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Waves
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Waves

Potential flow

z
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Dynamic boundary conditions

Kinematic boundary conditions

V

U

Air

Water
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ρ2, φ2

ρ1, φ1

z

x

General case: two fluids
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General case: two fluids

Potential flow

Potential flow

z

x

Dynamic boundary conditions

Kinematic boundary conditions
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Linear waves dispersion relation

1. Equations and boundary conditions

2. Base state

3. Linearized equations

4. Normal mode expansion

5. Dispersion relation

6. Analysis of the dispersion relation



6

1. Equations

Potential flow

Velocity field
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1. Boundary conditions

far-field

?
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1. Kinematic boundary condition

η(x,t)

x

V
┴

= ∂η/∂t cos(α)

z

α

No fluid particles going across the interface through the normal direction

Kinematic condition : impermeability (no penetration)

V
┴

V
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1. Kinematic boundary condition

η(x,t)

x

V
┴

= ∂η/∂t cos(α)

y

α

No fluid particles going across the interface through the normal direction

Kinematic condition : impermeability (no penetration)

u
┴1= v1 cos(α)+

V
┴

V

u

v

u
┴1
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1. Kinematic boundary condition

η(x,t)

x

V
┴

= ∂η/∂t cos(α)

y

α

No fluid particles going across the interface through the normal direction

Kinematic condition : impermeability (no penetration)

u
┴1= v1 cos(α)- u1 sin(α)

V
┴

V

u

v

u
┴1

∂η/∂t=v1- u1 tan(α)    ∂η/∂t=v1- u1∂η/∂x
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1. Kinematic boundary conditions

far-field

-

-
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1. Dynamic boundary conditions
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1. More equations

2nd Bernouilli relations

= 0

= 0
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2. Base state
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3. Perturb and linearize

perturbation expansion

Variables Small perturbationBase state



16

3. Linearized equations

perturbed potential flow
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3. Perturbed kinematic boundary conditions
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3. Perturbed kinematic boundary conditions
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3. Flattened kinematic boundary conditions

Taylor expansion around 0:
0

transforms a b.c. at an unkwown interface into a fixed place!
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3. Perturbed dynamic boundary conditions

Replace P1=-gρ1z, …

flatten

and linearize

g
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3. Perturbed and linearized Bernouilli

Perturbed 2nd Bernouilli relations

Linearized 2nd Bernouilli relations
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4. Normal mode expansion

Fourier transform in x and t
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4. Normal mode expansion

Solution to Laplace equation:
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4. Normal mode expansion

Solution to Laplace equation:

z

2

1
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4. Normal mode expansion

Solution to Laplace equation:
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4. Normal mode expansion

Replace in boundary conditions

This is an eigenvalue problem iωX=MX!
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5. Dispersion relation

•Neutral if for all ω, Im(ω)=0:

•Unstable if  there exists one ω, Im(ω)>0

•Stable (or damped) if  for all ω, Im(ω)<0:

The flow considered is not damped, we have 

neglected dissipation by neglecting viscosity
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Dispersion relation

ρ2

ρ1
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Dispersion relation

z
ρ2

ρ1
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Dispersion relation

Capillary wavenumber:

Length scale:

Time scale

One single non-dimensional parameter
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Dispersion relation

gravity capillary

shallow water

Deep water

~
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t

x

Difference between group velocity v and 

phase velocity c



33

Dispersion relation

gravity capillary

shallow water

Deep water
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Dispersion relation

wavenumber kCapillary wavenumber kc

capillary wavesgravity waves
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c~(gh)1/2

c~k1/2c~k-1/2

kc=10; h=1
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Trajectories below the waves

exp(-ky)

2π/k

ch(ky)
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Stokes drift!
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Why are the waves parallel to the shore?

h

λ

T=10s; ω=0.62
c~(gh)1/2

λ~T(gh)1/2
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Refraction and diffraction of waves

Satellite view Namibian coast
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Nonlinear waves, wavebreaking

The celerity increases with the depth
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Dispersion relation

wavenumber kCapillary wavenumber kc

capillary wavesgravity waves
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c~(gh)1/2

c~k1/2c~k-1/2

kc=10; h=1

min(cφ)~20cm/s



Conditions for wave pattern formation?

