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1. Equations

A(I)l — 0
Potential flow
Aq)z — O
0P, 0P,
U = — Vi=—
YT o "T0s Velocity field
0D, 0D,
Uy = —= V, = —=
T ox T 0z




1. Boundary conditions

(1)1:08132:—00
Gy =0at 2 =+00

at z =mn7

far-field



1. Kinematic boundary condition

n(x,t)

Kinematic condition : impermeability (no penetration)
No fluid particles going across the interface through the normal direction

V= dn/ot cos(a)



1. Kinematic boundary condition
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V, .~ Uu\
u n(x,t)
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Kinematic condition : impermeability (no penetration)
No fluid particles going across the interface through the normal direction

V= dn/ot cos(a)

u,,= Vv, cos(a)+



1. Kinematic boundary condition

> <
\)<

u n(x,t)

Kinematic condition : impermeability (no penetration)
No fluid particles going across the interface through the normal direction

V= dn/ot cos(a)

} on/ot=v.- u, tan(a) = |dn/ot=v. - u,on/ox
u,,= Vv, cos(a)- u, sin(a)



1. Kinematic boundary conditions

(1)1:08132:—00

far-field
Gy =0at 2 =+00
0 0
Uy =V ==
0 0
Uy — Vo =



1. Dynamic boundary conditions

0
P - P = B at z =
1 2 = 7 9 al < =1J
On )3/2
O
n:(_aa:nal)
1+ 02

C=V.n




1. More equations

0d,  UP+VP P

Y | ) | o - (<
9, UZ+VZ D

| | - 02
@t 2 P2

2"d Bernouilli relations



2. Base state



3. Perturb and linearize
perturbation expansion

D, =( Hed,
D, = Hes
Uy = Hewuy
Vi = Hevy |
U = Hewus et
Vo =0 Hevs
Py |=—pgz Hem
Py |= —pagz Hepo
i = Heo

Variables Base state Small perturbation



3. Linearized equations

Agbl — O
perturbed potential flow
Ay = 0
Uy = % U1 = %
or 0z
Uy — % Uy — %
or 0z




3. Perturbed kinematic boundary conditions

0 =0at z=—-

Py =0at z =+
) 30 Uy t
—€c U €V — €— dl £ = €0
B TN T G
) 80 do t
—€c U €Uy — €— dl £ = €0
T




3. Perturbed kinematic boundary conditions

0 =0at z=—-
Py =0at z =+

o do

— € UUN— F+ vy =€e— at z = €0
o
0 U+fU aaatz
—€“UWY— + €1y = €— = €0
T ot

o t
V1 = — al 2 = €0
T o

Jo t
Vo = — al 2 = €0
Y




3. Flattened kinematic boundary conditions

L —
: Ot
Taylor expansion aound 0: ~ (€07) = (0) (60)% O

=transforms a b.c. at an unkwown interface into a fixed place!



3. Perturbed dynamic boundary conditions

0*0 do
(P1—|_€p1_P2_€p2)‘EO': _,}/Eamg (13/26 ((923) )

Replace P,=-gp,z, ... ﬂ and linearize
0%c
a(p2 — pr)o + (1= p2)|., = —7@

flatten ﬂ
0o

(Pz - /01)90 T (p1 - p2)|0 — 7&52




3. Perturbed and linearized Bernoulilli

Perturbed 2" Bernouilli relations

oo P1
4 =0
8t+p1

0

92 P2 _



4. Normal mode expansion

Fourier transform in x and t

o1 = fiz)expli(kr —wt)),
o2 = falz)expli(kr — wt)),
o = Cexp(i(kr — wt)),

k is the wavenumber and w the frequency (in rad

A =2n/k T =2r/w
f=w/(2n)




4. Normal mode expansion

Solution to Laplace equation:



4. Normal mode expansion

Solution to Laplace equation:

¢ = (aexp(kz) + fexp(—kz))exp(i(kx — wt))

1

¢ = (aexp(kz) + Pexp(—kz))exp(i(kx — wt))



4. Normal mode expansion

Solution to Laplace equation:

01
02

Aexp(kz)exp(i(kz — wt)).
Bexp(—Fkz)exp(i(kx — wt)).
Cexp(i(kx — wt)).




