But this does still not explain the

aerodynamic drag scaling: % 5.U_7S




Pressure gradient effect

Consider the flow alonganangle 3 =7n/(m+1)=m ie. m=0

This is the flow along a flat plate

5

/7~ ™

| !

Uniform flow- no pressure gradient

Vp =0

0. 0.2

0.4 0
u/U

Blasius boundary layer

i 0.8 L.



Pressure gradient effect

Consider the flow along anangle G =7/(m+1) <7 ie. m>0

This is the flow along a « forward wedge »

R 0.8 L.

Eljal a

u/U
Accelerated flow |
favorable pressure gradient

Vp >0

Thinner boundary layer



Pressure gradient effect

Consider the flow alonganangle f=7/(m+1) > 7 ie. m <0
This is the flow along a « forward wedge »

. 0.2

04 0
u/U

Decelerated flow

unfavorable (adverse) pressure gradient Thicker boundary layer

Vp <0

G 0.8 L.

H 10



Pressure gradient effect

: 0
Adverse pressure gradient : a_p
X
pl pZ > pl p3 >pz

p(x)  p(x+dx)

Resulting pressure force



Pressure gradient effect

Adverse pressure gradient : ? >0
X
P1 pz > pl p3 >p2

Close to the wall, the viscous effects dominate
The pressure gradient further decreases the velocity
= Detachement



Pressure gradient effect

Favorable pressure gradient: % <0

pl pZ < pl p3 <pz

p(x) E_13(X+dx)

Resulting pressure force



Pressure gradient effect

Favorable pressure gradient: P <0

OX

pl pZ < pl p3 <p2

Close to the wall, the pressure gradient further increases
the velocity of the flow = no detachement



Pressure gradient effect

I ip |
I |, |,
Blasius
_2 :
y y y : e (] .
0. 0.2 0.4 0.6 0.8 1. ; - - - -
! 0. 0.2 0.4 0.6 0.8 1.
ufU u/U



Falkner-Skan solutions

/
/

Lh: -__";) I____,,-#”'H#' | 2
—— NN
——————— —;——\— ——"‘%ﬁﬁ 7(’!&;,’./

(a)

VR R R R NN N

—K

(b) (c) (d)

Figure 5.2 Boundary layer flows represented by solutions of the Failkner-Skan equation
for different values of the parameter m: (a) m =0;(b)ym = 1;(c)0 <m < 1;(d) =1/2 <m <0



Falkner-Skan far field solutions
13'64 : Gwrle,ke‘_.- |

F@) = Cz"




Falkner-Skan boundary layer equations

1. Prandtl equations

qj}" ‘lbxy ¢x ¢yy = dU + {bm,

€5=¢p=00ny=0, $; - U(x)as j - o,



Falkner-Skan boundary layer equations

1. Prandtl equations
. dU
¢}" ribxy ¢x ¢yy = + ¢m*

€5=¢p=00ny=0, $; - U(x)as j - o,

2. Self-similar solution

p(x, §) = (Axm")"" f(n) where 7 = HAx""")"2



Falkner-Skan boundary layer equations

1. Prandtl equations

qj}" ‘lbxy ¢x ¢yy = dU + {bm,

$=d¢;=00ny=0, ¢{};—> U(x) as y — oo.
2. Self-similar solution
¥(x, ) = (Ax™ )2 f(n) where 5 = HAx"1)"2

3. Falkner-Skan equation
S+ 4m 4+ D) 7+ m(l - f?) =0
fO) =f10) =0, f0) =1



Falkner-Skan boundary layer solutions

f'(n)=u/u
Figure 5.3 Sketch of velocity profiles given by solutions of the Falkner—Skan equation



Falkner-Skan boundary layer solutions




Boundary layer separation

fffffffffffff
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i
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.!/f
p

EAF A

$ ~ (x — x5)4 so that % ~(x — xg)'?as x - x.



