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Intro+kinematics

. Dynamics
. Dimensional Analysis

. Low Reynolds number flow/ Stokes eq.

Stokes drag

. Lubrification-Hele Shaw-Pipe Flows



8. Unsteady flows
9. Boundary layer

10. Invisicd fluid- Bernoulli-potential
flow

11. Potential flow, lift

12. Flow separation and detachment
13. Waves

14. Wave drag



Vorticity, inviscid and potential flow



Vorticity equation on plane
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Advection-diffusion equation




Vorticity equation: axisymmetric case
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Advection-diffusion equation




Streamfunction and (u, v) through vorticity
Biot-Savart induction

Assume w(x,y) is given, then
Tz, y) = —4—1“- ffﬂ wiz' i) log((z' —2)* + (3 — y)")d=dy.

and u, v are given by
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Point Vortex flow
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Vortex ring

we(z',r') = v8(2")6(r' — R)

cos ¢
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Vortex ring

Fi1G. 7.23 - Le mouvement relatif « en saute-mouton » de deur anneaur
tourbillons coariaux est décrit par cette séquence de quatre photos (extraite
de An Album of Fluid Motion de M. Van Dyke).



For 2D problem:
(Uv,p) — (o, y)

Winning: two variables instead of three

Losses: difficulties with boundary conditions for
streamfunction



For 3D problem: generalized Helmholtz

equation
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For 3D problem we can not introduce
streamfuction like for 2D problem.



d—@=grad U-w-wdivU +l&t(l dng)
dt P
Tilting/stretching Diffusion



Tilting/stretching of vorticity tubes
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Tilting of vorticity tubes
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Stretching of vorticity tubes
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Le tourbillon de Naruto




Hiroshige (1855)
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Kinematic properties of the vorticity field

divw =0
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Circulation




Circulation production due
to viscous stress
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Circulation production due

to VISCOUS stress
i 0

Tyt % dy
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C.Williamson



Kelvin theorem

Inviscid flow T=¢g=0

Barotropic fluid : p = p(p)

Conservative forces : F =-grad @



Lagrange theorem

Inviscid flow, Barotropic fluid

Conservative forces

w(x,0)=0 Vx

Q({J)=O Vx, Vt



Tnviscid flow



Daniel Bernoulli 1700-1782

Leonhard Euler 1707-1783
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Inviscid flow: Euler equations

Continuity
d—p+p divU=0
dt

‘Momentum conservation

pd—Q=pE— grad p
dt —



Assume conservative volumn forces

F=- grad ®

Vectorial identity

g1~adU.U=®U+gmd(U;}

|

Vorticity w=rot(U)



Inviscid flow: Euler equations

e Continuite

d—p+pdjVI_J=0
dt

 Loi fondamentale de la dynamique

2
g+gr::1d U—+CI) +@qu=—l grad p
o — \ 2 P

e Energie interne

de :
—=-pdivU
P i p v
» Equations d’état
p=p(p.T)



Conservation of enthalpy

1st Bernoulli theorem
Assumptions
 Steady flow
* Inviscid,
e conservative volumn forces

2
H=h+ U? +® = const. sur ligne de courant

h=e+L

p




2nd Bernoulli theorem
Assumptions
* [rrotational flow
* Inviscid
Barotropic p(p) only
econservative volumn forces

U= grad ¢
a¢+fdp (;+(I) C()
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Incompressible flow

e = constant on a streamline :

1¢r théoréme de B.

U? :
£+7+(D = constant on a streamline
P

2¢théoreme de B.

2
9P P +U—+(I)=C(t)
a p 2



Steady, inviscid, incompressible flow

F=0
|
p T 5P v = py
pression pression pression
statique dynamique totale

U f—
P T —

Pitot tube
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Point vortex
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Solid body rotation
U,(r)=2wr

Po

Ug(r)

=
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When the Reynolds number tends to infinity
(inviscid flow), the pressure only serves to
accelerate or decelerate the flow

S

Example: stagnation point flow



Fluid parcel in a stagnation point flow

P (;r_) dvy p(x +dl)dy J
—) —

dy

dl

For Re=o© viscous forces become

negligible



During dt, the particle goes from x to x+dx and
accelerates

u(x.t) w(x+dre,t+dt)

lu
u(r +dr,t+dt) = u(x, t) + ;—ud:r
dax
du
= u(x.t) + —udt
u(x.t) - U



ma =sum of forces

padldy = p(x)dy — p(x + dl)dy

1 du? dp
———dldy = ——dld
)02 dx el d.:l.'lf o

b2
u i p —C (le long d’une ligne de
9 P ‘ courant)



Stagnation point flow

Figure 5: stagnation point flow

Beware, the flow is not going from high
pressures to low pressures. By going from the
low pressure regions to the high pressure
regions, it slows down.



