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Inviscid flow theory does not provide a good prediction
of the drag on a flat plate

D’Alembert’s paradox



3

Singular limit as 
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Inviscid flow theory does not provide a good prediction
of the drag on a flat plate

D’Alembert’s paradox
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Obviously, a moving body experiments a drag force in
real life.

In order to resolve this paradox, we need to account
for the viscous friction, even at high Re, that should
not be neglected in a boundary layer located close to
the obstacle. Inviscid flow theory can still be applied
far from the obstacle

D’Alembert’s paradox
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Viscous friction

Inviscid flow: the
fluid slips on the wall

Real flow: the 
viscous friction 
decelerates the 
fluid close to the 
wall (no slip)

x (tangential)

y (normal)

Ux(y)Ux(y)

Boundary layer

Invisicd flow OK
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The boundary layer 

The boundary layer is a region where the velocity
(streamwise and normal) is reduced due to no slip
condition and friction.

It is a region where the streamwise velocity
component is much larger than the normal

It is a region of large shear, where the normal
gradient of the streamwise velocity is large.

is not negligible even ify

U x





yx UU 

1xU
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Boundary layer

Outer region

Inner region



Fundamental question:

What is the thickness of the boundary layer?
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Have a look at a similar experiment : an impulsively 

started plate (1st Stokes problem)
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With a space-time analogy, dimensional analysis 

suggests to replace t by x/U in δ

δ(t) ~ (νt)1/2

 δ(x) ~(νx/U)1/2

δ(x)/x ~ Rex
-1/2
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The method of matched asymptotic expansion
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We look for a streamwise independent solution

Continuity ensures that V=V0

U(0)=U(a)=0
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Weak aspiration strong aspiration
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Nondimensionalization

Reynolds

ν
2
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Light blowing/suction, Re<<1  ε=Re

U=u0+εu1

u0=
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Validation
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Large blowing/suction, Re>>1  ε=1/Re

Contradiction in y=0!

Singular perturbation!
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Large blowing/suction, Re>>1  ε=1/Re

Rescaling close to y=0

Dominant balance
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Matching
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Composite expansion
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0

Matching condition

DI        = Dext
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2D Flow
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Scales
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Dominant balance
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Dominant balance
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Dominant balance
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Dominant balance
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Dominant balance
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Dominant balance

Leading order terms
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Scales

Small parameter
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Outer approximation

Inviscid fluid
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Inner approximation

Boundary layer equations
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Matching condition
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Boundary layer equations
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Boundary layer equations

in streamfunction formulation
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Boundary layer on a semi-infinite plate
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Self-similar solution?
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Self-similar solution
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Boundary layer on a semi-infinite plate

Blasius solution
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Velocity profiles in BL
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How to characterize or define the boundary
layer thickness?

Boundary layer thickness

Ux(x,y)

Boundary layer

?

x

Ue(x)

Far field velocity field
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Thickness such that

d0.99 thickness

)(99.0),( 99.0 xUxU ex =d

Ux(x,y)

Boundary layer

x

Ue(x)

)(99.0 xy d=
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Thickness d0.99

Ue(x)

)(99.0 xy d=

x

→The boundary layer thickness is local!
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Thickness defined such that

Displacement thickness d*
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Flow rate

Physical meaning d*

Ux(x,y)

Boundary layer

x

Ue(x)
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Defined as

Momentum thickness Q

dy
xU

yxU
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yxU
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Physical meaning of Q

Ux(x,y)

Boundary layer

x

Ue(x)

)(xy Q=

It is the thickness by which the wall should be
increased to yield the same momentum for a
inviscid flow.
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Epaisseurs de couche limite

épaisseur à 99%

épaisseur de déplacement

épaisseur de quantité de mouvement θ

~ 5 δ

~ 1.73 δ

~.66 δ
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Profils de couche limite

δ*θ δ0.99
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A priori both drag and lift can be caused by viscous
friction


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Viscous friction
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x

y n

Note however in the boundary layeryx UU 
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Viscous friction
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At leading order, only shear stress

Viscous friction
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Flat plate of length L

Wall friction shear coefficient

dimensional :

nondimensional :

x

y n

0 L

Linear density of friction coefficient
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Flat plate of length L
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Plaque de longueur L
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Drag of a plate
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Drag of a plate

3

 LUWFD 

Plate of length L, width W


