Hydrodynamics

potential flow
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7. Unsteady flow
8. Boundary layer [1]

9. Boundary layer [2]

10. Vorticity-Bernoulli-Potential flow
11. Potential flow



Holomorphic functions

Z = P(x,y)+iQ(x,y)
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Holomorphic functions

Cauchy-Riemann conditions
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Conjugate Holomorphic functions

AP=0 , AQ=0

Orthogonal lattice

P = const

0 = const



2D potential flow

7=X+1Yy
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Complex Potential

f(z) = o(z,y) + ib(x,y)
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Complex velocity

df (z)

dz

= w(z) = u—1w



Uniform flow
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Equipotentielle
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Ligne de courant



SOURCE D>0 or SINK D<0O
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VORTEX
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SUPERPOSITION, SOURCE and SINK
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DOUBLET
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f(2) =Ue "z

f(2)= Qlog(z—zo)
2T

f(2) = —%log(z ~2)
f(2)=- pe”
Z—-2,
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Acyclic flow around cylinder
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Acyclic flow around cylinder
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Acyclic flow around cylinder
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Bernoulli

a’ a*\ .
Ur(r,El)=Ux(1——2)cosﬂ , Uﬂ(r,ﬁ)=—U,¢(1+—2)sm8

r T

1
pla,l) = 5,0(]30(1 — 4 sin 0°)
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pla,f) = ipro(l — 4sin 0%)
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pla,f) = ipro(l — 4sin 0%)
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1
pla,f) = ipro(l — 4sin 0%)
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Trainée : Fy=0 Portance: F =0




Achtung! Connectivity?

The solution to Laplace equation is unique
only in simply connected domains
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Unique solution In
simply connected e
domains
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Multiple solutions In
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Cyclic flow around cylinder
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Cyclic flow around cylinder
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Magnus effect and lift
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1 I

p(a,0) = 5pUL(1 = 4(sin 0 — -—=—)°)
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p(a,0) = 5pUL(1 = 4(sin 0 — -—=—)°)
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Pressure distribution
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Cyclic flow around cylinder

Drag coefficient
C.=0
Lift
F,=-pU,I

Lift coefficient

Cy;tO



Floating ball
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Tangente fluide

Garcia & Chomaz
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Le Baden Baden

L’Alcyone -



Rotating wings!
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Parabolic trajectory

Trajectories with initial veloctiylOm/s;
the shooting angle varies



Reentrant cornerkick
Brushed kick with vertical rotation of the ball
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Free kick

Air flux







Free kick

Air flux




Lift










Lifted trajectory




With lift

: without liff

lift
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Lift at tennis tennis Vo=30m/s angle18°



Slice

slice

without slice
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Slice at tennis Vo=5m/s angle 60°



Conformal maps

| > Y V4
Wt = H(Z) @
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X 0
f(z) F(Z)

f() = F[h(z)]



Conformal maps

Preservation of angles
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Conformal maps
Preservation of angles

(except at critical points h’(z)=0)

=The image of an holomorphic function is holomorphic

Link between z and Z planes

F(Z)=f[H(Z)] Equality of complex
potentials

W(Z)=w[H(Z)]H' (7) Transformation
of velocities

=>Conservation of streamlines, flow rate, circulation
but not stagnation points



Joukowski’s transform

2
1=L+—
Z
Y 7 y 2
i) L n
- e X | ol 7 . x
! -2¢ 2¢
1 2
z—-2c~—(Z-c
Yz-o
Z-c—0

o1



Joukowski’s transform
Flow around ellipse
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Joukowski’'s transform
Flow around ellipse

2

F(Z)=U,.|Ze ™+ ¢
7
Z*—77Z+c* =0

2
Z=h(z)=§+\/(§) -c’
I 7R VA A 2-
f(z)=U, ze"“+(cze"“ = e"“)(z—\/(z) -c )




Joukowski’s transform
t|p||C|ty of solutions
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Flow around foll
Startup vortex and circulation selection




Flow around foll
Startup vortex and circulation selection
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Flow around foll
Startup vortex and circulation selection
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Real situation
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ALPHA=15; 127 THICKNESS

STREAMLINES, PSI
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Figure 52 The symmetric Joukowski airfoil, streamlines, alpha = 15°,
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Flow around foll
Circulation selection
By Kutta condition at trailing edge

U=0 U continu

Wedge Cusp
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Figure 54 The cambered Joukowski airfoil, streamlines, alpha =
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ALPHA=15; 12% THICKNESS, 5% CAMBER

STREAMLINES, PSI

x/c

Figure 55 The cambered Joukowski airfoil, streamlines, alpha = 15°.



