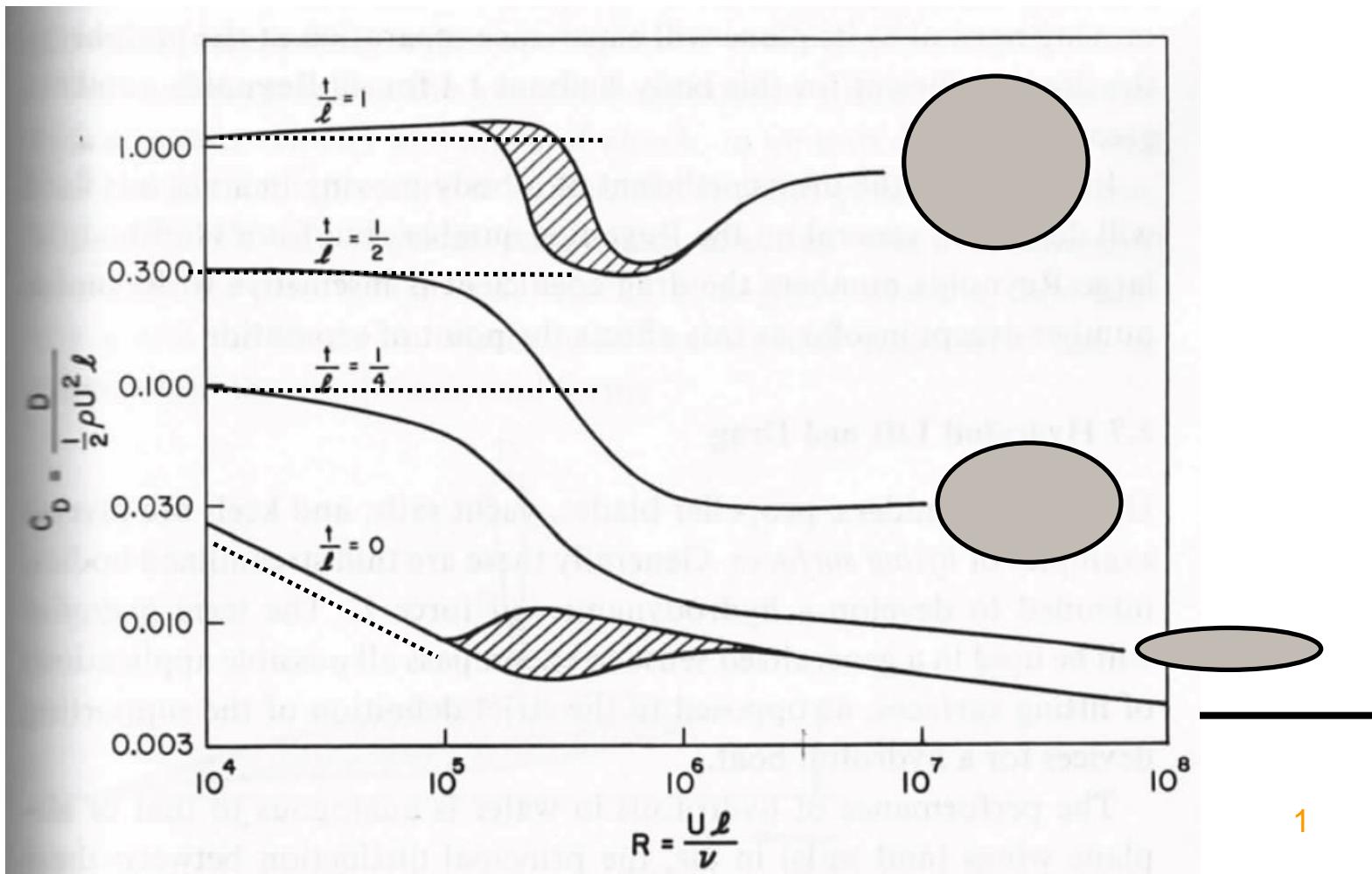


But this does still not explain the aerodynamic drag scaling:

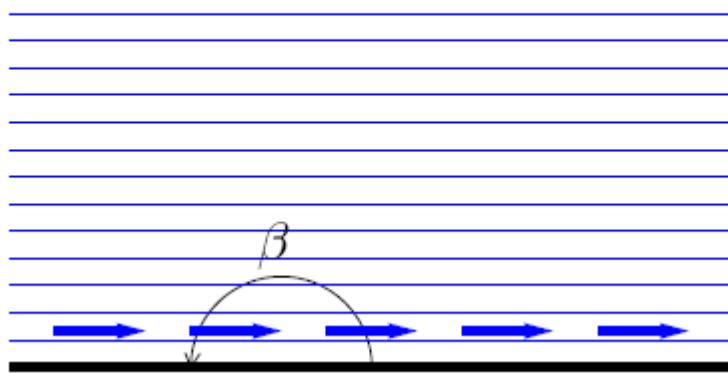
$$\frac{1}{2} \rho_\infty U_\infty^2 S$$



Pressure gradient effect

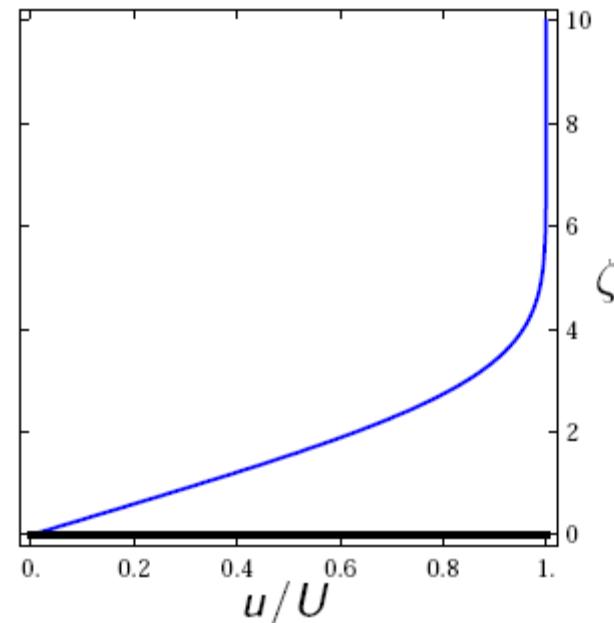
Consider the flow along an angle $\beta = \pi/(m+1) = \pi$ i.e. $m = 0$

This is the flow along a flat plate



Uniform flow- no pressure gradient

$$\nabla p = 0$$

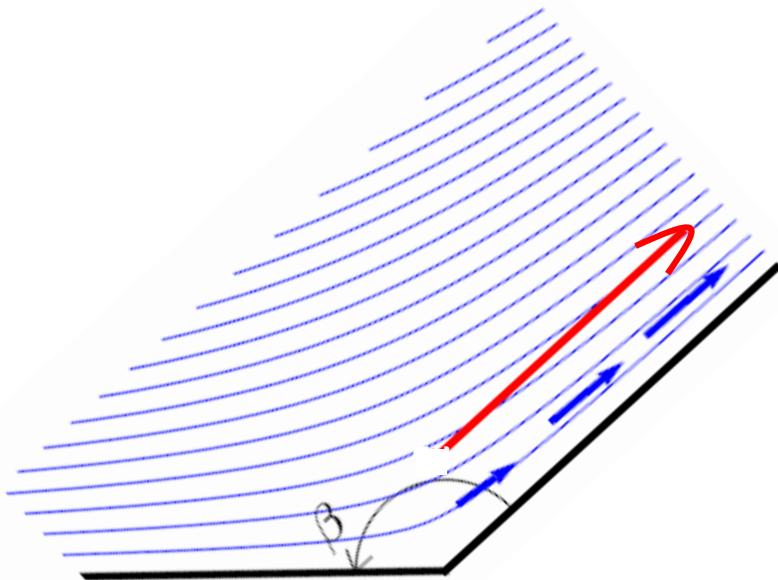


Blasius boundary layer

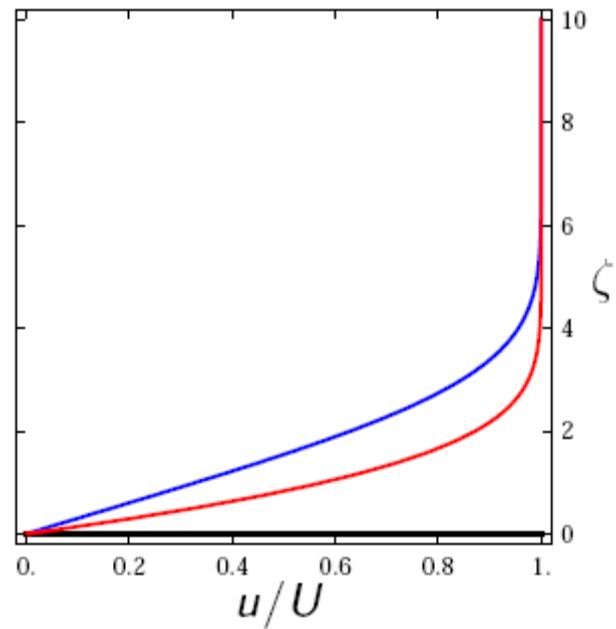
Pressure gradient effect

Consider the flow along an angle $\beta = \pi/(m + 1) < \pi$ i.e. $m > 0$

This is the flow along a « forward wedge »



Accelerated flow
favorable pressure gradient
 $\bar{\nabla}p > 0$

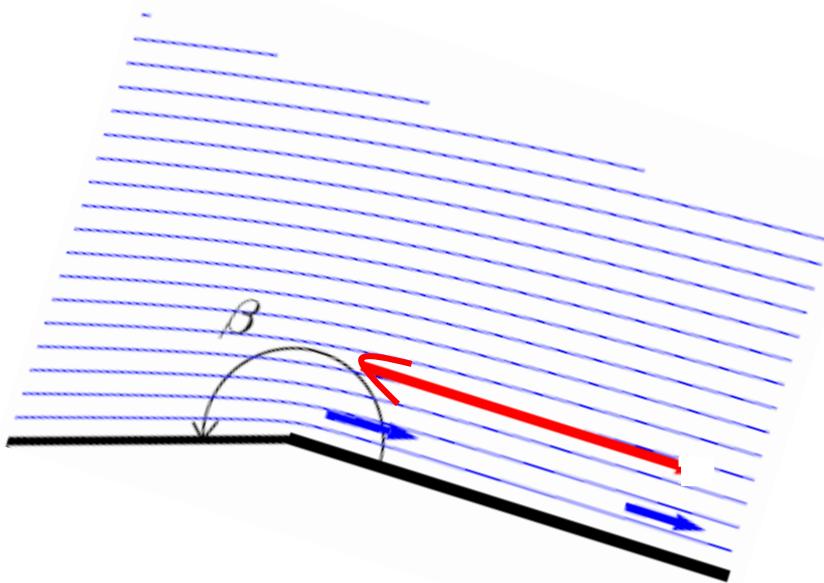
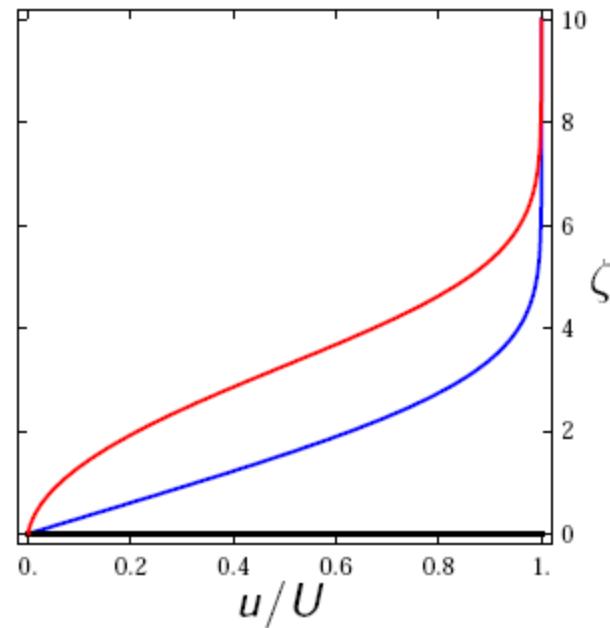


