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and course structure

Introduction- Eulerian-Lagrangian

Local momentum balance, stress modeling (Newtonian model),
Navier-Stokes

Dimensional analysis
Stokes equations (creeping flow)

Stokes drag for a sphere, Hele-Shaw cells, flow in pipes of
various cross-sections

Lubrication



Pipe flows

* |In strictly parallel flows, the inertial terms disappear as the
consequence of geometry
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Parallel flows in a a) elliptical duct b) cylindrical duct c)
triangular duct
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Flow in a rectangular duct

7.(0,2)

Figure 23: Flow in a rectangular duct
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Flow in a rectangular duct

* Velocity
4h%A cosh (nm
Ua (Y. 2) = £ Z — |1 - ( 3)) sin (n’/r—
T3l i) cosh (mrﬁ)
* Integrating to find flow rate
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Flow in a rectangular duct

wih > 4 =T find
it =T one finds
n,oddn 96
h3wAp h
~ 1 —0.630— 1|, for h <
@ oL [ w} orns

13% error for square, 0.2% for aspect ratio 2
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Flow in a triangular duct

Flow in a triangular duct

Ve (Y, 2) = o (\/ﬁa — z) (z — \/§y) (z + \/gy) — U—g (\/ga — z) (z2 — 3y2)
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Flow in an elliptical duct

Flow in an elliptical duct

2 2
v (Y, 2) = vo (1 Yy Z_)
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Hydraulic resistance
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Lubrication

How does‘tgpe glue?

Po
v
Py | "h [ P
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Figurel: Duck tape with glue layer on a plane surface,
force F and pulling velocity V

What is the intensity of F that should be
applied to pull at velocity V?
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Stokes equations

ou  Ov
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Dimensional analysis ... and more

Introduce following scales

Variables : x,y,u,v,p

~ A~ A~ A~ A~

Gauges (scales): [,h,U,V,P

x = Ix
y = hy
u=Uu
v=Vv
p=Pp

V, P are unknown at this stage!
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Scaling analysis

Continuity equation

3u+8v_0
or Oy

Dominant balance=
keep terms when possible + throw them away if necessary



Scaling analysis

Continuity equation

ou  Ov Uou V ov
+ =0 =+ ——=
oxr Oy [l O  h Oy

=0

Dominant balance=
keep terms when possible + throw them away if necessary

Uh

= VU
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Scaling analysis

Momentum equation along Ox
0 O? 0?
_p — _u + _u = ()
ox dr? = Oy?

v

P is still free, let us chose it according to dominant balance.



Scaling analysis

Momentum equation along Ox

9 Pu 0%
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P is still free, let us chose it according to dominant balance.
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Scaling analysis
Momentum balance along Oy

9p _
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Scaling analysis
Momentum balance along Oy
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starting from Stokes

0u 00
0% = 0F
op 0
ox 072

Lubrication equations

Hypothesis h<<l|

ou ov_
or Oy
Op *u  0%u\
%bﬁwﬁ—o
Op o*v v\
(o + o) =
Ju  Ov
. L ot 5 =0
Equations de lubrification: dr Oy
- N op _ O
< (without dimensions) I uayg
(with dimensions)—> ? =
Y




Boundary conditions

p(=ly) =po

p(l,y) = po

u(x,0) =v(x,0) =0



* U profile

« findv

Resolution



* U profile

« findv

Resolution

0* 1d
a—;zﬁﬁm, u(z = 0) = u(z, h) = 0
1 dp
ww.y) =5y = h)
o,
oxr Oy
" Ou
v(xz,h) = —fo %dy since
h? d?p
v(z,h) = 124 da?

v(x,0)=0



Resolution

v(x, h)

h3 d2p but

120 da?

therefore

Y0
/ —udy since v(x,0)=0




Resolution

v(x, h)

h? d?p

120 da?

but ( p— V
2
therefore d—p — 12;5),‘/
6uV
U
1 dp
JY) = — — —h
u(z,y) o Yy —h)




Stress on upper plate




Force on plate

[
fy = /l p(x) —poldr ey | p(x) =po - GZ—SV(ﬁ — %)



Force on plate
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Squeezing of an oil film

0 T >

Squeezing of an oil film
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Squeezing of an oil film

* Axisymmetric lubrication equations and boundary conditions

(), =0 ua(r h(t),t) = ‘;_?
: 10 ou,,
—_ r — ()
; r or (rur) + 0z
: 10p 0%,
|  por TV =0 pla(t), z,t) = po
: 19
C1op
: p 0z
I
: ur(r,0,t) = uy(r,0,t) =0
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Squeezing of an oil film

* Integrating the radial momentum equation twice and using BC:

1
ur(r, z,t) = Z%z(z — h)

* Using continuity equation, one finds

1 ("o
h,t) = —— —(ru, )d
=1 [ srru:
R 10 ([ Op
h,t
uz(r hit) = 12p 7 Or ( or )
* Using BCin z=h(t) to find the pressure

12ur0r \ Or/) dt

3 dh
h3 dt

p(r,t) = po + ——(r* — a?)
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Squeezing of an oil film

Recalling

1
wur(r, z,t) = Z%Z(Z — h)

And going back to continuity equation
1190 0 ?
u,(r,z,t) = ———— (T‘—p> / 2(z — h)dz
or ) Jo

With the previous result for pressure, one finds

lg ('9p B 12,u dh
r Or 87“ TR dt

e =2 (2 ()

Since the viscous stress vanishes

= / p(r,t) — pol2mrdr ex =
0

3/21/2022 Chap5: Stokes equations and flows

31



Squeezing of an oil film

Lubrication force

Irp ,dh

= /0 p(r,t) — pol2mrdr ex = — 53 %

Using conservation of volume
ma*(t)h(t) = maghg

h
a*(t) = ag—o

0

3rpagh dh
2h° dt

f =

X
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Squeezing of an oil film

* The lubrication force equals the weight W of the wall squeezing the
film

B 3rpagh? dh _

|44
N

* Integration yields



Squeezing of an oil film

* The lubrication force equals the weight W of the wall squeezing the
film

B 3rpagh? dh _

W
N

* Integration yields

ho
h(t) = 173
| 4 8WhE
3mpag
swh2 1'*
a(t) = ag [1 37T,ua,2 t]
0
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Squeezing of an oil film

How can you transpose this solution to the case of
adhesive tape?

What time is required for the adhesive tape glued on the
ceiling to fall under its own weight?



Almost unidirectional flow

e Hele-Shaw

 Lubrication
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Lubrication flow



Almost unidirectional flow
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Figure 27: Lubrication flow, pressure distribution
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Almost unidirectional flow

* Velocity profile

* Pressure gradient

dp ,dp _12/,LQ B ouU
de de  e(z)d e(z)?

* Integrating, one finds the pressure

)2 e?

p(a:)—po—l—Gng L(l 1] | 6uU L1 1]
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Almost unidirectional flow

* Tangent viscous forces

 Normal pressure forces
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FN—/ (p — po)dr = 52 [1
0

Fn > Frp
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Lubrication

X X+dx

Figure 28: Lubrication flow
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