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Outline

1. Intro+kinematics

2. Dynamics

3. Dimensional Analysis

4. Low Reynolds number flow/ Stokes eq.

5. Stokes drag

6. Lubrification-Hele Shaw-Pipe Flows
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8. Unsteady flows

9. Boundary layer

10. Invisicd fluid- Bernoulli-potential
flow

11. Potential flow, lift

12. Flow separation and detachment

13. Waves

14. Wave drag
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Vorticity, inviscid and potential flow



Vorticity equation on plane
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Advection-diffusion equation



Vorticity equation: axisymmetric case
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Advection-diffusion equation



Streamfunction and (u, v) through vorticity

Biot-Savart induction

and u, v are given by

Assume ω(x,y) is given, then



Point Vortex flow



Vortex ring



Vortex ring



Vortex ring



For 2D problem:

(u,v,p)                      (, y)

Winning: two variables instead of three

Losses: difficulties with boundary conditions for 

streamfunction 



For 3D problem: generalized Helmholtz 

equation
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For 3D problem we can not introduce 
streamfuction like for 2D problem.
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Tilting/stretching Diffusion
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Tilting/stretching of vorticity tubes
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Tilting of vorticity tubes
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Stretching of vorticity tubes
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Kinematic properties of the vorticity field
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Circulation
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Circulation production due 

to viscous stress
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Circulation production due 

to viscous stress
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Kelvin theorem

Inviscid flow

Barotropic fluid

Conservative forces
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Inviscid flow, Barotropic fluid

Conservative forces

Lagrange theorem
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Inviscid flow
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Daniel Bernoulli 1700-1782 Leonhard Euler 1707-1783



28

Inviscid flow: Euler equations

•Continuity

•Momentum conservation
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Vorticity ω=rot(U)

Assume conservative volumn forces

Vectorial identity
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Inviscid flow: Euler equations
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Conservation of enthalpy

1st Bernoulli theorem
Assumptions

• Steady flow

• inviscid, 

• conservative volumn forces
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2nd Bernoulli theorem
Assumptions

• Irrotational flow

• inviscid

•Barotropic ρ(p) only

•conservative volumn forces
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Incompressible flow

= constant on a streamline

= constant on a streamline



34Pitot tube

Steady, inviscid, incompressible flow
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Point vortex
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Solid body rotation



Example: stagnation point flow

When the Reynolds number tends to infinity 

(inviscid flow), the pressure only serves to 

accelerate or decelerate the flow



For  Re=          viscous forces become  

negligible

Fluid parcel in a stagnation point flow



During dt, the particle goes from x to x+dx and 

accelerates

. .



ma =sum of forces

(le long d’une ligne de 

courant)



Stagnation point flow

Beware, the flow is not going from high 

pressures to low pressures. By going from the 

low pressure regions to the high pressure 

regions, it slows down.

Figure 5: stagnation point flow
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Vitesse  d’une particule fluide

V

Vitesse       =      fluctuation             +    vitesse moyenne

U =            v +              V

U

340 m/s
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Conservation de l’énergie
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La pression
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velocity excess

How can one exert a succion force while blowing?
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velocity excess

pressure deficit
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velocity excess

pressure deficit

lift
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Potential flow



Irrotational Flow Approximation

Irrotational 

approximation: vorticity is 

negligibly small

In general, inviscid 

regions are also 

irrotational, but there are 

situations where inviscid 

flow are rotational, e.g., 

solid body rotation.

ω



Irrotational Flow Approximation
2D Flows

For 2D flows, we can also use the streamfunction

Recall the definition of streamfunction for planar (x-y) 
flows

Since vorticity is zero,

This proves that the Laplace equation holds for the 
streamfunction

ω
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Potential flow:

Irrotational, inviscid, homogeneous, 

incompressible flow, conservative forces

Continuity

Euler

Irrotational flow
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Potential flowPotential flow

Boundary conditions
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Potential flow

Boundary conditions



Elementary Planar Irrotational Flows
Uniform Stream

In Cartesian coordinates

Conversion to cylindrical 

coordinates can be 

achieved using the 

transformation



Elementary Planar Irrotational Flows
Line Source/Sink

Potential and 

streamfunction are 

derived by observing that 

volume flow rate across 

any circle is 

This gives velocity 

components



Elementary Planar Irrotational Flows
Line Source/Sink

Using definition of (Ur, U)

These can be integrated 

to give  and y

Equations are for a source/sink

at the origin



Elementary Planar Irrotational Flows
Line Source/Sink

If source/sink is 

moved to (x,y) = (a,b)



Elementary Planar Irrotational Flows
Line Vortex

Vortex at the origin.  First 

look at velocity 

components

These can be integrated 

to give  and y

Equations are for a point vortex

at the origin



Elementary Planar Irrotational Flows
Line Vortex

If vortex is moved to 

(x,y) = (a,b)



Elementary Planar Irrotational Flows
Doublet

A doublet is a 

combination of a line 

sink and source of 

equal magnitude

Source

Sink



Elementary Planar Irrotational Flows
Doublet

Adding y1 and y2

together, performing 

some algebra, and 

taking a→0 gives

K is the doublet strength



Examples of Irrotational Flows Formed by 

Superposition

Superposition of sink and 

vortex : bathtub vortex

Sink Vortex



Examples of Irrotational Flows Formed by 

Superposition

Flow over a circular 

cylinder:  Free stream 

+ doublet

Assume body is y = 0

(r = a)  K = Va2



Examples of Irrotational Flows Formed by 

Superposition

Velocity field can be found by 

differentiating streamfunction

On the cylinder surface (r=a)

Normal velocity (Ur) is zero, 

Tangential velocity (U) is non-

zero slip condition.