STREAMLINES, PSI

ALPHA=15 DEGREES; S5Z CAMBER

x/c

Figure 58 The circular-arc airfoil, streamlines, alpha = 15°.
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Two Dimensional Flows
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Joukowski’'s transform
Multiplicity of solutions




Flow around foll
Thickness effect
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Flow around foll
Camber effect
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Blasius Formula
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THEOREME DES RESIDUS

fcf(z)dz = ZJriiRes (f,zk)
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Kutta-Joukowski theorem
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Lift of a plate under incidence in incoming flow
at angle

C,=2n(a-q,)

expérience

l l I | | I
0
-10 -5 0 5 10 15 o



Lift of a wing under incidence

2.2.2/8%




Flow around foll
Thickness effect
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Flow around foll
Camber effect
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Ue

Linearized profile theory

y =ef" (x)

y = ef” (x)




Linearized profile theory

Agp =0

impermeability grad ¢.n =0

fJ(....- 3 df {:]Ls
—_ = F — — — —-.{__ E
rlv'x e £ (X); € | %dx Ux[x e £ (x); b] 0 ,0€x<L

far-field e(x,y;e)~U,x ,|x| =



Linearized profile theory

0, Y58 ~ U x+ 0 (X, ) + &0 (X, )

At order ¢

Ae, =0,

de, .. df” - -
a_y(xro)“uzdx(x)r OsxsL ,

d, I | -
_(x’DJ_U“dx(x)’ 0sx<L ,

dy

‘PI(XrY)ND(lﬁl)r |?£|_J'°° .




Linearized profile theory

Lp(x,y;E)NUIx-f-Ecp,(x,y)+ezc.p2(x,y)-
p(x,y;e)~p.+ep (X,y) +tep,(X.,y)+

UX,y;e)~U.e +egrad ¢, + ...

1 1
— = -+ — 2
- _,yu. %%
P: = pUmut“ puzax
_PTP- 2 _ 2809
e O E A v A B VR
2° -




Linearized profile theory

wing= incidence+ camber+ thickness

-
Camber }-"IEfL(}{):E[ ( 5 —-r:s:(L—X)] .
Thickness v =cf,(x) = ¢ P X

ef* (x)=¢e|a(l—-x)+f () +£f(x)]
ef- (X)=¢|lal —x)+f & —f(x)]



Linearized profile theory

P, (X, Y) =0, X, y) to. (X, ¥) T ¢.(X,¥)

. EH%N__’,_{.\ +//—\+@Z7}\_

¢ (x,y) [ e (x,y)]

No lift by symmetry



Incidence

Find vorticity distribution y(X)

i

f(z)= ¢, (x,v)+id (x, )—m——[:'y(x’)log(z—x')dx'

24T

such that impermeability

Zix,05=-U,a, O0<xs<L,

_df : 1 fhy ()
W(Z)_E_ui(er)—lvi(fo)__zwjaz_x:dx

vi(x,07) = 5= ! pf YD) gy

x — X'
V‘p' ID :Exx)r dx! =181_I’I;|:Iﬁ xixx) d + Ix+3:£x)3f dX’]
U. a-l-i v.p. [ :Ex)z =0
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Incidence

Kutta!

u (L, 07 =y (L,07)

[ux, Y Eo =~ v &) , 0<x <L

y(L)=0

On peut demontrer que

L —x

y(xX)=-2U_« 2




Incidence

Distribution de Cp

C,(x,0%) = F 2 ea —x

X

Théoreme de Kutta-Joukovski

L L — X
F},=—pUmF=—-pU,=L*f(x)dX$2pUiaL Z dx

F,=mapLU] .
F
C, = 7 o =27a .
—pUZL
5o U




Skeleton (camber)

1 2U, bdf, S
VIX(L&X)[C*:—VP.L&\/X (L — x')
y(L)=0

dx’

X =X

to be integrated numerically

C

Linear

= — 2m o

v

superposition

<

= 27 (0 — o) , ‘
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