Hydrodynamics 14
Waves
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1. Equations

A(I)l = ()
Potential flow
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0D, 0%,
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1. Boundary conditions

(I)l:O‘dltZ:—OO
Gy =0at z =40

at z =mn-

far-field



1. Kinematic boundary condition

n(x,t)

Kinematic condition : impermeability (no penetration)
No fluid particles going across the interface through the normal direction

V,=oadnlét cos(a)



1. Kinematic boundary condition

Vv

VJ_ s UJ_:L\
u n(x,t)

> <

Kinematic condition : impermeability (no penetration)
No fluid particles going across the interface through the normal direction

V,=oadnlét cos(a)

u,,=Vv, cos(a)+



1. Kinematic boundary condition

> <

u n(x,t)

Kinematic condition : impermeability (no penetration)
No fluid particles going across the interface through the normal direction

V,=oadnlét cos(a)

} onlot=v - u, tan(a) = | anlot=v - u,onlox
u,,= Vv, cos(a)-u, sin(a)



1. Kinematic boundary conditions

(I)l:O‘dltZ:—OO

far-field
Gy =0at z =40
9, 0
Ul—n — Vl — —?7
0 0
Uyt — Vo =



1. Dynamic boundary conditions
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1. More equations

00, Ui +VP P
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2nd Bernouilli relations



2. Base state



3. Perturb and linearize
perturbation expansion

R = () Hepy
b, = Heo
Uy = Heuq
Vi =0 TEV] |
0, _ Hews e 1
Vs =0 Hevs
Py |=—p1gz Hem
Py |= —pagz Hepo
i = Heo

Variables Base state Small perturbation



3. Linearized equations

A@l — O
perturbed potential flow
Ay = 0
Uy = % U1 = %
or 07
U9y = % Vg = %
or 0z




3. Perturbed kinematic boundary conditions

o =0at z = -

0y =0at z =+
) 80 do t
—€ U EV1 = €e— adl 2 = €0
gy =
6’0 0o t
—E U €EVo = €e— adl 2 = €0
25, T =,




3. Perturbed kinematic boundary conditions

o =0at z = -

0y =0at z =+




3. Flattened kinematic boundary conditions

dpr _ do at 2
o = €0
0z ot
% — Jo at z = €0
0 Ot )
Taylor expansion around O: gb(EO-) — ¢(O) (EO')% 0
% — g—i at =10
Joy  do B
Pty at 2 =10

=transforms a b.c. at an unkwown interface into a fixed place!



3. Perturbed dynamic boundary conditions

(P +ep

— Py —epy)|.,
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Replace P,=-gp,z, ... ﬂ and linearize
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3. Perturbed and linearized Bernouilli

Perturbed 2" Bernouilli relations

dp1r  p1
4B _
8t+p1
062 P2 _



4. Normal mode expansion

Fourier transform in x and t

o1 = filz)exp(i(kr — wi)),
02 = falz)exp(i(kr — wi)),
o = Cexp(i(kr — wt)),

k is the wavenumber and w the frequency (in rad

A =2r/k T =2m/w
f=w/(27)




4. Normal mode expansion

Solution to Laplace equation:



4. Normal mode expansion

Solution to Laplace equation:

¢ = (aexp(kz) + fexp(—kz))exp(i(kx — wt))

1

¢ = (aexp(kz) + Bexp(—kz))exp(i(kx — wt))



4. Normal mode expansion

Solution to Laplace equation:

01
02

Aexp(kz)exp(i(kr — wt)),
Bexp(—kz)exp(i(kx — wt)),
Cexp(i(kx — wt)).




4. Normal mode expansion

Replace in boundary conditions

9(/02 — /01)0 +iwp A —iwpe B = f)/kQC
kA = —iwC
—kB = —w(C

This is an eigenvalue problem iwX=MX!

kg(ps — p1)C +w’pC 4w pC = k°C



5. Dispersion relation

2 _ Zhglps = pr) + o
P11 P2

eUnstable if there exists one w, Im(w)>0 )02 > )01

Neutral if for all w, Im(w)=0: P1 > P2

-Stable (or damped) if for all w, Im(w)<O:

The flow considered is not damped, we have
neglected dissipation by neglecting viscosity



Dispersion relation

o _ Zhglpr = pr) £0K

P11 P2




Dispersion relation

2 o _ Zkglpr—p1) + 9k
p1tPg

]{3
w* = tanh(kH) (f)/p | gk)




Dispersion relation

]{3
w* = tanh(kH) (7 | gk’)
p

Capillary wavenumber: ]fc = Pg/f)/

Length scale: k= k/kc

Time scale W= W/\/%
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Dispersion relation

" = tanh(kH) (7%3 + Z%)

Al

gravity k<1 capillary sl
shallow water
k< 1/H +k +k*V H
Deep water
> 1/H +VE +iVE




Difference between group velocity v and
phase velocity c




Dispersion relation

gravity L« 1

capillary F>1

shallow water
k< 1/H
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Dispersion relation

gr;dvity waves capillary waves

k.=10; h=1
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Trajectories below the waves

profondeur infinie | faible profondeur



Stokes drift!

wave phase 11/ T= 0.000




Why are the waves parallel to the shore?

c~(gh)"2
A~T(gh)12
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Refraction and diffraction of waves

Satellite view Namibian coast



Nonlinear waves, wavebreaking

t3

t2

t1

The celerity increases with the depth



Dispersion relation

gr;dvity waves capillary waves

k.=10; h=1
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Conditions for wave pattern formation?