41

Vduck<cmin   ?>
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Dispersion relation

wavenumber kCapillary wavenumber kc

capillary wavesgravity waves
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c~(gh)1/2

c~k1/2c~k-1/2

kc=10; h=1

cφ=cg



43

vg=vφ/2
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Diagramme spatio-temporel
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Diagramme spatio-temporel
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vg=3/2vφ

Diagramme spatio-temporel
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Spectral analysis

Fourier transform:

Carrier/enveloppe :

Enveloppe :

is given by Fourier transform at time t=0
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Spectral analysis

Gaussian spectrum: 

Initial enveloppe :
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Gaussian spectrum

wave

spectrum
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Paquets d’ondes gaussiens
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Waves and spectrum

Monochromatic wave

Beating

Sinus cardinal

Gaussian paquet
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Spectral analysis
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Spectral analysis

Definition of group velocity
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Spectral analysis
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Spectral analysis

Gaussian spectrum: 

Initial enveloppe :
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Spectral analysis

Definition of group velocity
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Group velocity

Wave packet
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Spectral analysis

Higher order 

development
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Wave packet dispersion

t=0

t>0
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Dispersion relation

wavenumber kCapillary wavenumber kc

capillary wavesgravity waves
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c~(gh)1/2

c~k1/2c~k-1/2

kc=10; h=1

non dispersive
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Dispersion
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Dispersion

Waves with k reach r at time t=r/v(k)

For deep gravity waves:            

k=gt2/4r2

Since

ω=gt/2r 

r

The frequency increases with time
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“Ronds dans l’eau”

stone>lc water drop<lc

vitesse de groupe

vitesse de phase

Gravity 

waves

Capillary 

waves
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Waves created by an obstacle in a river

U





vitesse de groupe

vitesse de phase

rivière

air

stick

(torrential)

super-critical

(fluvial)

sub-critical
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Kelvin wakes
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Kelvin wake

t=0t=-Δt

O A
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Waves created by a ship

O A

C

G
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O A

C

G

Waves created by a ship
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Waves created by a ship
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O A

C
G

Waves created by a ship
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O A

Waves created by a ship
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θ
α

O A

C

G

sin(α)/OG=cos(θ)/AG

sin(θ-α)AG=GC=OG

sin(α)=cos(θ)sin(θ-α)

sin(α)=cos(θ)(sin(θ)cos(α)+cos(θ)sin(α))

tan(α)=cos(θ)sin(θ)/(1+cos2(θ))

Waves created by a ship
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tan(α)

θ0° 90°30°

O A

θ
α

R 3R

α=19°

θ=54°

Waves created by a ship
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54°

19°

Waves created by a ship
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O A O A

lent

rapide

Waves created by a ship



75

Careful google-earth data analysis by  Moisy and Rabaud (2013)
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Careful google-earth data analysis by  Moisy and Rabaud (2013)
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Froude number

c: celerity of wave

shallow water

d: size of ship
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Froude decomposition

Total drag Drag in 

absence of 

free surface

Wave drag
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Froude hypothesis

Total drag Drag in 

absence of 

free surface

Wave drag
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Alternative expression

Total drag Friction 

drag

Pressure 

drag

Pressure 

drag

Wave drag

(Residual 

drag)
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Friction resistance and residual resistance
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Standing waves
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Reflected waves
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Reflected waves

R: complex reflection coefficient
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Wave energy

Neglect potential energy of fluid at rest
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Wave energy

Neglect potential energy of fluid at rest
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Wave energy

Neglect potential energy of fluid at rest
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Wave energy

Neglect potential energy of fluid at rest

On average:
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Wave energy flux

One can show that the energy travels at the group velocity…
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Energy balance (in ship’s frame)

Energy input : -work of drag= -D.U

Energy output: (Vg-U)E 
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Energy balance (in ship’s frame)

Energy input : -work of drag= -D.U

Energy output: (Vg-U)E 

Deep water: Vg=U/2

D=E/2
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Wave production from bow

displacement

dispersion 

relation

wave energy

wave amplitude
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Stern Bow

“Bump”“Hole”
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Wavelength selection as a function of velocity

Which of these two ships has the highest velocity?
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Superimpose wave of opposite amplitude 

from stern located at a distance l

displacement

dispersion 

relation

wave energy

wave amplitude
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Superimpose wave of opposite amplitude 

from stern located at a distance l
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The missing ingredient is now to determine 

the wave amplitude!

Combination of theoretical and empirical 

results.
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Generalisation to 3D 

Less   interference



101



Which boat has less wave drag?

102



Submerged vessels feel less drag

103



Michell’s theory[1]
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Michell’s theory[2]
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Michell’s theory[3]
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Effect of finite depth
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Comparaison with experiments
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Role of hull shape
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Role of hull shape asymmetry in air
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Role of hull shape asymmetry on the water 

surface
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Role of hull shape asymmetry on the water 

surface [JP Boucher’s thesis]
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Role of hull shape asymmetry on the water 

surface [JP Boucher’s thesis]
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