Hydrodynamics 14
Waves
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Conditions for wave pattern formation?
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Diagramme spatio-temporel
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Diagramme spatio-temporel
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Fourier transform:

Carrier/enveloppe :

Enveloppe :

Spectral analysis
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Spectral analysis

Gaussian spectrum: ﬁ/(k) = Uy 6_02 (k_ko)Q

Alx,0) = UO\/_ 40?2

Initial enveloppe : e 40



Gaussian spectrum
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Waves and spectrum

Monochromatic wave 03
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Spectral analysis

Az, t) = / (k) ek —Ro)a=ilw=wo)t 4.
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Spectral analysis

Az, 1) = / fi(k) ¢! (FRoJr=ilw=wo)t .
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Definition of group velocity W — Wg = cg(/{ — ]{0)7 Cg —



Spectral analysis
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Spectral analysis

Gaussian spectrum: ﬁ/(k) = Uy 6_02 (k_ko)Q
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Spectral analysis
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Spectral analysis

Higher order 2
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Wave packet dispersion
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Dispersion




Dispersion

-

Waves with k reach r at time t=r/v(k)
For deep gravity waves: vic/gaity ~ i%\/%

k=gt?/4r?
SINCEe Waeep/gravity ~ £/ gk
w=gt/2r

23

=The frequency increases with time



“Ronds dans l'eau”

Gravity ©
waves

stone>|, water drop<I,

Capillary
waves

B vitesse de groupe

vitesse de phase

0,2

0,1




Waves created by an obstacle in a river
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Kelvin wakes




Kelvin wake
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Waves created by a ship




Waves created by a ship
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Waves created by a ship

;
Z

N

30



Waves created by a ship
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Waves created by a ship

()
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Waves created by a ship

sin(a)/OG=cos(B8)/AG
sin(0-a)AG=GC=0G

_____

=sin(a)=cos(0)sin(0-a)
=sin(a)=cos(0)(sin(0)cos(a)+cos(B)sin(a))

=>tan(a)=cos(8)sin(0)/(1+cos?(0))



Waves created by a ship
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Waves created by a ship
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Waves created by a ship
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Careful google-earth data analysis by Moisy and Rabaud (2013)
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Careful google-earth data analysis by Moisy and Rabaud (2013)
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Froude number

Fr = v c:. celerity of wave
C
F U N N
r=—— :
Jad d: size of ship
Fr = shallow water

g s



Froude decomposition

C;(F,Re) = Cp(Re)+Cy,(F,Re)

Total drag Dragin Wave drag
absence of
free surface



Froude hypothesis

C,(F,Re) = CD(Re)+CW(F,><)

Total drag Dragin Wave drag
absence of
free surface



Alternative expression

C;(F,Re) = Cr(Re)+Cp(F,Re)

Total drag Friction Pressure
drag drag

Cp(F,Re) = Cy(F)
Pressure Wave drag
drag (Residual
drag)



Friction resistance and residual resistance

tofal resistance
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2.11
Total drag coefficients of the Lucy Ashton and several geosim models of the same vessel (from Troost and Zakay 1951). The
faired curves represent constant values of the Froude number and, if Froude’s hypothesis were strictly valid, these would be

parallel with spacing independent of the Reynolds number. Note that, even for this small full-scale vessel (58 m long), there is a
large gap between the largest model results and the full-scale results.
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Standing waves

n = A cos(kx — wt) + A cos(kx + wt)
= 2A4 cos kx cos wt,



Reflected waves

6.7

Particle trajectories in a plane progressive wave (a), a partial reflected wave
(b), and a standing wave (c). These correspond respectively to a reflection
coefficient of 0, 0.38, and 1.0 in equation (56). Note that the reflection coef-
ficient can be measured from the maximum and minimum of the envelope,
using (56). These photographs are based on time exposures, and are repro-
duced from a more extensive series of observations made by Ruellan and
Wallet (1950).



Reflected waves

) = ARe[e—t'kx-i-iwt + Reikx-}-iwt]
R: complex reflection coefficient

y = ARe[e—z'kx+:'wt(1 + - ReZikx)]



Wave energy

KE+PE—p”j< V2+gy>d1/
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£ = PJ( V2+gy>dy ——psVzdy+—;jpg(772 —><Z)
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Neglect potential energy of fluid at rest



Wave energy

KE+PE—p”j< Vz+gy> 1/
E= pf( V2+gy>dy=——ij dy+:lng(77 ><2)

Neglect potential energy of fluid at rest
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Wave energy

KE+PE—p”j< Vz+gy> 1/
o= f(3re0)o - o v L -H)

Neglect potential energy of fluid at rest
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Consider A<<1

E = % pgA? + }pgA?cos¥(kx — wt)




Wave energy

KE+PE—p”j< V2+gy> v

7 7

Neglect potential energy of fluid at rest

E = }pgA? + LpgA?cosi(kx — wt)

On average: E = %pgAZ



Wave energy flux

One can show that the energy travels at the group velocity...



Energy balance (in ship’s frame)

21rU2
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Energy input : -work of drag=-D.U
Energy output: (Vg-U)E



Energy balance (in ship’s frame)

2
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Energy input : -work of drag=-D.U
Energy output: (Vg-U)E
Deep water: Vg=U/2
D=E/2

D = }pgA?



Wave production from bow

displacement 7 = g cos(kx + ¢)

dispersion

. = 2
relation k= g/U

wave amplitude @

wave energy % pga®






Wavelength selection as a function of velocity
Which of these two ships has the highest velocity?

small wavelength
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Superimpose wave of opposite amplitude
from stern located at a distance |

displacement

y = acos (kx + ¢) — acos (kx + ¢ + kl)
— Re {aet'(kx'f'E)(l - e!'k'l)}.

dispersion k = g/U*?
relation

wave amplitude A = a|l — e*| = 2a|sin(}k0)|

wave energy D = pga? sin’(}kl)



Superimpose wave of opposite amplitude
from stern located at a distance |

A n
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The missing ingredient is now to determine
the wave amplitude!

Combination of theoretical and empirical
results.



Generalisation to 3D

dE

3= :1,_ pgj'Az(Vg cos @ — U)dz.

n/2
D = 57U [ | 40) 2 cos*0 db.
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|l ess Interference



[-0

103 Cwavc

1-0



This picture is in reality complicated by
the floating position of the ship




Which opens the field of dynamical reaction
of ships to waves....

8 i kg
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2.16

Heave response of a slender spar buoy in regular waves, from Adee and Bai
(1970). The ordinate is the ratio of heave amplitude to wave amplitude, and
the buoy is a circular cylinder, with a conical bottom, as shown to scale in the
sketch. The dashed line is a theoretical prediction that neglects the hydro-
dynamic forces due to the motions of the body. The solid line includes a cor-
rection for the added mass. The circles denote experimental measurements.