Boundary layer separation




Decollement sur un profil d’aile

Expériences en soufflerie menées a 'université de Stanford,
|"écoulement est visualisé grace a des fumées :

angle d'incidence | v = 0°

[ DVD ‘Multimedia Fluid Mechanics’, Homsy et al. 2004, Cambridge University Press ]



Décollement sur un profil d’aile

Expériences en soufflerie menées a |'université de Stanford,
|"écoulement est visualisé grace a des fumées :

angle d'incidence | v = 5°

[ DVD ‘Multimedia Fluid Mechanics’, Homsy et al. 2004, Cambridge University Press ]



Décollement sur un profil d’aile

Expériences en soufflerie menées a |'université de Stanford,
I"écoulement est visualisé grace a des fumées :

angle d'incidence | v = 10° |:

[ DVD ‘Multimedia Fluid Mechanics’, Homsy et al. 2004, Cambridge University Press ]



Décollement sur un profil d’aile

Expériences en soufflerie menées a 'université de Stanford,
|"écoulement est visualisé grace a des fumées :

angle d'incidence | v = 15° |:

[ DVD ‘Multimedia Fluid Mechanics’, Homsy et al. 2004, Cambridge University Press ]



Décollement sur un profil d’aile

Expériences en soufflerie menées a ['université de Stanford,
|"écoulement est visualisé grace a des fumées :

angle d'incidence | v = 25° |:

[ DVD ‘Multimedia Fluid Mechanics’, Homsy et al. 2004, Cambridge University Press ]



Décollement sur un profil d’aile

Expériences en soufflerie menées a 'université de Stanford,
|"écoulement est visualisé grace a des fumées :

angle d'incidence | v = 30° |:

[ DVD ‘Multimedia Fluid Mechanics’, Homsy et al. 2004, Cambridge University Press ]



Décollement sur un profil d’aile

Expériences en soufflerie menées a ['université de Stanford,
|"écoulement est visualisé grace a des fumées :

angle d'incidence | v = 35° |:

[ DVD ‘Multimedia Fluid Mechanics’, Homsy et al. 2004, Cambridge University Press ]



Application to sailing

26



Application to sailing




Example: Flow around a sphere

Laminar Separation

Transition to Turbulence

A _—Turbulent

4~  Separation

@ OMERA



Flow around a cylinder

|
pla,0) = §pU§O(1 — 4sinf?)

WV

\\/—
\—//

\/




Flow around a cylinder

1
pla,ld) = 2pU30(1 — 4sin 6°)

270



Origin of detachment: pressure gradient

A viscous flow close to the wall opposes the free-stream






Pressure coefficient

Cp(V)
I
0. <«— couche limite turbulente Re = 6,6 x 105
1 <— couche limite laminaire Re = 2,4 x 105
b
<«— €coulement potentiel
-3 | |
0 90 180 Ve

10/05/2021



Form drag

180

270



Drag coefficient

Cx

trainée

= pUZA

Shape Effects on Drag e

Research
Center
The shape of an object has a very great
effect on the amount of drag.
Cd=1.28 Cd=1.14
Flat Plate prism Cd= 295

Flow | Bullet

Cd=07 to .5
Sphere

D

= Cd= 045
p v 2A /2 Airfoil
A = frontal area All objects have the same frontal area.

Cp =105  Fialplate

Cp=038  Hemisphete

(D Cyeld2  Hemisphers

CD :DD‘J7

LT

C —



drag

O

section, somewhat arbitrary...

Cy

Plague plane preés du scl Cx
aue zane pre p

"'\ .
— b‘bm 1,27
a N\ s/

09

0,52

0.34

0,2

0,43

0.75

09




Separation control




Separation control




Application to sailing

39



Thickness effect

Attached

Detached

40



A gallery of detached flows




A gallery of detached flows




A gallery of detached flows




Hydrodynamics 13
Waves




Waves

Z A
Air
Dynamic boundary conditions
a—— yie
Kinematic boundary conditions
V
/ T_) Potential flow /
U