Thinner boundary layer

Pressure gradient effect

Consider the flow along an angle $\beta = \pi/(m + 1) > \pi$ i.e. $m < 0$

This is the flow along a « forward wedge »



Decelerated flow
unfavorable (adverse) pressure gradient

$$\nabla p < 0$$

Thicker boundary layer

Pressure gradient effect

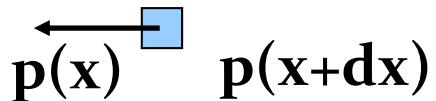
Adverse pressure gradient :

$$\frac{\partial p}{\partial x} > 0$$

$$p_1$$

$$p_2 > p_1$$

$$p_3 > p_2$$

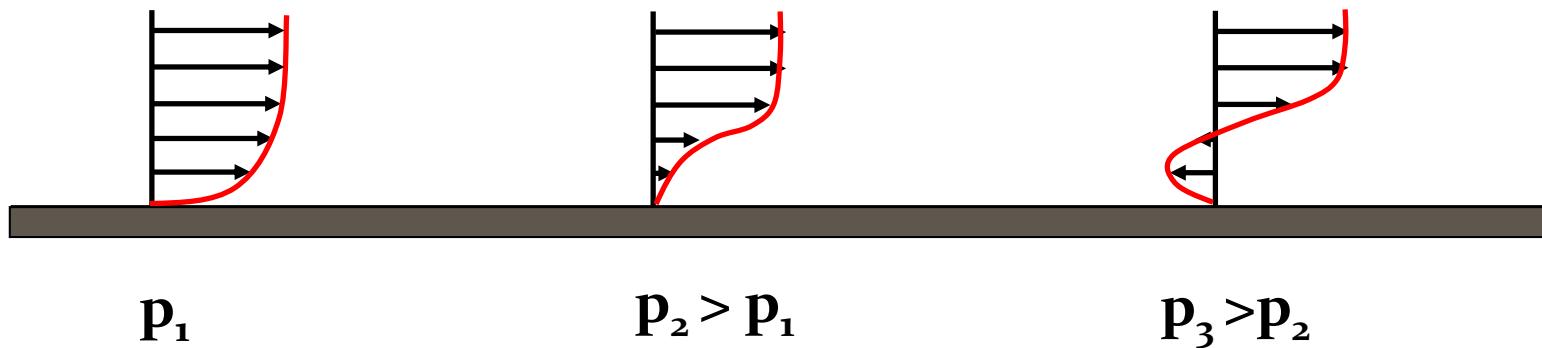


Resulting pressure force

Pressure gradient effect

Adverse pressure gradient :

$$\frac{\partial p}{\partial x} > 0$$



Close to the wall, the viscous effects dominate
The pressure gradient further decreases the velocity
⇒ Detachement

Pressure gradient effect

Favorable pressure gradient: $\frac{\partial p}{\partial x} < 0$

$$p_1$$

$$p_2 < p_1$$

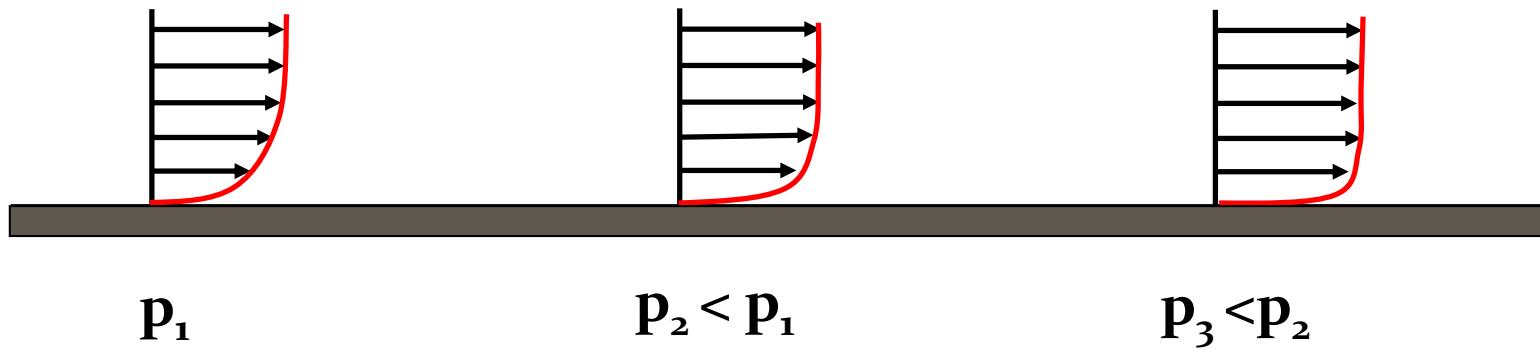
$$p_3 < p_2$$

The diagram shows a blue square representing a fluid element. An arrow points from the center of the square to the right, labeled $p(x)$. Another arrow points from the right side of the square to the right, labeled $p(x+dx)$, representing a small distance element.

Resulting pressure force

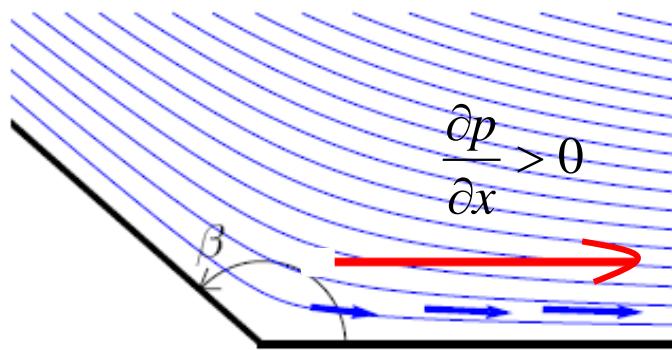
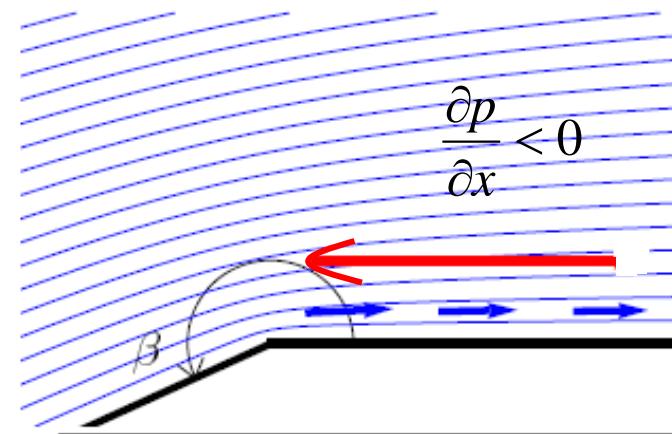
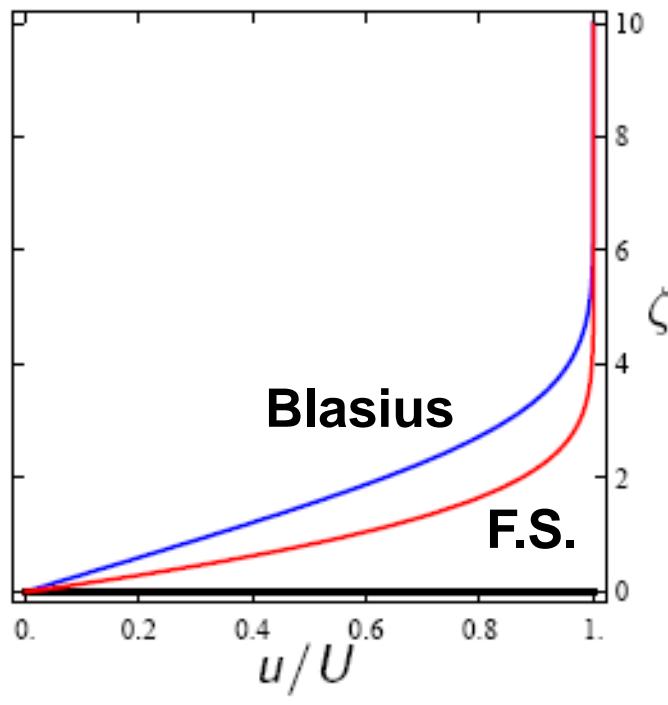
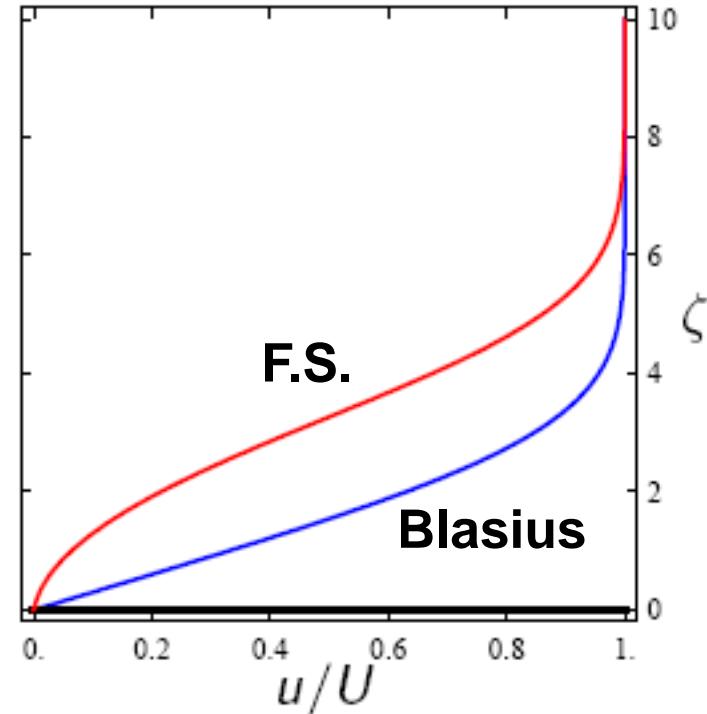
Pressure gradient effect

Favorable pressure gradient: $\frac{\partial p}{\partial x} < 0$



Close to the wall, the pressure gradient further increases the velocity of the flow \Rightarrow no detachment