4. Normal mode expansion

Replace in boundary conditions

9(/02 — /01)0 +iwp A —iwp B = ”kaC
kA = —iwC
—kB = —w(C

This is an eigenvalue problem iwX=MX!

kg(ps — p1)C +w’piC + w’psC = 7k°C



5. Dispersion relation

o _ Zhglps = pr) + o
P11 P2

*Unstable if there exists one w, Im(w)>0 102 > )01

-Neutral if for all w, Im(w)=0: p1 > P2

«Stable (or damped) if for all w, Im(w)<O0:

The flow considered is not damped, we have neglected
dissipation by neglecting viscosity
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Instablility analysis:

Equations and boundary conditions
Base state

Linearized equations

Normal mode expansion
Dispersion relation

Analysis of the dispersion relation



Dispersion relation

o _ Zhglpr = p) £0K

P11 P2




Dispersion relation

2 o _ Zkglpr—p1) + 9K
P17+ Pe

]{33
w* = tanh(kH) (’)/ | gk:)
p




Dispersion relation

]{53
w* = tanh(kH) (7/0 | gk)

Capillary wavenumber: kc = pg/’)/

Length scale: ]% = k//@c

Time scale W= W/\/ gkc

One single non-dimensional parameter f{ — ch
o* = tanh(kH) (k?’ - k)




Dispersion relation

o* = tanh(kH) (7%3 + i%)

~ A

gravity k<1 capillary k> 1
shallow water
P 1/0 +h +k*V H
Deep water
> 1/H +VE +iVE




Difference between group velocity v and
phase velocity c




Dispersion relation

gravity L« 1

capillary Fs 1

shallow water
k< 1/H

':"-:Shafiowfgrarity ~ ik\/ﬁ

Cshallow/gravity ™ + Q'H

Ushallow /gravity ™ + QH

L _ .2 . !
Wshallow /capillary ™ +h \V '."'Hf P
/ /
Cshallow [capillary ™ j:,l. ’:Hf &
Ushallow [capillary ™ 2k V ’.:foﬂ'f’}

Deep water

k> 1/H

Wdeep/gravity ™ = ."-rﬂz'-'

4
Cdeep/gravity ™ :l:\/;
[

Ude ep;"gf'afuit Y i~ :|: 3 ) }7.._

o

E | ..3;2 N .."

Wdeep/capillary ™ +/ m
12 /-

(.'{fﬂfff_};f’.cap-iﬁﬂaf.y ™ :tl. ! m

[ .l’fg -
Udeep/ capillary ™ j:?)f 2k Vo x‘fi'r}




Dispersion relation

grgvity waves capillary waves

k.=10; h=1

3.5

shallow water
deep water

c~(gh)2

3

2.5

1.5

1 | | | | I | |
0 5 10 15 20 25 30 35 40

Capillary wavenumber k., wavenumber k



Trajectories below the waves

profondeur infinie | faible profondeur



Stokes drift!

wave phase (t1/T= 0.000




Why are the waves parallel to the shore?

c~(gh)*?
A~T(gh)Y2

T=10s; w=0.62

150 |
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Refraction and diffraction of waves

e b "\7 = ,,....,--:; e
! ' i -

vy
Pointeur 25°43'16.44" S 14°50'52:23" E élév. 3 m

Satellite view Namibian coast




Nonlinear waves, wavebreaking

t3

t2

t1

The celerity increases with the depth



Dispersion relation

grgvity waves capillary waves

k.=10; h=1

3.5

c~(gh)™2

3

shallow water
deep water

2.5

1.5

1 | | | | I | |
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Capillary wavenumber k., wavenumber k



Conditions for wave pattern formation?




Dispersion relation

grgvity waves capillary waves

deep water

1 | | | | I | |
0 5 10 15 20 25 30 35 40

Capillary wavenumber k., wavenumber k




Diagramme spatio-temporel

1 4 1 __]

l)X



Diagramme spatio-temporel
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Diagramme spatio-temporel
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Spectral analysis

1 +00 .
Fourier transform: | u(,t) = i/ u(k) =D gL 4 ¢ 0
0

Al

U(/f) IS given by Fourier transform at time t=0

Carrier/enveloppe : U(ZL’, t) = EA(SIJ, t) ei(kom—wot) + C.C.

