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A strange potential limit of Stokes equations

i\

Figure 20: Hele-Shaw flow, Peregrine (1982)
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Hele-Shaw flow (flow in Hele-Shaw cell)
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Figure 21: schematic representation of Hele-Shaw flow
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Movie (A. Garcia)
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Hele-Shaw flow

* Non-dimensional variables
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* Non-dimensional continuity equation: dominant balance
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Hele-Shaw flow: Fundamental equations

With a similar dominant balance reasoning along e, and e, , one finds
the fundamental equations of the Hele-Shaw flow

* Continuity equation

du N Jv N Jw 0
or Oy 0z
* Momentum equations
0%u  Op 0°v _ Op dp

_ = — _— = O
 With

ekl , Re-ex1
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Hele-Shaw flow: flow-field velocity and vorticity

* Solving the equations, one finds

1 Op
u(z,y,z) = —ﬂ%z(h — z)

1 dp
v(T,y,2) = —@a—yz(h — 2)

* Vorticity

_ @ o @ —0 Potential flow in the

Wz = Or ay o (x-y) plane!
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Hele-Shaw flow: Flow rate

* |Integrating the velocities, one finds

Q= / fw/zﬂaz(hz)dzdy

= — —z(h — 2)dzdy
/ /w/Q 2” L )
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Towards Navier-Stokes equations

* |In strictly parallel flows, the inertial terms disappear as the
consequence of geometry

(a) 21 (b) A (c) 2t

Y
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Figure 22: Parallel flows in a a) elliptical duct b) cylindrical
duct c) triangular duct
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Flow in a rectangular duct

7.(0,2)
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Figure 23: Flow in a rectangular duct
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Flow in a rectangular duct
* Velocity

7T,UJL

2 h Y
va(y. 2) = 4h=Ap Z —~ [ _ cos (77/7'(3)) ] Sin (n’/r—

n,odd COSh(ﬁMTgﬁ)

* Integrating to find flow rate

2/ dy/hdz V. (Y, 2)
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Flow in a rectangular duct

with > =T finc
it == one finds
n,oddn 96
h3wAp h
~ 1 —-0.630—1|, for h
AT [ w} orhsw

13% error for square, 0.2% for aspect ratio 2
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Flow in a triangular duct

Figure 24: Flow in a triangular duct
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Flow in an elliptical duct

Figure 24: Flow in an elliptical duct
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Hydraulic resistance

8 1
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h BE 1 Figure 25: Hydraulic resistance for
w 7 M various duct configuration
Bruus (2008)

3/28/2018 Chap5: Stokes equations and flows



How does tape glue?
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Po | "h [ Po
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Figurel: Duck tape with glue layer on a plane surface,
force F and pulling velocity V

What is the intensity of F that should be
applied to pull at velocity V?
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Stokes equations
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Dimensional analysis ... and more

Introduce following scales

Variables : x,y,u,v,p

~ A~ A~ A~ A~

Gauges (scales): [,h,U,V,P

x = Ix
y = hy
u=Uu
v=Vv
p=Pp

V, P are unknown at this stage!



Scaling analysis

Continuity equation

ou  Ov Uou V ov
+ =0 =+ ——=
oxr Oy [l O  h Oy

=0

Dominant balance=
keep terms when possible + throw them away if necessary

Uh

= VU
ou  Ov




Scaling analysis

Momentum equation along Ox

9 Pu 0%
= _ (—+—2)=0

or ox? Oy
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P is still free, let us chose it according to dominant balance.
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Scaling analysis
Momentum balance along Oy
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Lubrication equations
Hypothesis h<<l|

ou o _
or Oy
. op J’u  O*u
starting from Stokes 5 Plazt a2 ) = 0
Op o*v v\
(5 ) =0
% %=0 . _— o0
v oy Equations de lubrification: dr ~ Jy
op 0%u _ _ _ Op 0%
07 0p < (without dimensions) 9 ua—yg
— =0 with dimensions)—> £ _
7 ( ) dy




Boundary conditions

u(x,h) =0 ﬁ v(z,h) =V

p(=ly) =po

dp

9p _
oy

ou o0
or Oy

0w

0

0

o "oy?

p(l,y) = po

u(x,0) =v(x,0) =0



Resolution

* U profile
0? 1d
a—;zﬁﬁm, u(z = 0) = u(z, h) = 0
1 dp
u(z,y) ﬂ@y(y — h)
e findv
o
oxr Oy
(x, h) fh 6ud car v(x,0)=0
VT — - P ’ —
, W
h? d?p
v(z,h) = 124 da?




Resolution

( h) B3 d2p but (
vz, =
124 da therefore dz—p
ouV
p(r) = po — %(12 — z?%)
Yy
/ %dy car v(x,0)=0
o) =V (§) [3-2(})]
h h
dv
Note that n=7~0
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Stress on upper plate




Force on plate
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Squeezing of an oil film

0 T >

Figure 29: Squeezing of an oil film
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Squeezing of an oil film

* Axisymmetric lubrication equations and boundary conditions

(b)) =0 uu(rh(t),t) = %

: 10 ou,

- For i) s =0

: 1 Op 0% u,

E  por TV =0 pla(t), z,t) = po
i Lop

: p0:

ur(r,0,t) = u,(r,0,t) =0
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Squeezing of an oil film

* Integrating the radial momentum equation twice and using BC:

1
ur(r, z,t) = Z%z(z — h)

* Using continuity equation, one finds

1 ("o
h,t) = _;/0 E(?"’UJT)dZ
R 10 ([ Op
uz(r hit) = 12ur8r(8)
* Using BCin z=h(t) to find the pressure
12ur0r \ Or/) dt

3 dh
h3 dt
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Squeezing of an oil film

Recalling

1
wur(r, z,t) = Z%Z(Z — h)

And going back to continuity equation
1190 0 ?
u,(r,z,t) = ———— (T‘—p> / 2(z — h)dz
or ) Jo

With the previous result for pressure, one finds

lg ('9p B 12,u dh
r Or 87“ TR dt

e =2 (2 ()

Since the viscous stress vanishes

f = / p(r,t) — pol2mrdr ex =
0
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Squeezing of an oil film

Lubrication force

Irp ,dh

= /0 p(r,t) — pol2mrdr ex = — 53 %

Using conservation of volume
ma*(t)h(t) = maghg

h
a*(t) = ag—o

h(t)

3rpaghd dh
2h° dt

f =

X
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Squeezing of an oil film

* The lubrication force equals the weight W of the wall squeezing the
film

~ 3mpag 2h2 dh

=W
N

* Integration yields

1 1 SWit

h* ki 3wupaths

h
h(t) = - 1/4
{1+ 8W h2 } /
37rua0
sWh2 1V/8
t) = 1 0 ¢
alt) aol " 3mpag ]
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Squeezing of an oil film

How can you transpose this solution to the case of
adhesive tape?

What time is required for the adhesive tape glued on the
ceiling to fall under its own weight?



Almost unidirectional flow

e Hele-Shaw

 Lubrication
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Figure 26: Lubrication flow



Almost unidirectional flow

(a)
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Figure 27: Lubrication flow, pressure distribution
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Almost unidirectional flow

* Velocity profile

* Pressure gradient

dp ,dp _12/,LQ B ouU
de de  e(z)d e(z)?

* Integrating, one finds the pressure

)2 e?

p(a:)—po—l—Gng L(l 1] | 6uU L1 1]
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Almost unidirectional flow

* Tangent viscous forces

 Normal pressure forces
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Lubrication

X X+dx

Figure 28: Lubrication flow
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