Pressure gradient effect



Falkner-Skan solutions

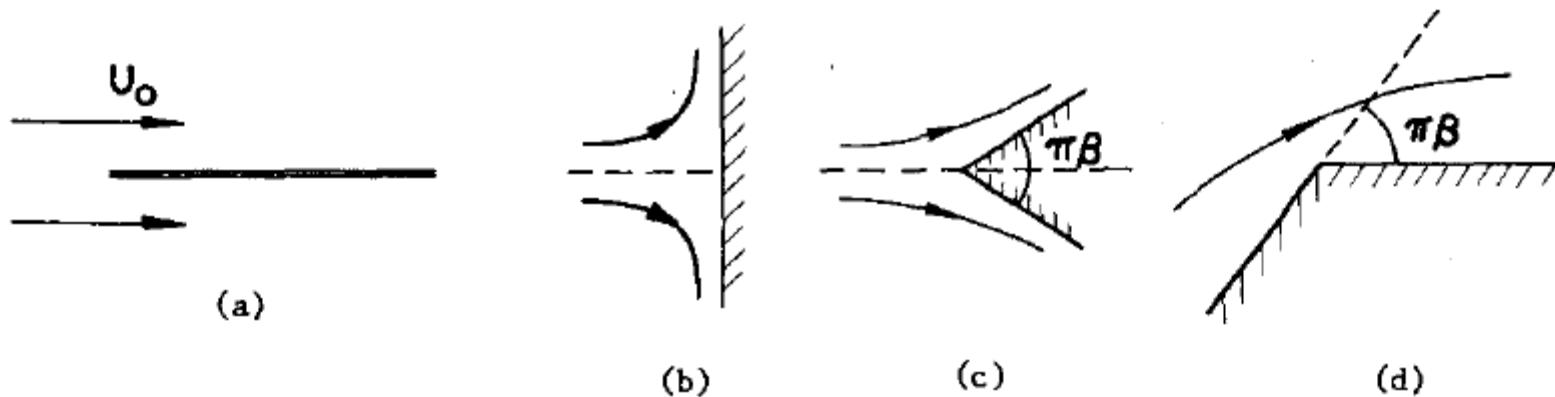
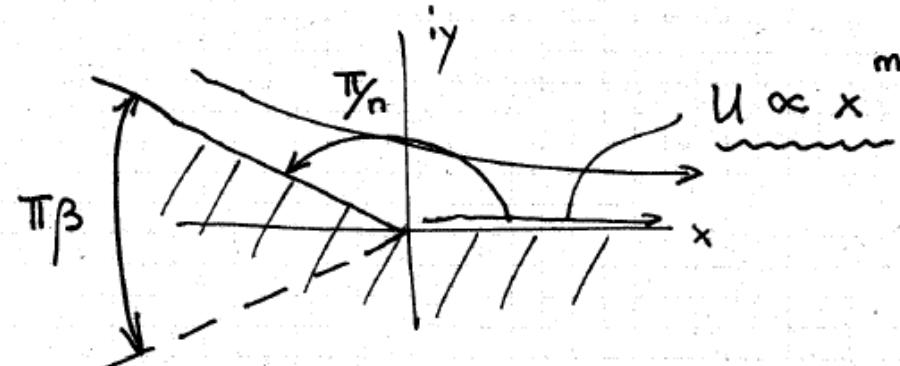


Figure 5.2 Boundary layer flows represented by solutions of the Falkner-Skan equation for different values of the parameter m : (a) $m = 0$; (b) $m = 1$; (c) $0 < m < 1$; (d) $-1/2 < m < 0$

Falkner-Skan far field solutions

pot. complexe

$$F(z) = C z^n$$



$$\frac{dF}{dz} = C n z^{n-1} = v_x - i v_y \rightarrow n = 1 + m$$

$$\frac{\pi}{n} + \frac{\pi \beta}{2} = \pi \rightarrow \frac{1}{1+m} + \frac{\beta}{2} = 1$$

$$\boxed{\beta = \frac{2m}{1+m}}$$

Falkner-Skan boundary layer equations

1. Prandtl equations

$$\hat{\psi}_{\hat{y}} \hat{\psi}_{x\hat{y}} - \hat{\psi}_x \hat{\psi}_{\hat{y}\hat{y}} = U \frac{dU}{dx} + \hat{\psi}_{\hat{y}\hat{y}\hat{y}},$$

$$\hat{\psi} = \hat{\psi}_{\hat{y}} = 0 \text{ on } \hat{y} = 0, \quad \hat{\psi}_{\hat{y}} \rightarrow U(x) \text{ as } \hat{y} \rightarrow \infty.$$

Falkner-Skan boundary layer equations

1. Prandtl equations

$$\hat{\psi}_{\hat{y}} \hat{\psi}_{x\hat{y}} - \hat{\psi}_x \hat{\psi}_{\hat{y}\hat{y}} = U \frac{dU}{dx} + \hat{\psi}_{\hat{y}\hat{y}\hat{y}},$$

$$\hat{\psi} = \hat{\psi}_{\hat{y}} = 0 \text{ on } \hat{y} = 0, \quad \hat{\psi}_{\hat{y}} \rightarrow U(x) \text{ as } \hat{y} \rightarrow \infty.$$

2. Self-similar solution

$$\hat{\psi}(x, \hat{y}) = (Ax^{m+1})^{1/2} f(\eta) \text{ where } \eta = \hat{y}(Ax^{m-1})^{1/2}.$$

Falkner-Skan boundary layer equations

1. Prandtl equations

$$\hat{\psi}_{\hat{y}} \hat{\psi}_{x\hat{y}} - \hat{\psi}_x \hat{\psi}_{\hat{y}\hat{y}} = U \frac{dU}{dx} + \hat{\psi}_{\hat{y}\hat{y}\hat{y}},$$

$$\hat{\psi} = \hat{\psi}_{\hat{y}} = 0 \text{ on } \hat{y} = 0, \quad \hat{\psi}_{\hat{y}} \rightarrow U(x) \text{ as } \hat{y} \rightarrow \infty.$$

2. Self-similar solution

$$\hat{\psi}(x, \hat{y}) = (Ax^{m+1})^{1/2} f(\eta) \text{ where } \eta = \hat{y}(Ax^{m+1})^{1/2}.$$

3. Falkner-Skan equation

$$f''' + \frac{1}{2}(m+1) ff'' + m(1 - f'^2) = 0$$

$$f(0) = f'(0) = 0, \quad f'(\infty) = 1$$

Falkner-Skan boundary layer solutions

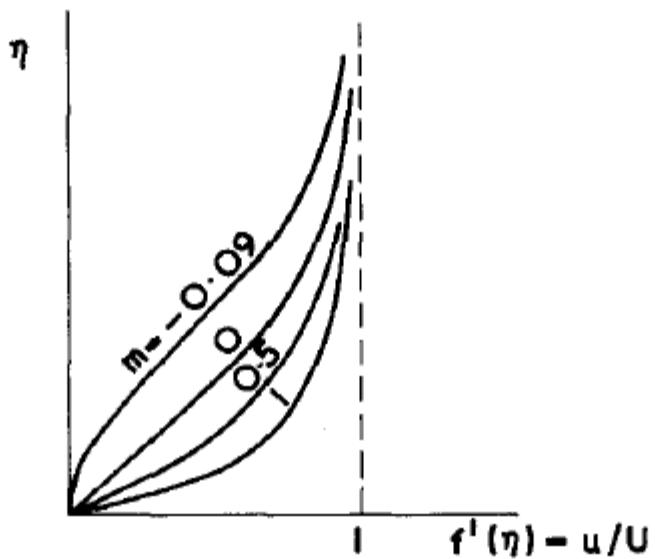
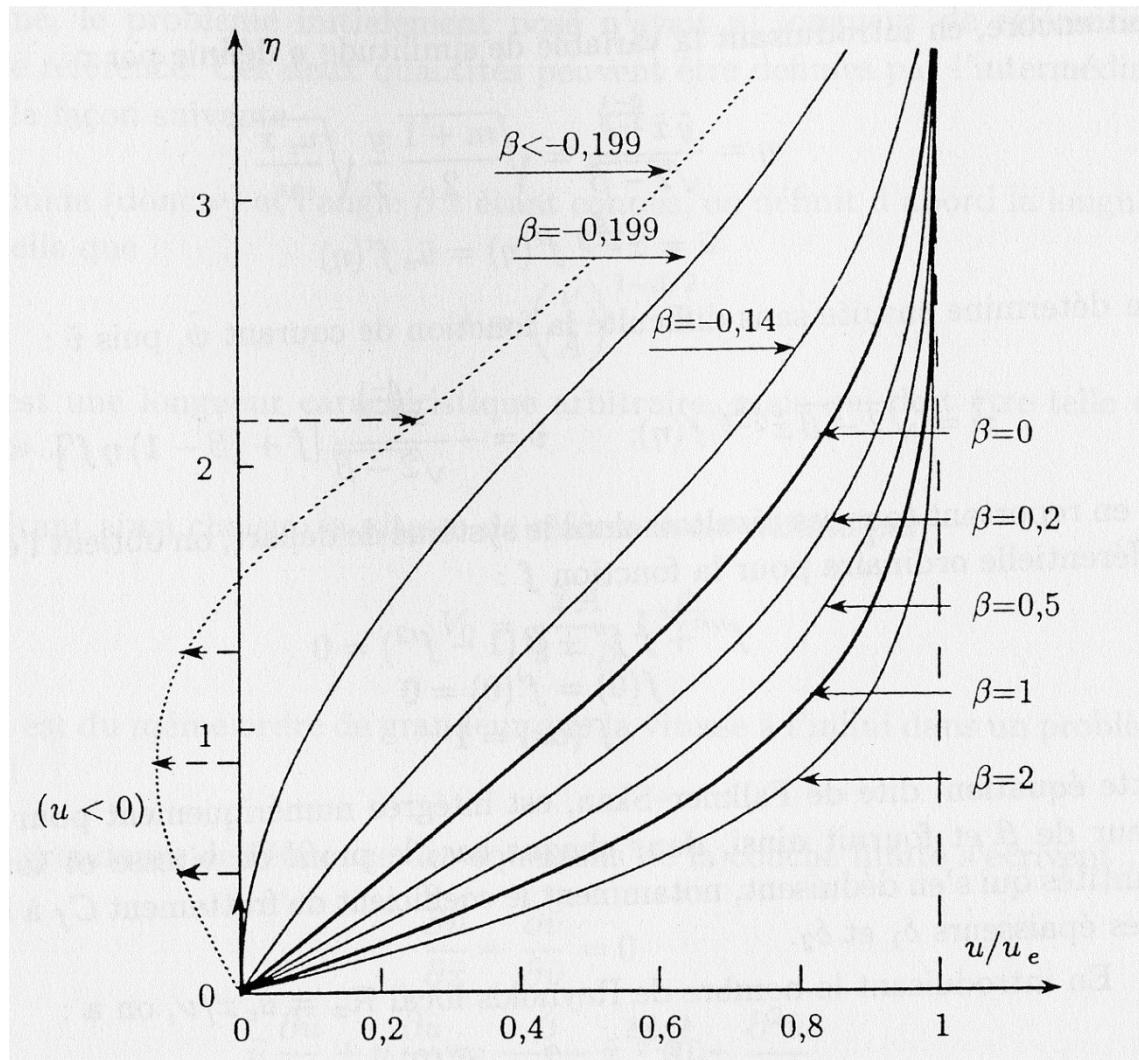
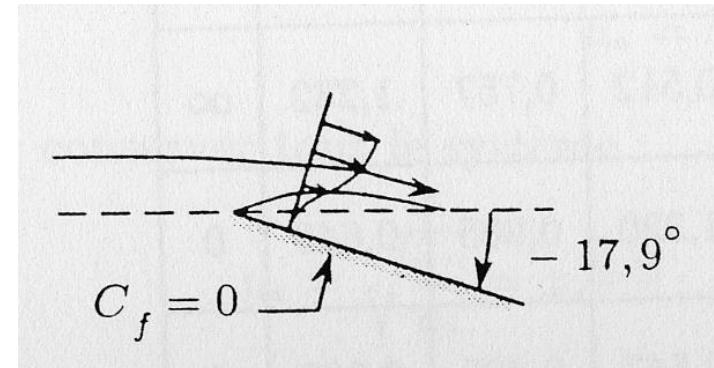
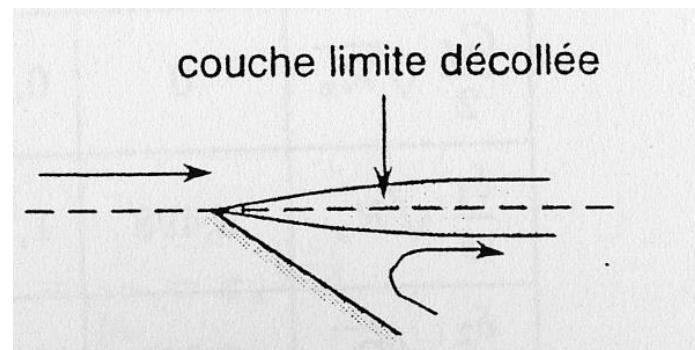