Water



General case: two fluids

/ /

P2 P,

4




General case: two fluids

/ /

V
T Potential flow //
U

Dynamic boundary conditions

Kinematic boundary conditions

Potential flow



o0k wWhE

Linear waves dispersion relation

Equations and boundary conditions
Base state

Linearized equations

Normal mode expansion
Dispersion relation

Analysis of the dispersion relation



1. Equations

A(I)l = ()
Potential flow
Aq)z = (
0D, 0P,
Ul — %’ Vl - @ Velocity field
6(1)2 8@2
Uy=—= Vo= —=
T ox E




1. Boundary conditions

(I)l:O‘dltZ:—OO
Gy =0at z =40

at z =mn-

far-field



1. Kinematic boundary condition

n(x,t)

Kinematic condition : impermeability (no penetration)
No fluid particles going across the interface through the normal direction

V,=adnlét cos(a)



1. Kinematic boundary condition

Vv

VJ_ s UJ_:L\
u n(x,t)

> <

Kinematic condition : impermeability (no penetration)
No fluid particles going across the interface through the normal direction

V,=adnlét cos(a)

u,,=Vv, cos(a)+



1. Kinematic boundary condition

> <

u n(x,t)

Kinematic condition : impermeability (no penetration)
No fluid particles going across the interface through the normal direction

V,=adnlét cos(a)

} onlot=v - u, tan(a) = | anlot=v - u,onlox
u,,= Vv, cos(a)-u, sin(a)



1. Kinematic boundary conditions

(I)l:O‘dltZ:—OO

far-field
Gy =0at z =40
9, 0
Ul—n — Vl — —?7
0 0
Uyt — Vo =



1. Dynamic boundary conditions

0
P — D= o at z =
| 2 = —7 9 al < =17J
On )3/2
O
n:(—&cn,l)
1+ 02

C=V.n




1. More equations

00, Ui +VP P

Y | > | o -z =
00, U;+Vy P

| | gz =
(% 2 P2

2nd Bernouilli relations



2. Base state



3. Perturb and linearize
perturbation expansion

R = () Hepy
b, = Heo
Uy = Heuq
Vi =0 TEV] |
0, _ Hews e 1
Vs =0 Hevs
Py |=—p1gz Hem
Py |= —pagz Hepo
i = Heo

Variables Base state Small perturbation



3. Linearized equations

A@l — O
perturbed potential flow
Ay = 0
Uy = % U1 = %
or 07
U9y = % Vg = %
or 0z




3. Perturbed kinematic boundary conditions

o =0at z = -

0y =0at z =+
) 80 do t
—€ U EV1 = €e— adl 2 = €0
gy =
6’0 0o t
—E U €EVo = €e— adl 2 = €0
25, T =,




3. Perturbed kinematic boundary conditions

o =0at z = -

0y =0at z =+




3. Flattened kinematic boundary conditions

dpr _ do at 2
o = €0
0z ot
% — Jo at z = €0
0 Ot )
Taylor expansion around O: gb(EO-) — ¢(O) (EO')% 0
% — g—i at =10
Joy  do B
Pty at 2 =10

=transforms a b.c. at an unkwown interface into a fixed place!



3. Perturbed dynamic boundary conditions

(P +ep

— Py —epy)|.,

82

AT

TRRE]

Replace P,=-gp,z, ... ﬂ and linearize
0%0
—p)o+ (=)l

g(ﬂz

flatten

d

Rz

(p2 = p1)go + (p1 = pa2)l,

0%

! 012




3. Perturbed and linearized Bernouilli

Perturbed 2" Bernouilli relations

dp1r  p1
4B _
8t+p1
062 P2 _



4. Normal mode expansion

Fourier transform in x and t

o1 = filz)exp(i(kr — wi)),
02 = falz)exp(i(kr — wi)),
o = Cexp(i(kr — wt)),

k is the wavenumber and w the frequency (in rad

A =2r/k T =2m/w
f=w/(27)




4. Normal mode expansion

Solution to Laplace equation:



4. Normal mode expansion

Solution to Laplace equation:

¢ = (aexp(kz) + fexp(—kz))exp(i(kx — wt))

1

¢ = (aexp(kz) + Bexp(—kz))exp(i(kx — wt))



4. Normal mode expansion

Solution to Laplace equation:

01
02

Aexp(kz)exp(i(kr — wt)),
Bexp(—kz)exp(i(kx — wt)),
Cexp(i(kx — wt)).