-

Vitesse

Vitesse d’une particule fluide

fluctuation + vitesse moyenne

— —
= Vv + V

340 m/s
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Conservation de I'énergie

1, LENERGIE CHETIOUE

= CONSYaINIE



La pression
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LOi DE BERNOULL: :
Prevrion ot wifone

Daniel Bernoulli (1700-1782)



How can one exert a succion force while blowing?

velocity excess B — ——




LOi DE BERNOULL:
Presrion. et lan

velocity excess
=pressure deficit

+ 4

T




LOi PE BERNOULL: :
Presrion. et lame

+ ¥

velocity excess
=pressure deficit
= [ift

T




Pa

h !
U¢ i
0 P Ur~—
Ur(r)=m :T R
p(r)+EpU,(r)=pa+EpUr(R)
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Pa

h !
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0 P Ur~—
Ur(r)=m :T R
p(r)+EpU,(r)=pa+EpUr(R)
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Potential flow



Irrotational Flow Approximation

Irrotational flow region

Rotational flow region

Irrotational
approximation: vorticity is
negligibly small

w=V xV 0

In general, inviscid
regions are also
irrotational, but there are
situations where inviscid
flow are rotational, e.qg.,
solid body rotation.



Irrotational Flow Approximation
2D Flows

For 2D flows, we can also use the streamfunction
Recall the definition of streamfunction for planar (x-y)

flows o O
U= 8—’1/ V = —%
Since vorticity is zeré; AN !
_ov _ou _
W= oz oy
0? 0%
_/f - _/l'b — 0
Oy Ox?

This proves that the Laplace equation holds for the
streamfunction



Potential flow:
Irrotational, inviscid, homogeneous,
Incompressible flow, conservative forces

- Continuity
divU =0
. Euler
2
@+grad U—+(I) 1 grad p
dt T\ 2 [

o |Irrotational flow

rot U =0



Potential flow

AyY=0
o
dy ox

Boundary conditions
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Potential flow

Ap=0
U=grad ¢

—_ 00

n.grad =0 sur S

Q ~ Uooxl , ‘K‘eoo



Elementary Planar Irrotational Flows
Uniform Stream

In Cartesian coordinates

) A
i B i ) i »i d) — V:E? 'Z/) — Vy
| : | |
! — | -
| == —_— Conversion to cylindrical
| coordinates can be
5 g i : 5 '5 X achieved using the
i > i i i »i transformation
—— : L x = rcosd, 1y = rsinf

¢ = Vrcos, 1= Vrsind




Elementary Planar Irrotational Flows
Line Source/Sink

Potential and

| j streamfunction are
\,» """""" / ) derived by observing that
- T volume flow rate across
any circleis V/L
" H \‘/' h . | .
.y : This gives velocity
1 ] >
'. bl components
\ 1
-\ ! .
\‘ ,,I V/L
\ ,’\ U pm UQ — 0
/\\\ ," " 27TT ’



Elementary Planar Irrotational Flows
Line Source/Sink

Using definition of (U, U))
8¢ 10y V/L

Ur_ar_;(%’_ 27r
_18@5_ 32/)_
UE’_?%__C%_O

These can be integrated

to give g and y

V/L V/L
= "] -
¢ 2T nr 27 G
\ | Equations are for a source/sink

at the origin



Elementary Planar Irrotational Flows
Line Source/Sink

If source/sink Is
moved to (X,y) = (a,b)

gb:Mlnfrl:Mln\/(m—apﬁ—(y—b)2

21 27

zp:MQl = v/Ltan_l (y—b)

2T 2T r—a

=Y




Elementary Planar Irrotational Flows
Line Vortex

i

¥
=¥

Equations are for a point vortex
at the origin

Vortex at the origin. First
look at velocity

components
_9¢_10¥ _
R T

_10¢_ oy _ T

T rd0  or  2mr

These can be integrated
to give gand w

Upg

I
gb—Lé) Y=——Inr

27 2T




Elementary Planar Irrotational Flows
Line Vortex

If vortex Is moved to

X,y) = (a,b
’ P (xy) = (ab)
/ —F _L 1 (y—b
" ¢—%91—2Wtan (a:—a;)
0, . r
T“““—_ RN 45 VN W ?’b:_glml:—glﬂ\/($—a)2+(y—b)2
b 9 i
| N




Elementary Planar Irrotational Flows

Doublet

A doublet is a
combination of a line
sink and source of

A equal magnitude

Source

X V/L _ —1 Y
’(p:?@l 6, = tan (aj—l—a)

Sink




Elementary Planar Irrotational Flows
Doublet

Vi

Adding y; and v,
together, performing
some algebra, and
taking a—0 gives

= _Ksint?
r
b = KCOSQ
r

K is the doublet strength



Examples of Irrotational Flows Formed by
Superposition

Superposition of sink and
vortex : bathtub vortex

V/L r
Qb:QL@ > Inr
2m ) 2m
Sink Vortex
g _ 1oy _V/L
" rd0  27r
g 00 _ T

- Or  2mr



Examples of Irrotational Flows Formed by

Superposition
d ) Flow over a circular

V. 5 onifrm sream cylinder: Free stream
— . NG + doublet
m— (/:6//\\; ’ 3 COS 9
NNy X ¢ =Vrcosl + K
— -
— sin 60

Y =Vrsinf — K

A
’ T

Assume body is =0
(r=a) => K=Va?

¥ szsint?(r—a2/r)




Examples of Irrotational Flows Formed by
Superposition

Velocity field can be found by
differentiating streamfunction

1 0y

P=
e S
1%§ UT:;%:VCOSQ(I—G;Q/TQ)
y* />\ U ——8—¢——Vsin9(1—1—a2/7‘2)
b _x% On the cylinder surface (r=a)
-2 %ﬁ Ur — 0, Ug = —2V sinf

Normal velocity (U,) is zero,
Tangential velocity (Uy) is non-
zero =>slip condition.




