion relation

gravity L« 1

capillary F>1

shallow water
k< 1/H

'J-‘-:Shaiiowfgravity ~ :l:llf'\/_[ﬁ;a‘i.Hr

Cshallow/gravity ™ =+ Q‘H

Ushallow/gravity ™ + QH

L _ .2 . !
Wshallow [ecapillary ™ =ul; \V '."'Hf P
/ /
Cshallow [capillary ™ j:;' ’:Hf &
Ushallow [capillary ™ 2k V ’.:fof}
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Dispersion relation
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Trajectories below the waves
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Stokes drift!

wave phase 11/ T= 0.000




Why are the waves parallel to the shore?

c~(gh)?
A~T(gh)12

T=10s: w=0.62

houle incidente X
lige dé sonde ~ f\;'

150

125
100
el

S0

- SEn e san s sam s s s Smm o

25

20 40 &0 80



Refraction and diffraction of waves

Satellite view Namibian coast



Nonlinear waves, wavebreaking
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The celerity increases with the depth
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Conditions for wave pattern formation?
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