Figure 5.3 Sketch of velocity profiles given by solutions of the Falkner-Skan equation

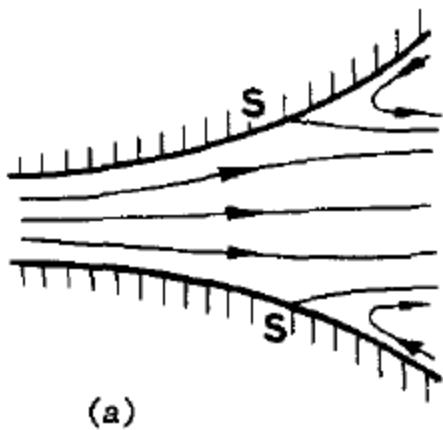
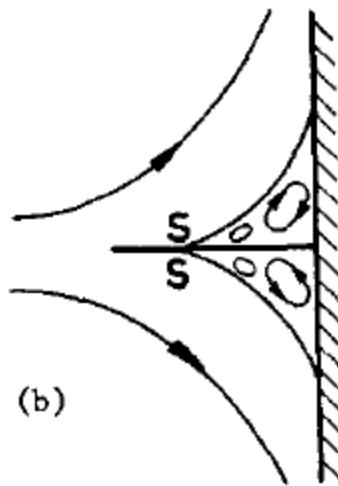
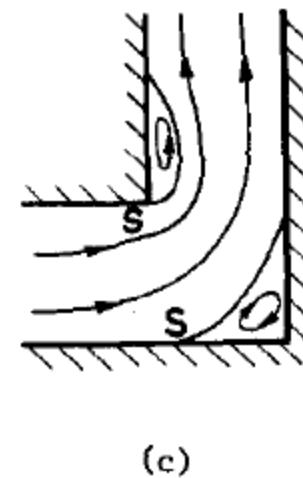
Falkner-Skan boundary layer solutions



Boundary layer separation

$\hat{\psi} \sim (x - x_s)^{1/2}$, so that $\frac{\partial \hat{\psi}}{\partial x} \sim (x - x_s)^{-1/2}$ as $x \rightarrow x_s$.

Boundary layer separation



Decollement sur un profil d'aile

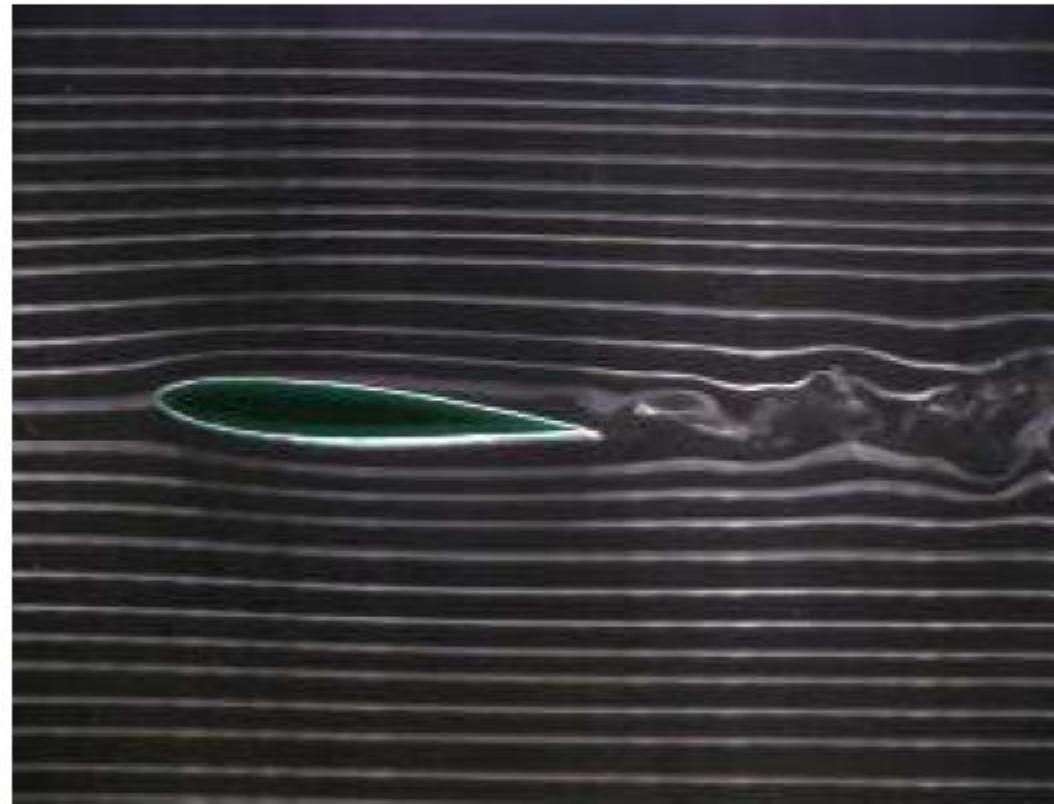
Expériences en soufflerie menées à l'université de Stanford,
l'écoulement est visualisé grâce à des fumées :

angle d'incidence $\gamma = 0^\circ$:

Décollement sur un profil d'aile

Expériences en soufflerie menées à l'université de Stanford,
l'écoulement est visualisé grâce à des fumées :

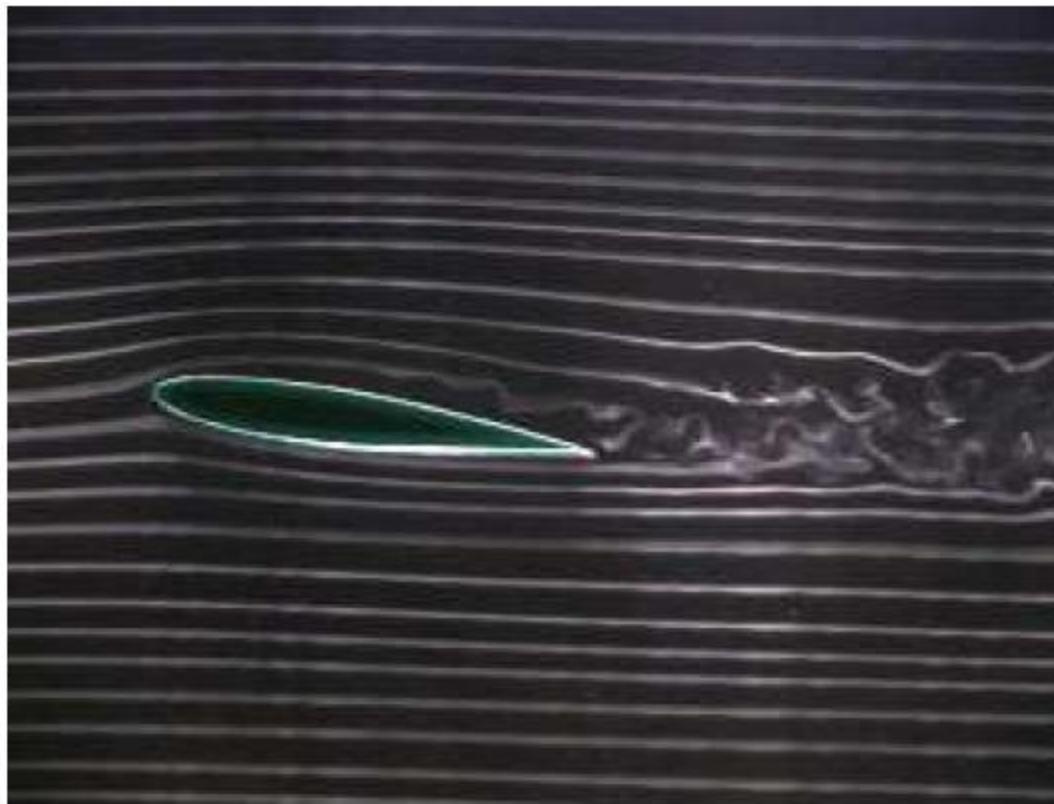
angle d'incidence $\gamma = 5^\circ$:



Décollement sur un profil d'aile

Expériences en soufflerie menées à l'université de Stanford,
l'écoulement est visualisé grâce à des fumées :

angle d'incidence $\gamma = 10^\circ$:



Décollement sur un profil d'aile

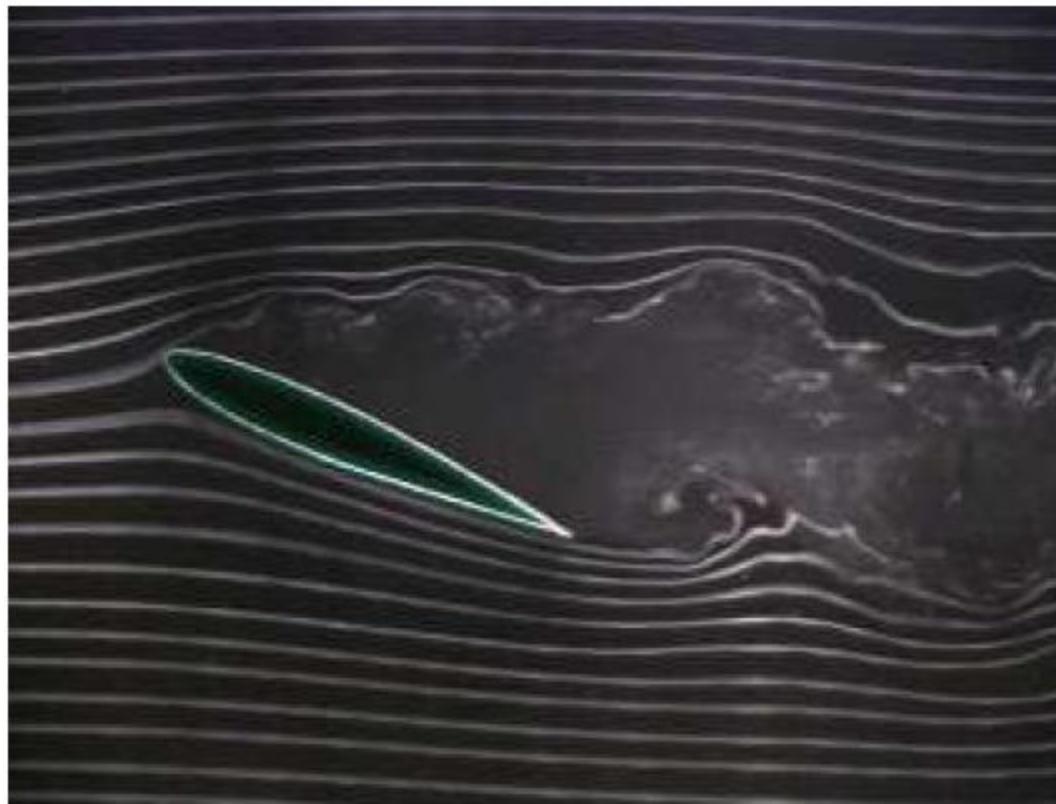
Expériences en soufflerie menées à l'université de Stanford,
l'écoulement est visualisé grâce à des fumées :

angle d'incidence $\gamma = 15^\circ$:

Décollement sur un profil d'aile

Expériences en soufflerie menées à l'université de Stanford,
l'écoulement est visualisé grâce à des fumées :

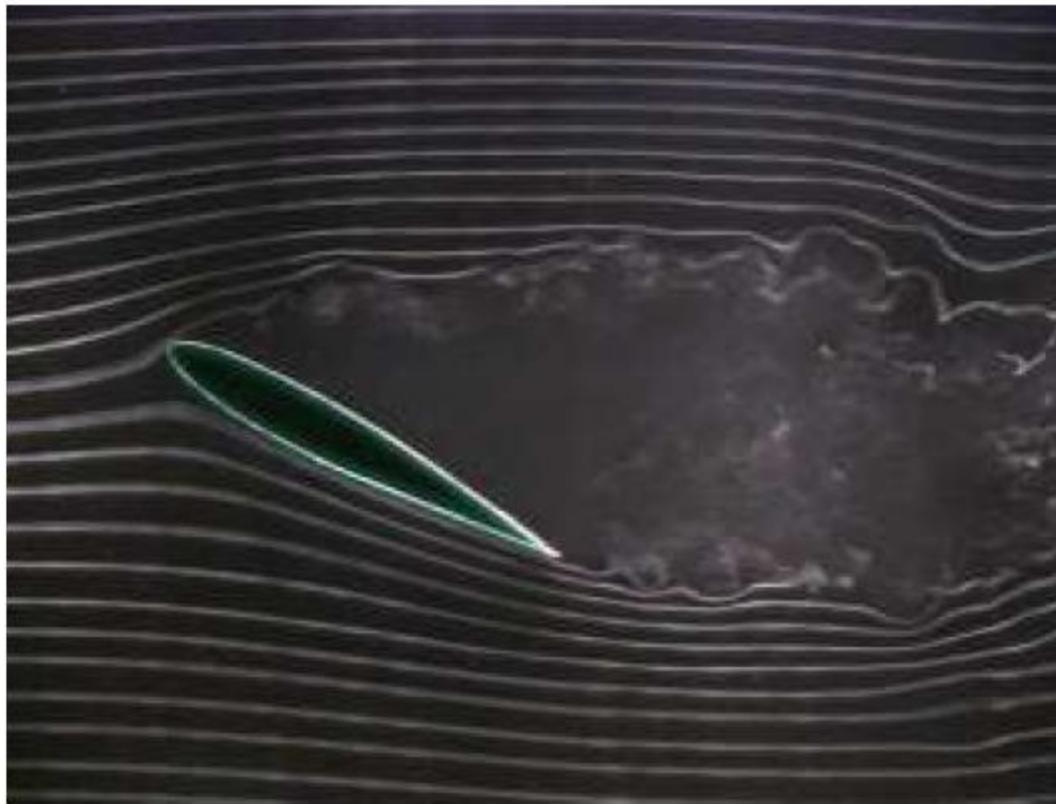
angle d'incidence $\gamma = 25^\circ$:



Décollement sur un profil d'aile

Expériences en soufflerie menées à l'université de Stanford,
l'écoulement est visualisé grâce à des fumées :

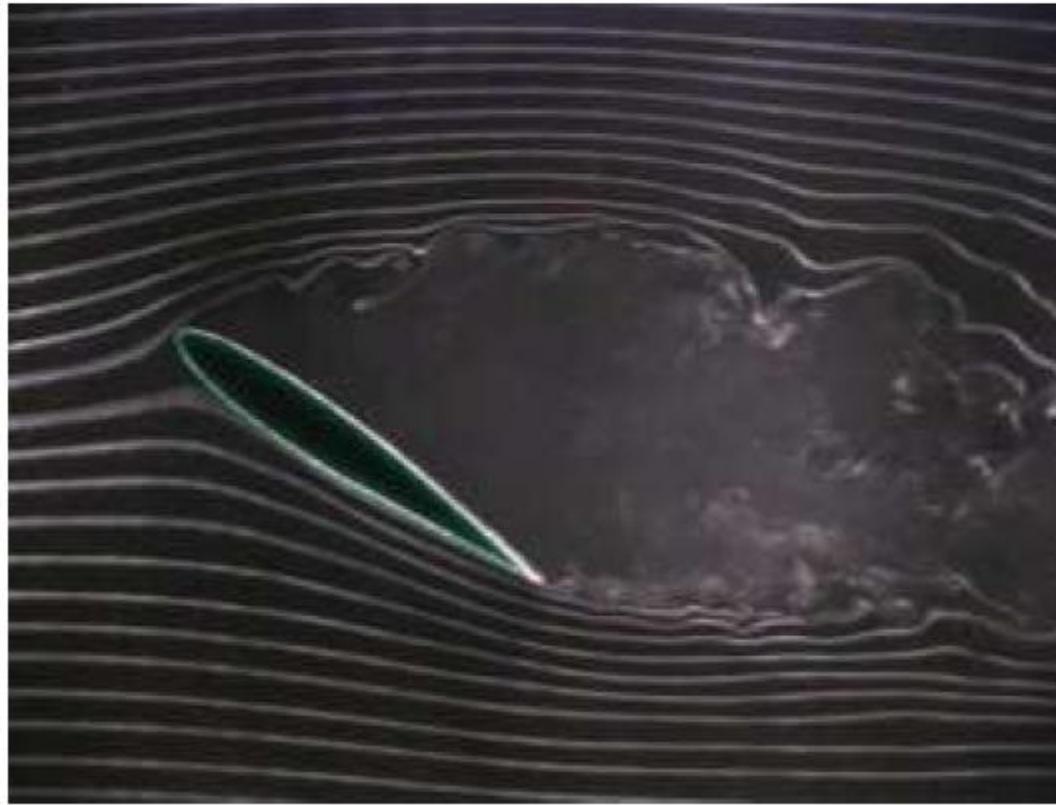
angle d'incidence $\gamma = 30^\circ$:



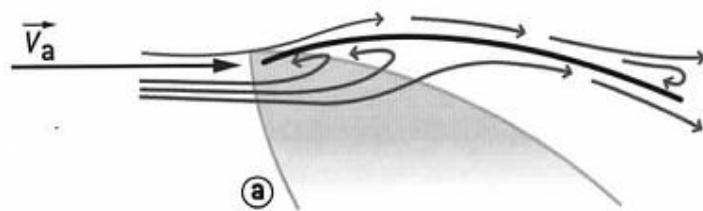
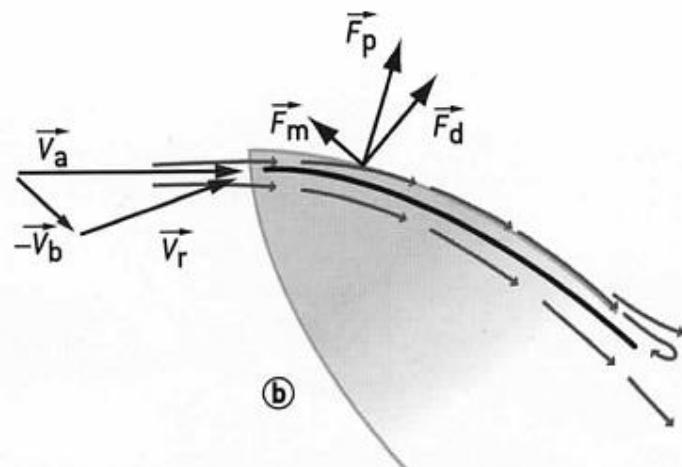
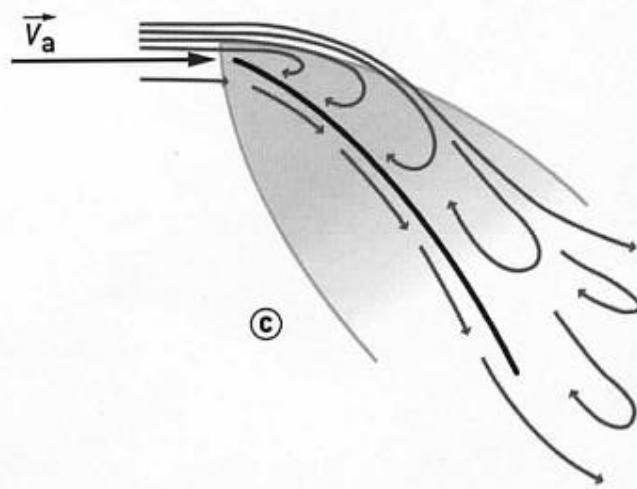
Décollement sur un profil d'aile

Expériences en soufflerie menées à l'université de Stanford,
l'écoulement est visualisé grâce à des fumées :

angle d'incidence $\gamma = 35^\circ$:

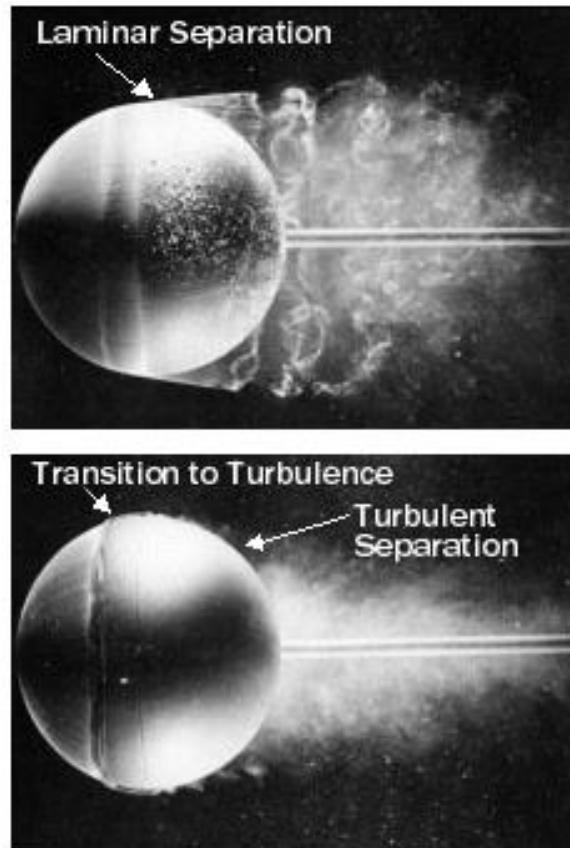


Application to sailing



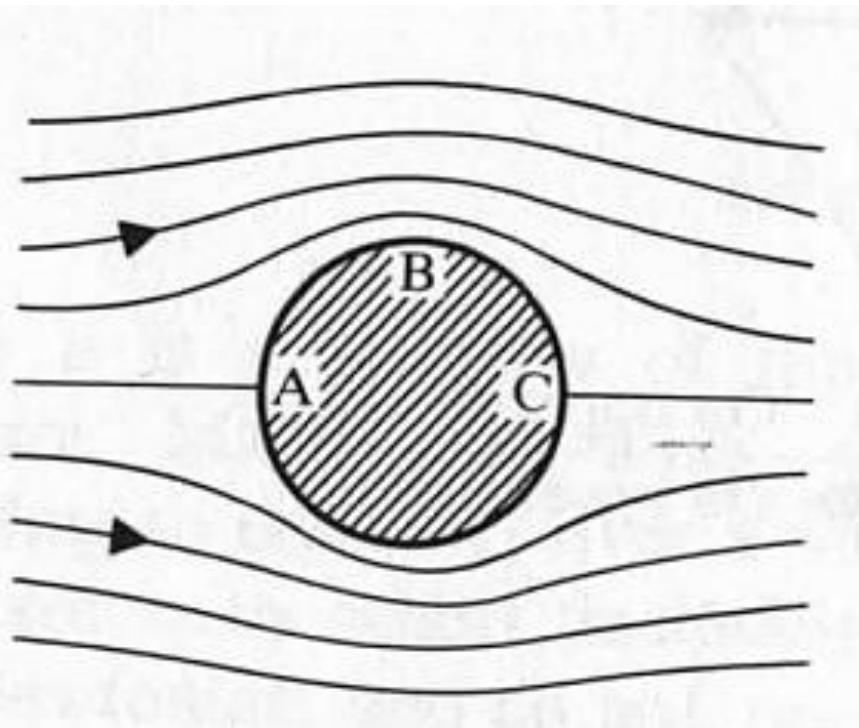
Application to sailing

Example: Flow around a sphere

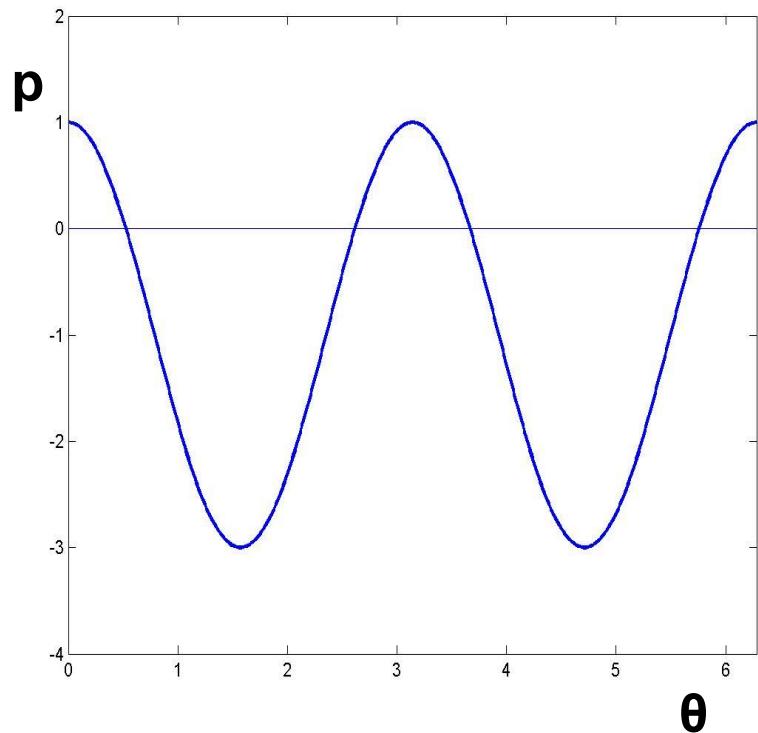


© ONERA

Flow around a cylinder

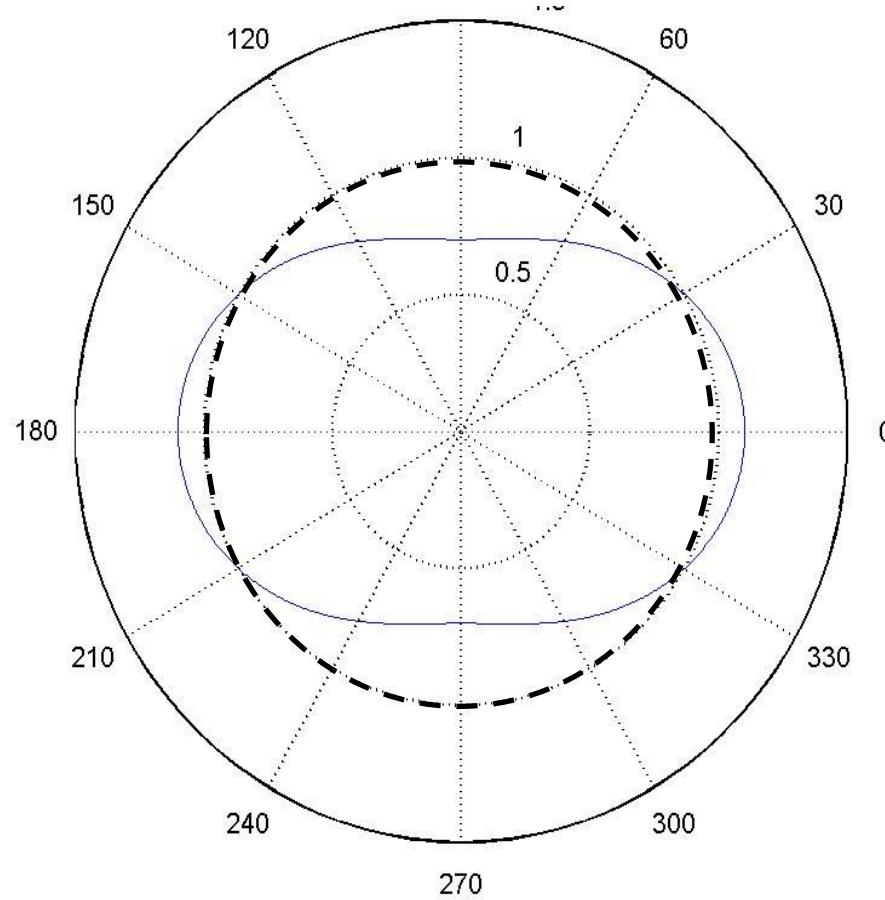


$$p(a, \theta) = \frac{1}{2} \rho U_\infty^2 (1 - 4 \sin \theta^2)$$

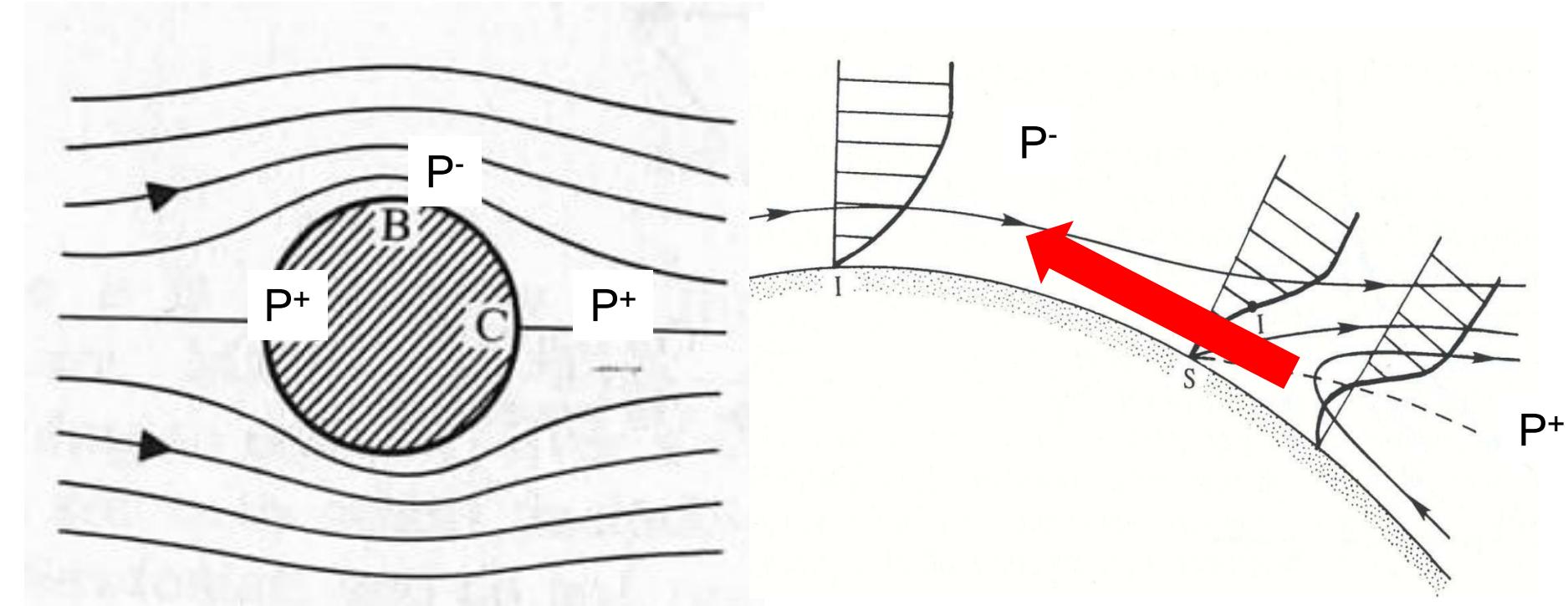


Flow around a cylinder

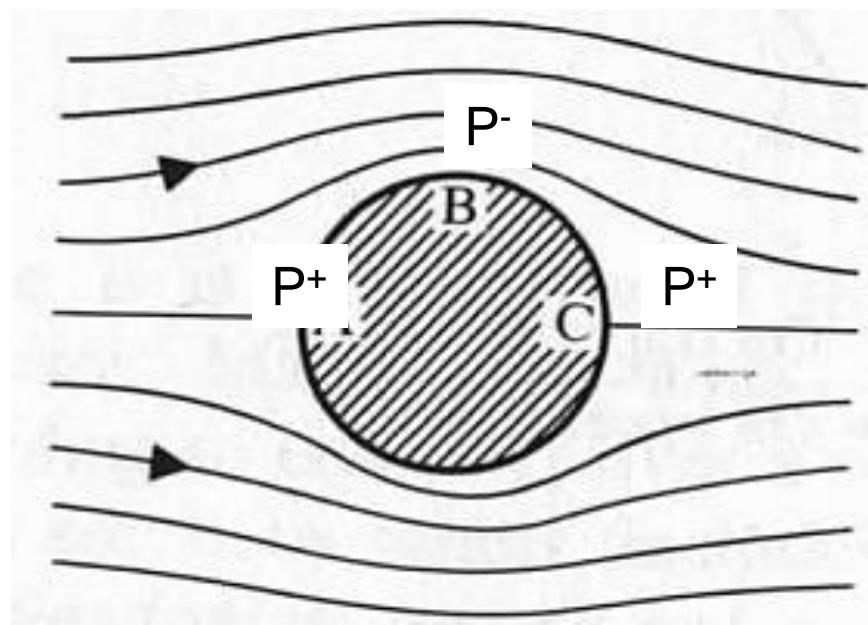
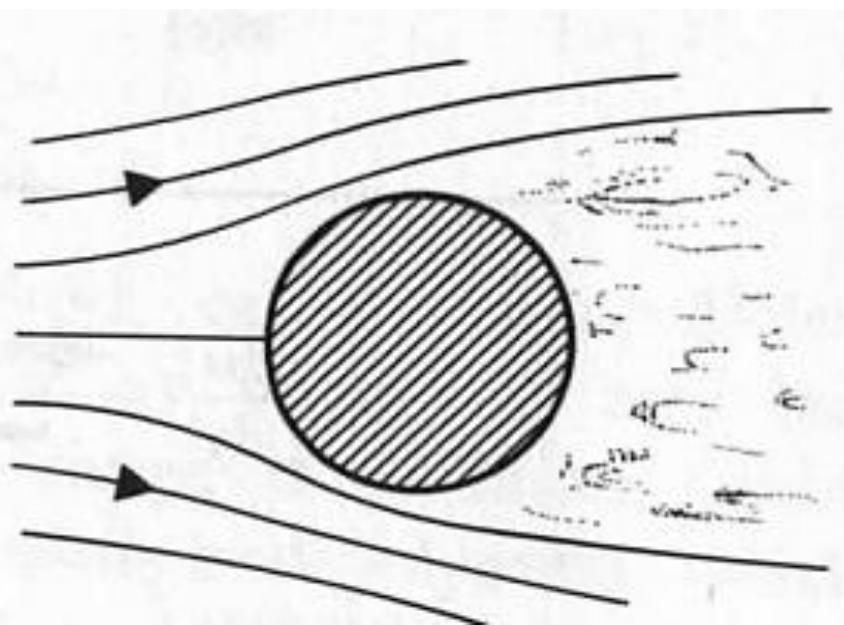
$$p(a, \theta) = \frac{1}{2} \rho U_\infty^2 (1 - 4 \sin \theta^2)$$



