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D'Alembert’s paradox

Inviscid flow theory does not provide a good prediction
of the draa on a flat blate
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Singular limit as Re >




D'Alembert’s paradox

Inviscid flow theory does not provide a good prediction
of the drag on a flat plate
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D'Alembert’s paradox

Obviously, a moving body experiments a drag force in
real life.

In order to resolve this paradox, we need to account
for the viscous friction, even at high Re, that should
not be neglected in a boundary layer located close to
the obstacle. Inviscid flow theory can still be applied
far from the obstacle



Viscous friction

y (normal)

X (tangential)

Invisicd flow OK

Boundary layer

L Ui(y) 1 Ui(y)

Real flow: the Inviscid flow: the

viscous friction fluid slips on the wall
decelerates the

fluid close to the
wall (no slip)



Ecoulement le long d’une plaque plane
Re, =104

Werlé (1974)



The boundary layer

The boundary layer is a region where the velocity
(streamwise and normal) is reduced due to no slip
condition and friction.

It is a region where the streamwise velocity
component is much larger than the normal U, >>U,

It is a region of large shear, where the normal
gradient of the streamwise velocity is large.

oU,
oy s not negligible even if U, <<1



Boundary layer




Fundamental question:
What is the thickness of the boundary layer?



Have a look at a similar experiment . an impulsively
started plate (15t Stokes problem)
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With a space-time analogy, dimensional analysis
suggests to replace t by x/U in 0
O(t) ~ (vt)12
= O(x) ~(vx/U)2

O(x)/x ~ Re, /2



The method of matched asymptotic expansion

Escher
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A 2D channel flow from left to right due to an imposed pressure gradient
with suction at the lower wall and blowing at the upper.



We look for a streamwise independent solution
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Weak aspiration strong aspiration



Nondimensionalization

y = ay u = Uyt
oU 5 02U
= (voa/v) 5= = ka®/ (pTo) +
Uy = ka/p/v
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Light blowing/suction, Re<<1l &=Re
U'+cU' +1=0, and U0)=U(1)=0

U= u0+au1

) +1/2 —g=0and @;(0) =1u(1) =0
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Large blowing/suction, Re>>1 e=1/Re

cU" +U' +1=0; with U(0) =

U=1-7

7(0) = 1,

Contradiction in y=0!

Singular perturbation!



Large blowing/suction, Re>>1 e=1/Re

U+ U +1=0; with U(0) =U(1) = 0.

Rescaling close to y=0 Uy = ka / /—3'/ Vo

U =U and § = §7, with § << 1
1 d*U  1dU

ce—m—m+—=——"-4+1=0
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Matching

lzm U(g) = lim U(g)
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{?(o) — 1 U (c0) = A
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Composite expansion

Ucomposite = U (Y) + U(y/e) — U(0)

Ucomposz’te =1 g T (1 - 6—@/8) — 1



gcomposite =1- g + (1 - e_g/s) —1
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Matching condition
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2D Flow
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Scales
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Dominant balance
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Dominant balance
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Dominant balance

=0
9% 8 U] a7
iia—lfﬁ'— i{)&l:t _0')—}3
X U ij pe

+m ((9255 +(§2 925
e/

95" Lz&iz)

V _o0v v 2L~(9@ Lo
U V) Lgdv
U, dx \U

0O dy T e o~

e0]

1 L2 V (92{) (32 &2/0
+ i 0,800
Re s’ U_\d5° I* %



Dominant balance
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Dominant balance




Dominant balance
Leading order terms
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Scales
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Small parameter
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Outer approximation
Inviscid fluid

y=yL=0(L)

y u(y)
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Inner approximation
Boundary layer equations

y=30=0(0)

y | uy)




Matching condition
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Boundary layer equations

Ue(X)

=

\”(X,Y) (?x (?y
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u=_ldpe J°u

o dx  dy’

px,y)=p,(x)

u(x,0)=v(x,0)=0

u(x,) =u,(x)
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Boundary layer equations
In streamfunction formulation

(azp 0y a)azp= 1 dp, oy
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Boundary layer on a semi-infinite plate
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Self-similar solution?
Yy=AYy' x=Bx'" y=Cy
v=Dy U =EU,
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Self-similar solution
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Boundary layer on a semi-infinite plate
Blasius solution
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Velocity profiles in BL
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Wortmann (1982)



Boundary layer thickness

Far field velocity field

Ue(x)

Boundary layer

How to characterize or define the boundary
layer thickness?



00,99

thickness

Ue(x)

Boundary layer

Thickness such that

U X (X1 50.99) — 099Ue (X)



Thickness 4 g9

Ue(x)

Pt

—The boundary layer thickness is locall



Displacement thickness &*

Ue(x)

Boundary layer

" I U, (X,
Thickness defined such that 5 (X)= | (1— < y)jdy
0

y:



Physical meaning &*

Ue(x) Ue(x)

Boundary layer

Flow rate Q = [U, (x, y)dy Q= [U.(dy=0Q

y=0 y=5" (x)

o1



Momentum thickness ©

Ue(x)

Boundary layer

Defined as ®(x) = Ojo UG()((;(;’) (1—UG()((;(;/)jdy

y=0



Physical meaning of ©

Ue(x)

Boundary layer

It is the thickness by which the wall should be
increased to yield the same momentum for a
inviscid flow.



Epaisseurs de couche limite
épaisseur a99%  u|r,dp99(r) =0,99U, ~58

"XJ
épaisseur de déplacement 0%(r) = / (I —u(r,y)/Ue)dy ~1.738
Jo

—
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Profils de couche limite
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Viscous friction
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A priori both drag and lift can be caused by viscous
friction




Viscous friction
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Note however U, >>U,  in the boundary layer




Viscous friction
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At leading order, only shear stress

Q




Wall friction shear coefficient

—

Flat plate of length L y n
‘ : X ‘
0 L
Linear density of friction coefficient

dimensional : Fy =[z,(X)dx = |z a;yx (X)X N/m | (2D)
0
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I:X
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nondimensional :C, =



Wall friction shear coefficient

—

Flat plate of length L y n

i

0 L
Linear density of friction coefficient

U,
dimensional :  Z»(X) _”E(X) — N/m?

7 (X 0.664

nondimensional | Cf (X) = p( ) = 177
E,U U 2 Re «

2 0 0




Wall friction shear coefficient Cf

—

Plaque de longueur L y n

i

0 L
Densité de contrainte pariétale (i.e. qui s'exerce a la paroi)

. dU,
Dimensionné : Tp(x)_'“W(X) — N/m?

7,(X) U 1

Cf (x) = 2zﬂ5wl
“o U =
Ly 1

Adimensionné : =
HX 1,0 U 2

p, U, 2

e, 1
X 1 U 2

2pOO o0




Drag coefficient Cx

—

Plague de longueur L y n
‘ : X ‘
0 L
Force de trainée s'exergant sur la paroi

[ £ U,

Dimensionné : Fx ijp(x)dx=fﬂ
0 0

(A _, N/m | (2D)

. o, F LU’ )
Adimensionné : C, = 7 X~ \/1'0 a z\/ G‘ - ~ Re /2
SeUSL Cp UL
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Drag of a plate
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Drag of a plate
Plate of length L, width W J J
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