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aerodynamic drag scaling: SU
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Pressure gradient effect

Consider the flow along an angle 

This is the flow along a flat plate

Uniform flow- no pressure gradient

=0
Blasius boundary layer



Pressure gradient effect

Consider the flow along an angle 

This is the flow along a « forward wedge »

Accelerated flow

favorable pressure gradient

> 0
Thinner boundary layer



Pressure gradient effect

Consider the flow along an angle 

This is the flow along a « forward wedge »

Decelerated flow

unfavorable (adverse) pressure gradient

< 0

Thicker boundary layer



Adverse pressure gradient : 0




x

p

p1 p2 > p1 p3 >p2

p(x+dx)p(x)

Resulting pressure force

Pressure gradient effect



Adverse pressure gradient :

p1 p2 > p1 p3 >p2

Pressure gradient effect

Close to the wall, the viscous effects dominate

The pressure gradient further decreases the velocity

Detachement

0




x

p



0

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x

p
Favorable pressure gradient:

Pressure gradient effect

p1 p2 < p1 p3 <p2

p(x+dx)p(x)

Resulting pressure force



Close to the wall, the pressure gradient further increases

the velocity of the flow  no detachement
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p1 p2 < p1 p3 <p2

Favorable pressure gradient:

Pressure gradient effect
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Pressure gradient effect

Blasius

F.S. Blasius

F.S.



Falkner-Skan solutions



Falkner-Skan far field solutions



Falkner-Skan boundary layer equations

1. Prandtl equations



Falkner-Skan boundary layer equations

1. Prandtl equations

2. Self-similar solution



Falkner-Skan boundary layer equations

1. Prandtl equations

2. Self-similar solution

3. Falkner-Skan equation



Falkner-Skan boundary layer solutions



Falkner-Skan boundary layer solutions
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Boundary layer separation
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Boundary layer separation



Decollement sur un profil d’aile



Effet du gradient de pression
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Application to sailing
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Application to sailing



Example: Flow around a sphere



Flow around a cylinder

θ

p



Flow around a cylinder



P+

P-

P+

Origin of detachment: pressure gradient

P-

P+

A viscous flow close to the wall opposes the free-stream



P+

P-

P+
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Pressure coefficient

33Chapitre 8: Couches limites



Form drag



Drag coefficient
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x

drag

section, somewhat arbitrary…
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Separation control
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Separation control
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Application to sailing

Foc

Grand Voile
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Thickness effect

Attached

Detached
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A gallery of detached flows
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A gallery of detached flows
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A gallery of detached flows
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Hydrodynamics 13

Waves
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Waves

Potential flow

z

x

Dynamic boundary conditions

Kinematic boundary conditions

V

U

Air

Water
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ρ2, φ2

ρ1, φ1

z

x

General case: two fluids
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General case: two fluids

Potential flow

Potential flow

z

x

Dynamic boundary conditions

Kinematic boundary conditions

V

U
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Linear waves dispersion relation

1. Equations and boundary conditions

2. Base state

3. Linearized equations

4. Normal mode expansion

5. Dispersion relation

6. Analysis of the dispersion relation



49

1. Equations

Potential flow

Velocity field
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1. Boundary conditions

far-field

?
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1. Kinematic boundary condition

η(x,t)

x

V
┴

= ∂η/∂t cos(α)

z

α

No fluid particles going across the interface through the normal direction

Kinematic condition : impermeability (no penetration)

V
┴

V
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1. Kinematic boundary condition

η(x,t)

x

V
┴

= ∂η/∂t cos(α)

y

α

No fluid particles going across the interface through the normal direction

Kinematic condition : impermeability (no penetration)

u
┴1= v1 cos(α)+

V
┴

V

u

v

u
┴1
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1. Kinematic boundary condition

η(x,t)

x

V
┴

= ∂η/∂t cos(α)

y

α

No fluid particles going across the interface through the normal direction

Kinematic condition : impermeability (no penetration)

u
┴1= v1 cos(α)- u1 sin(α)

V
┴

V

u

v

u
┴1

∂η/∂t=v1- u1 tan(α)    ∂η/∂t=v1- u1∂η/∂x
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1. Kinematic boundary conditions

far-field

-

-
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1. Dynamic boundary conditions
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1. More equations

2nd Bernouilli relations

= 0

= 0



57

2. Base state
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3. Perturb and linearize

perturbation expansion

Variables Small perturbationBase state
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3. Linearized equations

perturbed potential flow
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3. Perturbed kinematic boundary conditions
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3. Perturbed kinematic boundary conditions
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3. Flattened kinematic boundary conditions

Taylor expansion around 0:
0

transforms a b.c. at an unkwown interface into a fixed place!
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3. Perturbed dynamic boundary conditions

Replace P1=-gρ1z, …

flatten

and linearize

g
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3. Perturbed and linearized Bernouilli

Perturbed 2nd Bernouilli relations

Linearized 2nd Bernouilli relations
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4. Normal mode expansion

Fourier transform in x and t
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4. Normal mode expansion

Solution to Laplace equation:
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4. Normal mode expansion

Solution to Laplace equation:

z

2

1
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4. Normal mode expansion

Solution to Laplace equation:
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4. Normal mode expansion

Replace in boundary conditions

This is an eigenvalue problem iωX=MX!
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5. Dispersion relation

•Neutral if for all ω, Im(ω)=0:

•Unstable if  there exists one ω, Im(ω)>0

•Stable (or damped) if  for all ω, Im(ω)<0:

The flow considered is not damped, we have 

neglected dissipation by neglecting viscosity
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Instability analysis:

1. Equations and boundary conditions

2. Base state

3. Linearized equations

4. Normal mode expansion

5. Dispersion relation

6. Analysis of the dispersion relation
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Dispersion relation

ρ2

ρ1
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Dispersion relation

z
ρ2

ρ1
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Dispersion relation

Capillary wavenumber:

Length scale:

Time scale

One single non-dimensional parameter
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Dispersion relation

gravity capillary

shallow water

Deep water

~
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t

x

Difference between group velocity v and 

phase velocity c
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Dispersion relation

gravity capillary

shallow water

Deep water
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Dispersion relation

wavenumber kCapillary wavenumber kc

capillary wavesgravity waves
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a
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r

c

c~(gh)1/2

c~k1/2c~k-

1/2

kc=10; h=1
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Trajectories below the waves

exp(-ky)

2π/k

ch(ky)
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Stokes drift!
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Why are the waves parallel to the shore?

h

λ

T=10s; ω=0.62
c~(gh)1/2

λ~T(gh)1/2
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Refraction and diffraction of waves

Satellite view Namibian coast
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Nonlinear waves, wavebreaking

The celerity increases with the depth
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Dispersion relation

wavenumber kCapillary wavenumber kc

capillary wavesgravity waves
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 w
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r

c

c~(gh)1/2

c~k1/2c~k-

1/2

kc=10; h=1

min(cφ)~20cm/s



Conditions for wave pattern formation?
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