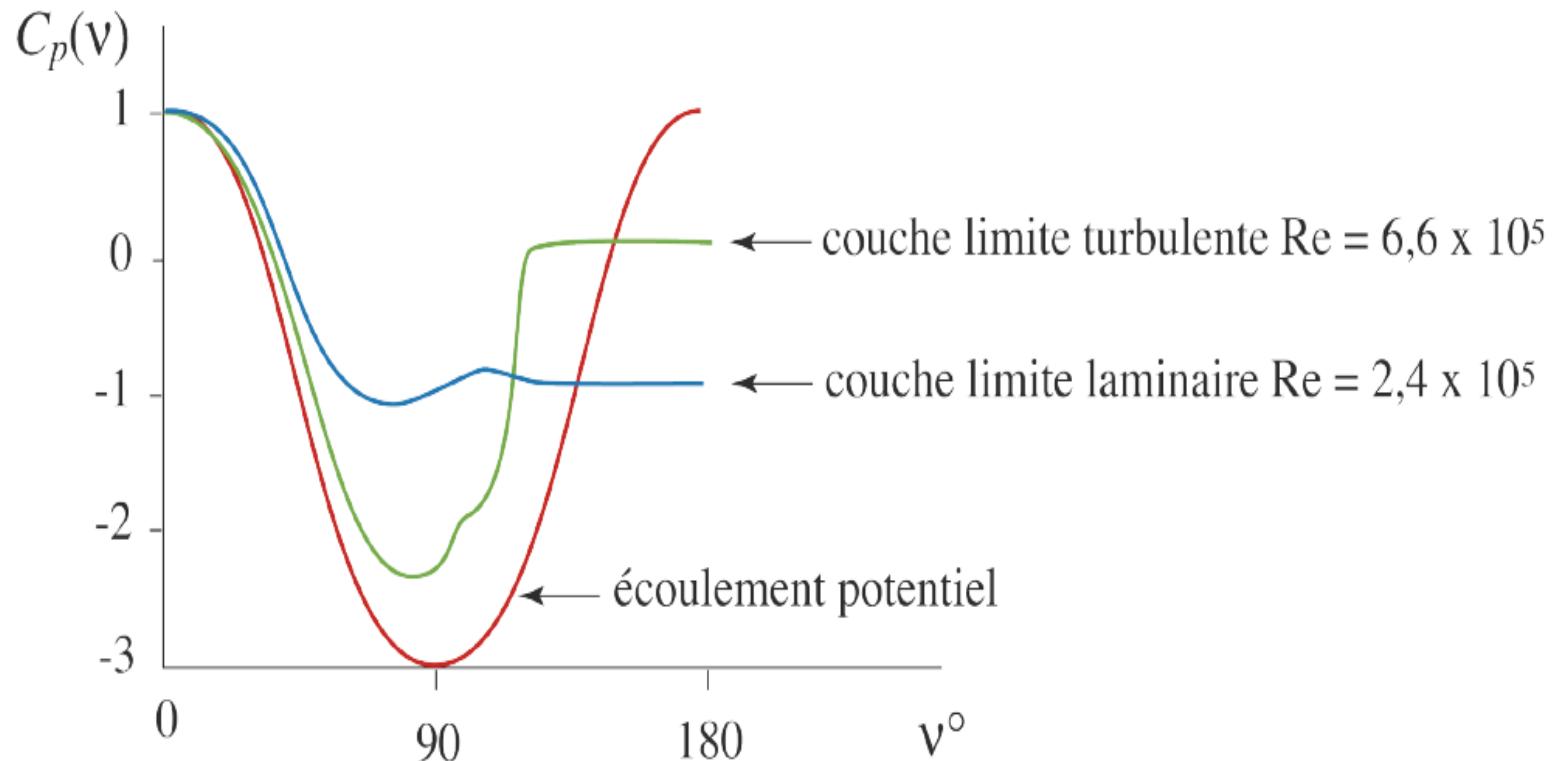
Origin of detachment: pressure gradient



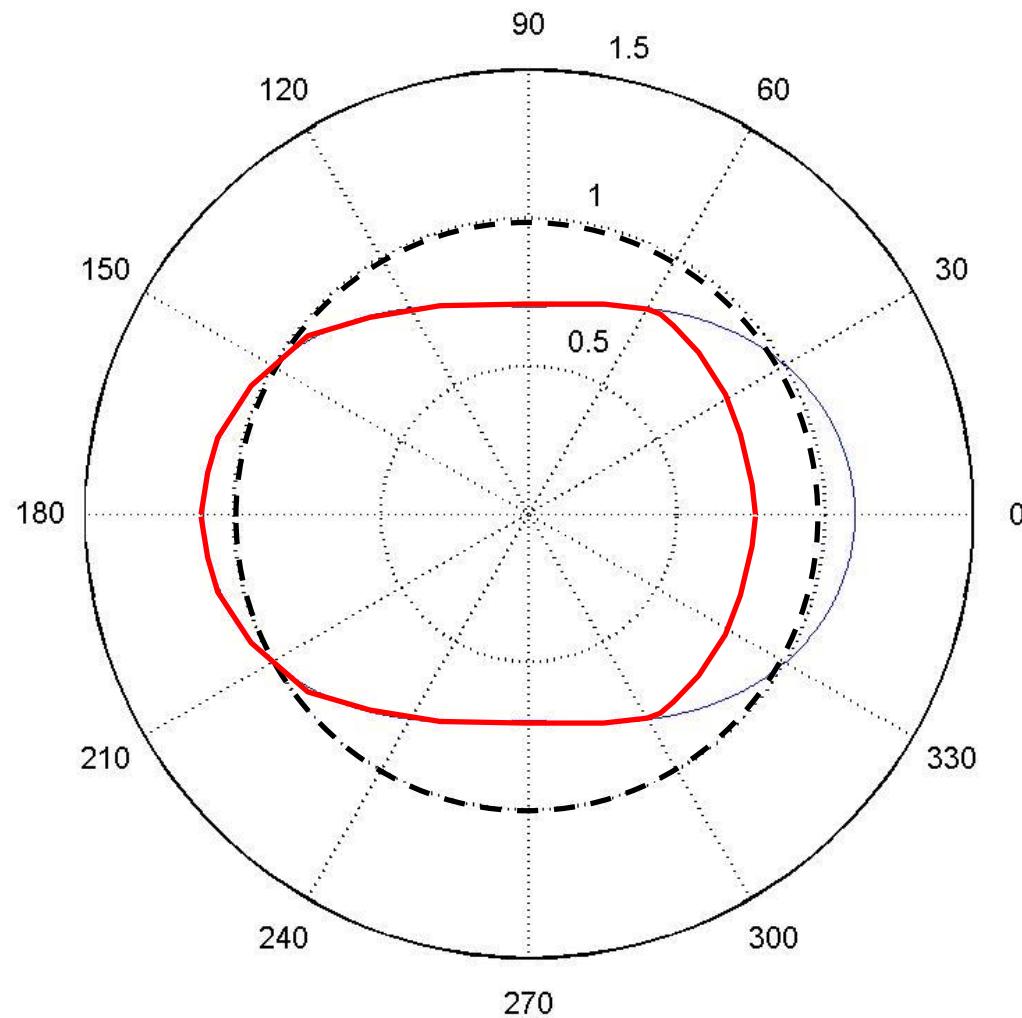
A viscous flow close to the wall opposes the free-stream



Pressure coefficient



Form drag



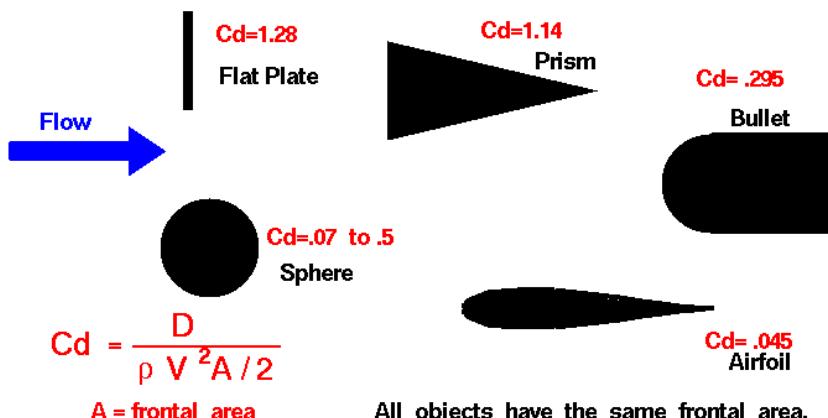
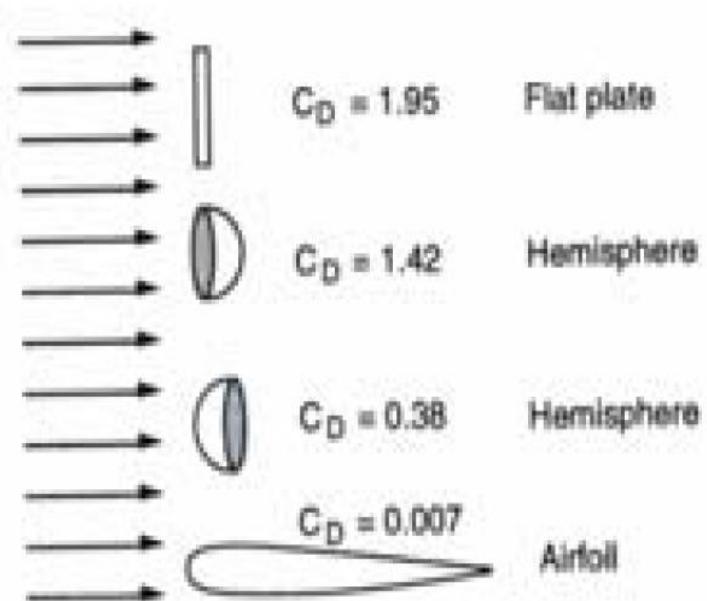
Drag coefficient

$$C_X = \frac{trainée}{\frac{1}{2} \rho U^2 A}$$

Shape Effects on Drag

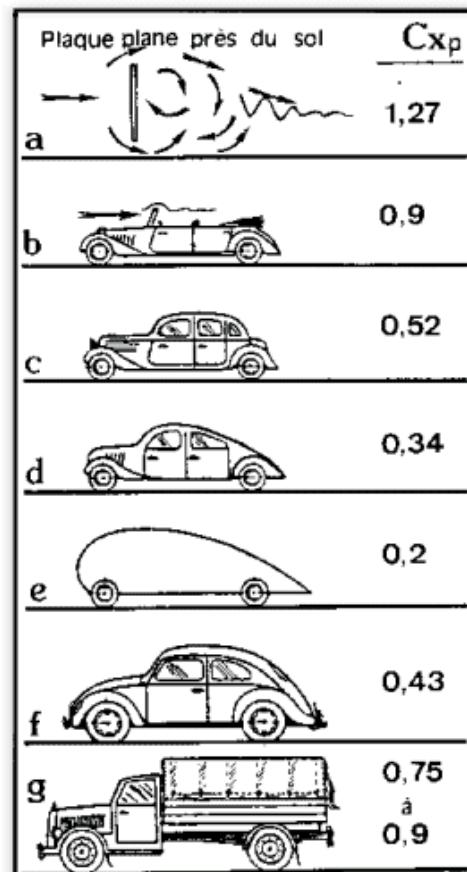
Glenn
Research
Center

The shape of an object has a very great effect on the amount of drag.