Enveloppe : Az, t) = / u(k) gl (k—ko)e—ilw=wo)t i
0




Spectral analysis

Gaussian spectrum: r&(k) = Uy e_UQ (k_kO)Q

Alz,0) = UO\/_ 40?2

Initial enveloppe : e 40



Gaussian spectrum

I (a) .
(:C
RS- -
spectrum
O | | | | | | |
0 0.2 04 0.6 0.8 | 1.2 1.4 1.6 1.8 2
k/k
0
[ [
02 (b .
02 - .
| | | | | | | | |
-50 40 30 20 10 0 10 20 30 40 50



Paquets d'ondes gaussiens

1 —_—
=04
=05 /\ \—\_‘{
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i 1 0 i
-2 0 -20 0 20
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~
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4] 0
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Waves and spectrum

Monochromatic wave 03
S0
2 cos(kox) A | | _0; | O(k1 + ko) + (k1 = ko)
-2 0 2 20
1 Beating .
cos((ko — )] + cos{(ko + #)2] — o O(ky + ko + &) + d(k1 = ko — )
3 o X oos
5
=2 cos(kox) cos(k z) ap | ‘ _002 M +0(ky + ko = &) + 0(ky = ko + k)
-2 0 2
ko 1 Sinus cardinal ot
fkﬁojr: cos(ky ) dky _ UMW\/W\/\,W 5;; l‘| l‘| =1 pour [ky £ ko| <k
>
=4k cos(ky ) S”fzx) i 6 : : = () sinon
2 Gaussign paquet 12
2 kv/2m cos(ko ) exp (— "'2;2) | 50'04 exp |- Lt 1+ O) 1 +exp[ (]”12 :20) ]
R = /\ /\
-1 . ‘ o

-2 0 2
X



Spectral analysis

Az, t) = / (k) ek —Ro)a=ilw=wo)t g
0




Spectral analysis

Az, 1) = / fi(k) ek —Ro)a=ilw=wo)t g .
0

Definition of group velocity W — Wy = Cg(k — /{0), Cqg — —(]f())

ok



Spectral analysis

Az, t) = / i) ! RoJrilwmwoll
0

u(k) = ug e~ (h=ho)




Spectral analysis

Gaussian spectrum: r&(k) = Uy e_UQ (k_kO)Q

Alz,0) = UO\/_ 40?2

Initial enveloppe : e 40



Spectral analysis

Az, 1) = / fi(k) ek —Ro)a=ilw=wo)t g .
0

Definition of group velocity W — Wy = cg(k — /{O)7 Cg p—

u(k) = ug o0 (k=ko)”

(z—c t)2
Az, t) = “’%‘fe




Group velocity
I*"°‘|

W
f :

Wave packet

58



Higher order
development

Spectral analysis




Wave packet dispersion

0.2
@ t=0
I 0
02 | | | |
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k x
0
0.2
(b) t>0

u/u
0
o

0.2 | | | \
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k x
0

Onde correspondant @ Uenveloppe ~ pour o thky = 0,1 et wf =
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Dispersion relation

grgvity waves capillary waves

deep water

1
"\
\\-..--“‘, I
| | | | L | |

"o \-é/ 10 15 20 25 30 35 40
apillary wavenumber k., wavenumber k




Dispersion

o~ @ © ~ o~ - @ © < o~ o



Dispersion

Waves with k reach r at tlme t=r/v(K)
For deep gravity waves: vic/gaity ~ ig\/%

k=gt?/4r?
SINCE Waeep/gravity ~ £/ gk
w=gt/2r

63

=The frequency increases with time



“Ronds dans I'eau”

Gravity ©
waves

stone>|, water drop<I,

Capillary
waves

B vitesse de groupe

vitesse de phase

0,2

0,1

o] 0,5 1 1,5 2 2,5 3 3,5



Waves created by an obstacle in a river

stick

’,v air

NN NP 2NN
Piam

0,5 |

0,2

0,1

riviere
super-critical  sub-critical
(torrential) (fluvial)
0s | \ vitesse de groupe
I .
U E l vitesse de phase
| I
' I
I
| I
' I
I | k/k
I I ¢
0 OI,5 1 1,5 2 .225 3 3,5




Kelvin wakes




Dispersion relation

grgvity waves capillary waves

deep water

1
"\
\\-..--“‘, I
| | | | L | |

"o \-é/ 10 15 20 25 30 35 40
apillary wavenumber k., wavenumber k




Kelvin wake

68



Waves created by a ship




Waves created by a ship

—————
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Waves created by a ship
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Waves created by a ship
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Waves created by a ship

(Y




Waves created by a ship

sin(a)/OG=cos(8)/AG
sin(8-a)AG=GC=0G

—————

=sin(a)=cos(0)sin(0-a)
=sin(a)=cos(0)(sin(8)cos(a)+cos(B)sin(a))

=>tan(a)=cos(0)sin(0)/(1+cos?(8))



Waves created by a ship

0.4

a=19° ;.-

tan(a) °*

0251

0.2

0151

01F

0.05r-

0° 30° 8=54° @

90°



Waves created by a ship

76



Waves created by a ship




Careful google-earth data analysis by Moisy and Rabaud (2013)

40 I I 1 I

- Model (3)

N ===Asympt. (4)
. ® Images
0 Simul.