4. Normal mode expansion

Replace in boundary conditions

9(/02 — /01)0 +iwp A —iwpe B = f)/kQC
kA = —iwC
—kB = —w(C

This is an eigenvalue problem iwX=MX!

kg(ps — p1)C +w’pC 4w pC = k°C



5. Dispersion relation

2 _ Zhglps = pr) + o
P11 P2

sUnstable if there exists one w, Im(w)>0 )02 > )01

Neutral if for all w, Im(w)=0: P1 > P2

-Stable (or damped) if for all w, Im(w)<O:

The flow considered is not damped, we have
neglected dissipation by neglecting viscosity



o0k wWhE

Instablility analysis:

Equations and boundary conditions
Base state

Linearized equations

Normal mode expansion
Dispersion relation

Analysis of the dispersion relation



Dispersion relation

o _ Zhglpr = pr) £0K

P11 P2




Dispersion relation

2 o _ Zkglpr—p1) + 9k
p1tPg

]{3
w* = tanh(kH) (f)/p | gk)




Dispersion relation

]{3
w* = tanh(kH) (fyp | gk’)

Capillary wavenumber: kc = Pg/f)/

Length scale: k= k/kc

Time scale W= W/\/%

~

One single non-dimensional parameter H = H]{C

P~

5 = tanh(kH) (123 | 1’%)




Dispersion relation

" = tanh(kH) (7%3 + Z%)

~ A~y

gravity k<1 capillary sl
shallow water
k< 1/H +k +k*V H
Deep water
> 1/H +VE +iVE




Difference between group velocity v and
phase velocity c




Dispersion relation

gravity L« 1

capillary F>1

shallow water
k< 1/H

'J-‘-:Shaiiowfgravity ~ :l:llf'\/_[ﬁ;a‘i.Hr

Cshallow/gravity ™ =+ Q‘H

Ushallow/gravity ™ + QH

L _ .2 . !
Wshallow [ecapillary ™ =ul; \V '."'Hf P
/ /
Cshallow [capillary ™ j:;' ’:Hf &
Ushallow [capillary ™ 2k V ’.:fof}

Deep water

k>1/H

Wdeep/qgravity ™ T .'U;"-'

4
Cdeep/gravity ™ :l:\/]j
I

1 /g

Udeep/gravity ™ 5 I

o

‘o 3/2 /.

“Wdeep/capillary ™ +A TP
/2 /)

Cdeep /capillary ™ = f ;"ff‘( )

oy .1’f2 -
Udeep/ capillary ™ j:?)f 2k Vo .-"Jllllff}




Dispersion relation

gr4avity waves

capillary waves

k.=10; h=1

shallow water
deep water

1 | | | | | | |
0 5 10 15 20 25 30 35 40

Capillary wavenumber k,wavenumber Kk



Trajectories below the waves

profondeur infinie | faible profondeur



Stokes drift!

wave phase 11/ T= 0.000




Why are the waves parallel to the shore?

c~(gh)?
A~T(gh)12

T=10s: w=0.62

houle incidente X
lige dé sonde ~ f\;'

150

125
100
el

S0

- SEn e san s sam s s s Smm o

25

20 40 &0 80



Refraction and diffraction of waves

Satellite view Namibian coast



Nonlinear waves, wavebreaking

t3

t2

t1

The celerity increases with the depth



gr4avity waves

Dispersion relation

capillary waves

shallow water

k.=10; h=1

deep water

S 10 15 20 25 30 35
Capillary wavenumber k,wavenumber Kk

40



Conditions for wave pattern formation?