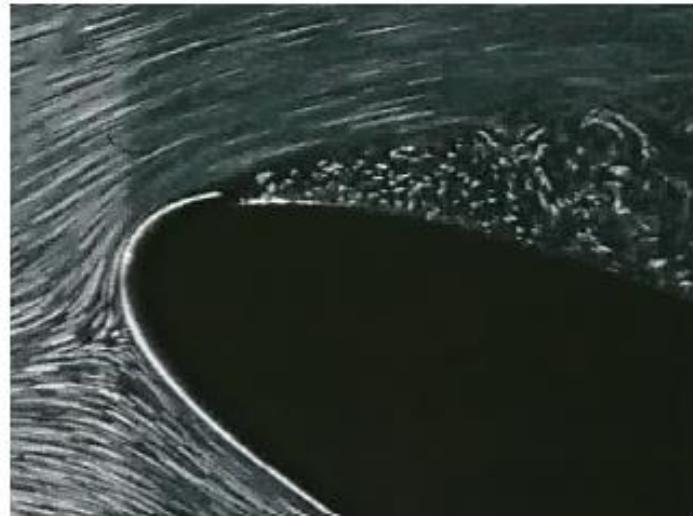


$$C_x = \frac{\text{drag}}{\frac{1}{2} \rho U^2 A}$$

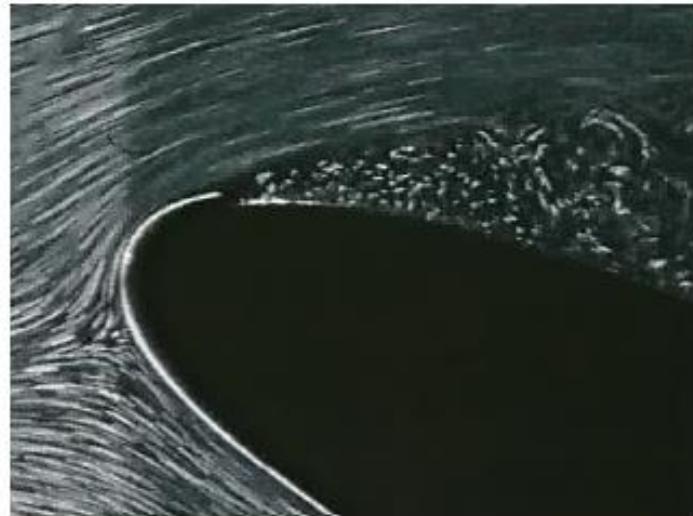
section, somewhat arbitrary...



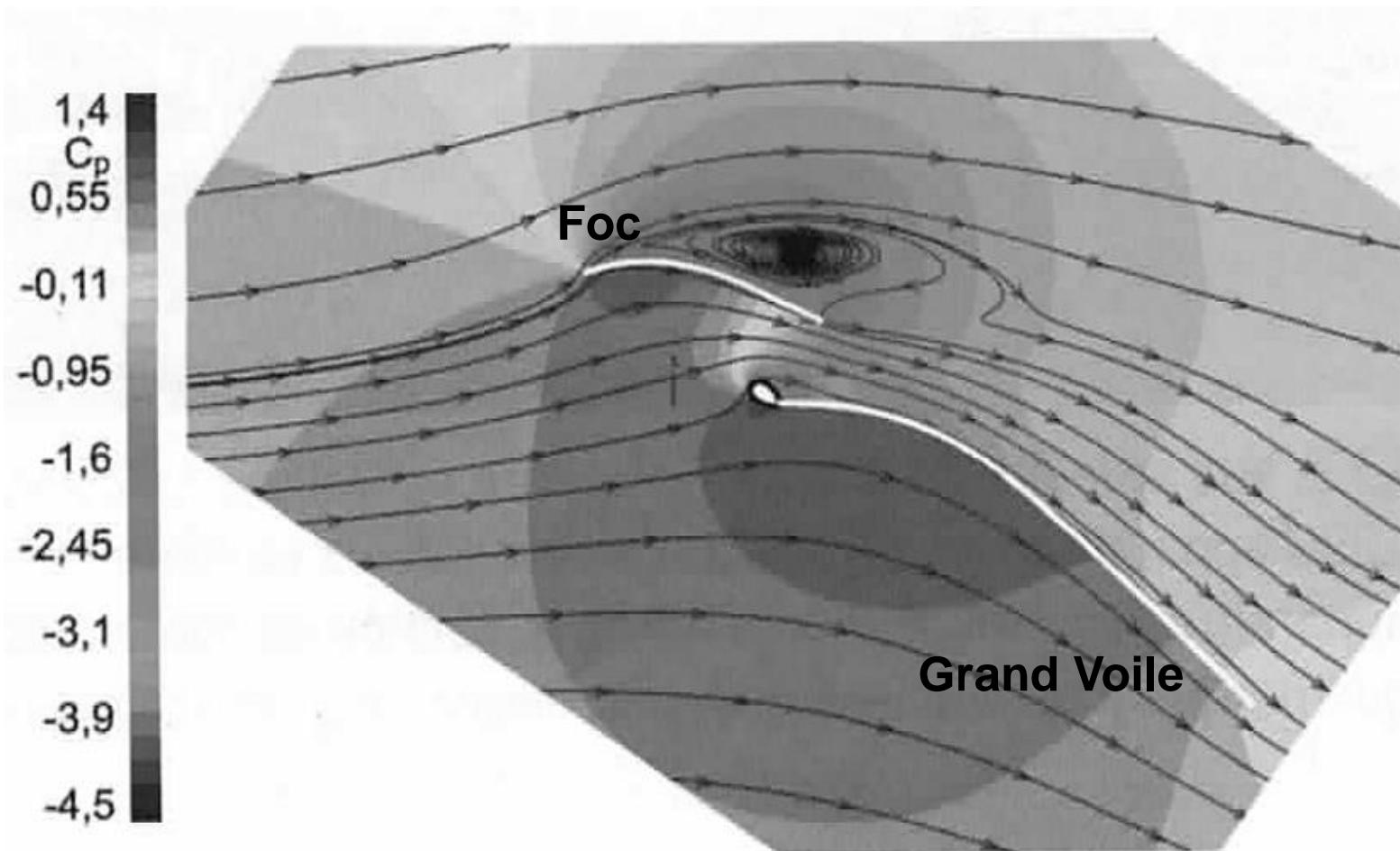
Separation control



Separation control



Application to sailing

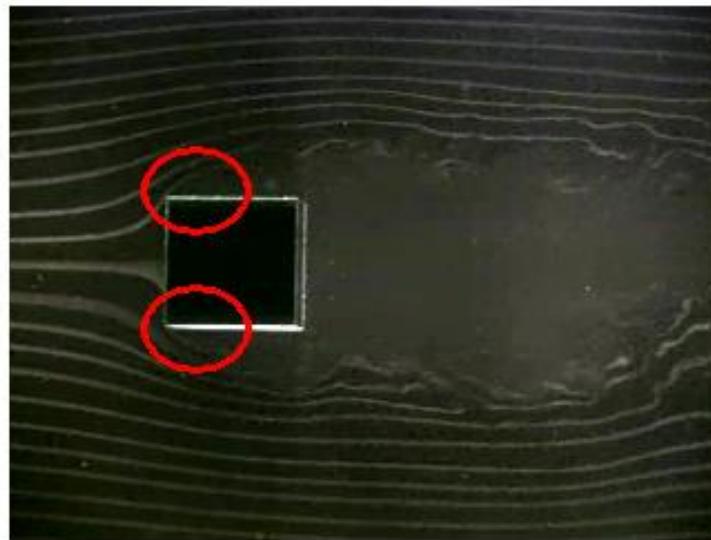


Thickness effect

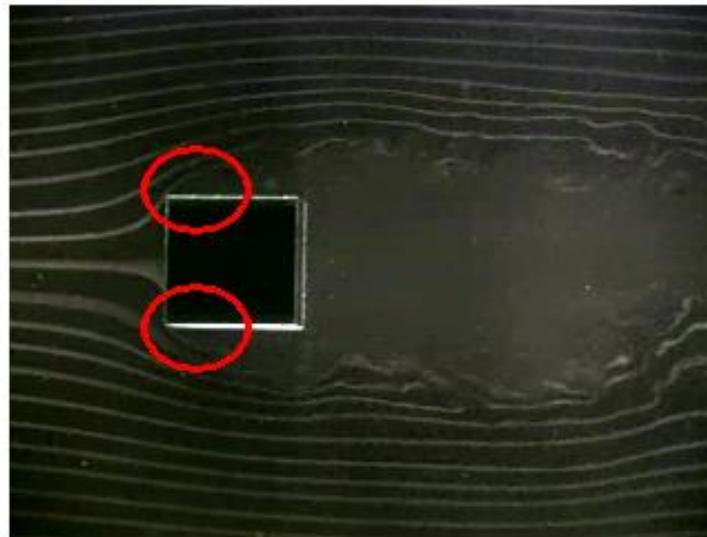
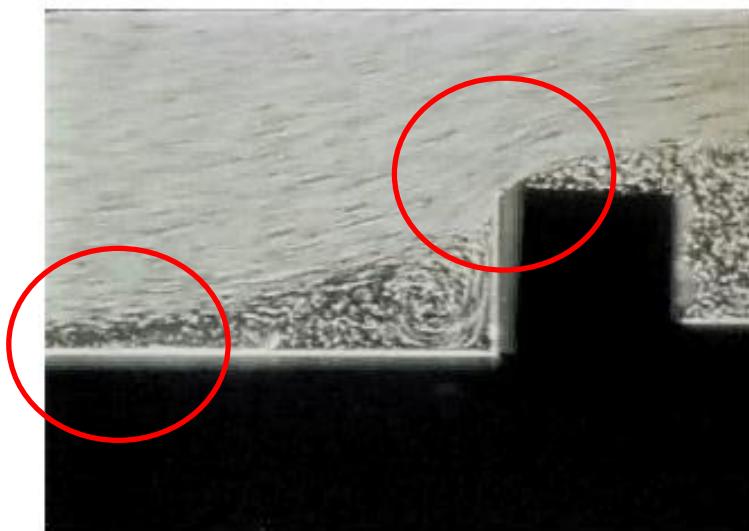
Attached

Detached

A gallery of detached flows



A gallery of detached flows



A gallery of detached flows