9
S

S

o0
|

Wake angle o (deg.)
=S
|

=
1

NN
1

1 | | 1

1
0.2 04 06 1 2 3

o
——

Hull Froude number. Fr



Careful google-earth data analysis by Moisy and Rabaud (2013)

79



Froude number

Fr = v c. celerity of wave
C
F U . .
r=—— :
7 d: size of ship
Fr = shallow water

g s



Froude decomposition

C;(F,Re) = Cp(Re)+Cy,(F,Re)

Total drag Dragin Wave drag
absence of
free surface



Froude hypothesis

C,(F,Re) = CD(Re)+CW(F,><)

Total drag Dragin Wave drag
absence of
free surface



Alternative expression

C;(F,Re) = Cr(Re)+Cp(F,Re)

Total drag Friction Pressure
drag drag

Cp(F,Re) = Cy(F)
Pressure Wave drag
drag (Residual
drag)



Friction resistance and residual resistance

tofal resistance

0.22xN)

hull speed=125VIWL—}

wv

—

—_ 3 A

v

c

L

Z j8

c

LV .

- 72 +

v :

=3 +—residual

S resistance

[

21t 2
/

.{_’% ){//

g //? iR

= e e Lsurface friction

P resistance
| | JEE=

0 s ) s ' !
15 20 25 30 35 40 45
speed in ms™ (kis =ms?x2)
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2.11
Total drag coefficients of the Lucy Ashton and several geosim models of the same vessel (from Troost and Zakay 1951). The
faired curves represent constant values of the Froude number and, if Froude’s hypothesis were strictly valid, these would be

parallel with spacing independent of the Reynolds number. Note that, even for this small full-scale vessel (58 m long), there is a
large gap between the largest model results and the full-scale results.
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Standing waves

n = Acos(kx — wt) + A cos(kx + wt)
= 2A4 cos kx cos wt,



Reflected waves

6.7

Particle trajectories in a plane progressive wave (a), a partial reflected wave
(b), and a standing wave (c). These correspond respectively to a reflection
coefficient of 0, 0.38, and 1.0 in equation (56). Note that the reflection coef-
ficient can be measured from the maximum and minimum of the envelope,
using (56). These photographs are based on time exposures, and are repro-
duced from a more extensive series of observations made by Ruellan and
Wallet (1950).



Reflected waves

) = ARe[e—-x'kx-{-iwt 4 Rez'kx+:'wt]
R: complex reflection coefficient

y = ARe[e—z'kx+:'wt(1 + - Rer'kx)]



Wave energy

KE+PE—p_"”< V2+gy)d~//

7 7
E= Pj( V2+gy>dy ——psVzdy+—%-pg(772 —><Z)
—h —h

Neglect potential energy of fluid at rest



Wave energy

KE+PE_pj”< 2+ gy)d
E= pf( V2+gy>dy=—-psV dy+:12pg(77 ><2)

Neglect potential energy of fluid at rest

ow?A>?

!
ok Ty e




Wave energy

KE+PE_pj'”< V2+gy> v

Neglect potential energy of fluid at rest

2 42 1

E = }pgA% + 1pgA?cosi(kx — wt)

E_




Wave energy

KE+PE_p_"”< V2+gy) v

7 7

Neglect potential energy of fluid at rest

E = }pgA? + LpgA?cosi(kx — wt)

On average: E = %‘ogAZ



Wave energy flux

One can show that the energy travels at the group velocity...



Energy balance (in ship’s frame)

21rU2

_/\!‘/\.f_/xb
| |

pgial o |

dE
dt

1143

il
4

Energy input : -work of drag=-D.U
Energy output: (Vg-U)E



Energy balance (in ship’s frame)

21rU2

./\!‘/\.f_/xb
| |

pgial o |

dE
dt

1143

il
4

Energy input : -work of drag=-D.U
Energy output: (Vg-U)E
Deep water: Vg=U/2
D=E/2

D = }pgA?



Wave production from bow

displacement 7 = g cos(kx + ¢)

dispersion

. = 2
relation k= g/U

wave amplitude @

wave energy % pga?






Wavelength selection as a function of velocity
Which of these two ships has the highest velocity?

small wavelength

ot

~

L small amplitude

BN

¢

PRI e /




Superimpose wave of opposite amplitude
from stern located at a distance |

displacement

y = acos (kx + €) — acos (kx + ¢ + ki)

dispersion k = g/U?
relation

wave amplitude A = a|l — e*|= 2a|sin(3k0)|

wave energy D = pga? sin®(}kl)



Superimpose wave of opposite amplitude
from stern located at a distance |

D = pga® sin?(% ki)




The missing ingredient is now to determine
the wave amplitude!

Combination of theoretical and empirical
results.



Generalisation to 3D

dE

3 = :12 pg_‘-Az(Vgcosﬁ — U) dz.

n/2
D = 57U [ | 40) 2 cos*0 db.

—m/2

Less Interference
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== Fr>~0.33

r =~ 0.56
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Michell’s theory

2002
T2Frd

k3/2 tanh(kh)
V k — ko tanh(kh)

Ruw(f,h) =

+00
/ T (kT )
kn

‘
r(k,Fr. h) / dz 2 f(x, 2) COSh[k(Z+ h)}em\/koktanh(kh) da .
¢ cosh(kh)

kn, = kotanh(kph)
ko = g/U?



0.1

0.08

0.06

Cw

0.04

0.02

Figure 1.14: Wave drag coefficient Cy as a function of the Froude number Fr predicted
by Michell’s model for increasing water depth v = h/¢ (for a = 6.7, § = 2.3 and f =
1/2exp(—1622)). The black curve corresponds to the infinite depth case.

J.-P. Boucher PhD thesis



0.1

Gaussian hull (num.)
0.08 X Parabolic hull (num.)
——— Tuck (1987)
0.06 | \ »  Chapman (1972)
Cw
0.04 -
0.02
0
0

Figure 3.4: Wave-drag coefficient CY, as function of the Froude number Fr for a gaussian hull
and a parabolic hull for o = 6.7 and 3 = 2.3. These results are compared to the theoretical
curve from [32] and experimental data points from [31] (black crosses).
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e 4@/— (:
U

Figure 4.2: Pictures of (a) a sprint canoe, (b) a sprint kayak, and (c¢) a single scull rowing
boat. The three boats are moving from right to left. Pictures have been rescaled (see
Table 2.1 for the characteristics of rowing boats and Table 5.1 for the characteristics of
sprint canoes and sprint kayaks).




—-0.5 —0.25 0 0.25 0.5

Figure 4.5: (a) Profile afj = +f(&) for five different sets of the parameters (a, b, a, 3) in
Eq. (4.3), with increasing asymmetry. (b) Picture of the five 3d-printed model hulls defined
by the functions f; to f5. They are 18 cm-long, 3 cm-wide and 5 cm-high.



0.1

o -e- Hull 1
A .
0.08 - o - |-e- Hull 2
o ] IR N Y :
2, g \ Hull 3
0.06 (r, ~ & P W -e- Hull 4
v N rg M \
C ‘ K ;I"fh e . -~ Hull 5
004 W ' o \. N 'k
S w0 g
0.02 =¥ o, " -8
0 | \'l/
—1.5 —1 —0.5 0 0.5 1 1.5
sign(e) Fr

Figure 4.8: Total drag coefficient as a function of the signed Froude number sign(e) Fr for
the five hulls for d/D = 0.75. The use of the parameter sign(e) Fr allows us to compare a
given hull moving with the rounded part first (¢ > 0, right part of the plot) or with the
pointed part first (e < 0, left part of the plot) (see Fig. 4.4).



—0.01

Figure 4.15: Dimensionless wave elevation & obtained numerically for hulls 1, 3 and 5 (for
Fr = 0.3 and d/D = 0.5). For each subplot, the upper half corresponds to the hull moving
with the rounded part first (¢ > 0), while the lower half corresponds to the hull moving with
the pointed part first (e < 0).



his picture Is in reality complicated by
the floating position of the ship

(a) W
8 L



Which opens the field of dynamical reaction
of ships to waves....

8 i kg

-

2.16

Heave response of a slender spar buoy in regular waves, from Adee and Bai
(1970). The ordinate is the ratio of heave amplitude to wave amplitude, and
the buoy is a circular cylinder, with a conical bottom, as shown to scale in the
sketch. The dashed line is a theoretical prediction that neglects the hydro-
dynamic forces due to the motions of the body. The solid line includes a cor-
rection for the added mass. The circles denote experimental measurements.