Dispersion relation

gr;dvity waves capillary waves
. k.=10; h=1
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Diagramme spatio-temporel

> X




Diagramme spatio-temporel

Vv :V(p

> X



Diagramme spatio-temporel
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Fourier transform:

Carrier/enveloppe :

Enveloppe :

Spectral analysis

1 [Toe .
ul.t) =2 /O i(k) el Fe =B qL 4 c.c.

Al

U/(k) IS given by Fourier transform at time t=0

1 |
u(x,t) = EA(:C’ ) elFor=wot) |

Az, t) = / ii(k) el F—RoJ=ilw=wo)t .
0




Spectral analysis

Gaussian spectrum: ﬁ/(k) = Uy 6_02 (k_ko)Q

Alx,0) = UO\/_ 40?2

Initial enveloppe : e 40



Gaussian spectrum
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Paquets d'ondes gaussiens
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Waves and spectrum

Monochromatic wave 03
30
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Spectral analysis

Az, t) = / (k) ek —Ro)a=ilw=wo)t 4.
0




Spectral analysis

Az, 1) = / fi(k) ¢! (FRoJr=ilw=wo)t .
0

Definition of group velocity W — Wg = cg(/{ — ]{0)7 Cg —



Spectral analysis

Az, t) = / fi(J) ! Rou=ilwenltqp,
0

u(k) = ug e~ (h—ho)




Spectral analysis

Gaussian spectrum: ﬁ/(k) = Uy 6_02 (k_ko)Q

Alx,0) = UO\/_ 40?2

Initial enveloppe : e 40



Spectral analysis

Az, 1) = / fi(k) ¢! (FRoJr=ilw=wo)t .
0

Definition of group velocity W — Wg = cg(/{ — ]{0)7 Cg —

u(k) = ug o0 (k=ko)”

(z—c t)2
Az, ) = “(;‘fe




Group velocity
I"‘“‘]

1 \

Wave packet
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Spectral analysis

Higher order 2
development O ) 0%
¢g =z (ko),  wy =5 (ko)
Ug T (2 — cqt)?
Alx,t) = exp | —
(@9 2 \/02 + Hwft b ( 4(0? + 1iw{t)

o7



Wave packet dispersion
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Dispersion relation

grgvity waves capillary waves
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Dispersion




Dispersion

-

Waves with k reach r at time t=r/v(k)
For deep gravity waves: vic/gaity ~ i%\/%

k=gt?/4r?
SINCEe Waeep/gravity ~ £/ gk
w=gt/2r

61

=The frequency increases with time



“Ronds dans l'eau”

Gravity ©
waves

stone>|, water drop<I,

Capillary
waves

0,6
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0,2

0,1 |




Waves created by an obstacle in a river

stick

,v air

\A/\f\/\
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Kelvin wakes




Kelvin wake
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Waves created by a ship




Waves created by a ship
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Waves created by a ship
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Waves created by a ship
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Waves created by a ship

()
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Waves created by a ship

sin(a)/OG=cos(B8)/AG
sin(0-a)AG=GC=0G

_____

=sin(a)=cos(0)sin(0-a)
=sin(a)=cos(0)(sin(0)cos(a)+cos(B)sin(a))

=>tan(a)=cos(8)sin(0)/(1+cos?(0))



Waves created by a ship

04

a=19° ;.|

tan(a) °f
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Waves created by a ship
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Waves created by a ship
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Careful google-earth data analysis by Moisy and Rabaud (2013)

40 I I 1 I ' x
- Nodel (3)
" ===Asympt. (4)
LA ® Images
20 o Simul.
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o o
|

=
|

=
|

6~

1 | |

1
0.2 04 06 1 2

1

)

<o W
R

Hull Froude number. Fr



Careful google-earth data analysis by Moisy and Rabaud (2013)
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Froude number

Fr = v c:. celerity of wave
C
F U N N
r=—— :
Jad d: size of ship
Fr = shallow water

g s



Froude decomposition

C;(F,Re) = Cp(Re)+Cy,(F,Re)

Total drag Dragin Wave drag
absence of
free surface



Froude hypothesis

C,(F,Re) = CD(Re)+CW(F,><)

Total drag Dragin Wave drag
absence of
free surface



Alternative expression

C;(F,Re) = Cr(Re)+Cp(F,Re)

Total drag Friction Pressure
drag drag

Cp(F,Re) = Cy(F)
Pressure Wave drag
drag (Residual
drag)



Friction resistance and residual resistance

tofal resistance

0.22xN)

hull speed=125VIWL—

resistance in 1000's of newfons (lbs

2 N

+—residual
resistance

1+ .

2
-
— 1

N l—surface friction

e resistance
0 4 e ! ' : L

15 20 25 30 35 40 L5
speed in ms™ (kfs =ms?x2)
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Standing waves

n = A cos(kx — wt) + A cos(kx + wt)
= 2A4 cos kx cos wt,



Reflected waves

6.7

Particle trajectories in a plane progressive wave (a), a partial reflected wave
(b), and a standing wave (c). These correspond respectively to a reflection
coefficient of 0, 0.38, and 1.0 in equation (56). Note that the reflection coef-
ficient can be measured from the maximum and minimum of the envelope,
using (56). These photographs are based on time exposures, and are repro-
duced from a more extensive series of observations made by Ruellan and
Wallet (1950).



Reflected waves

) = ARe[e—t'kx-i-iwt + Reikx-}-iwt]
R: complex reflection coefficient

y = ARe[e—z'kx+:'wt(1 + - ReZikx)]



Wave energy

KE+PE—p”j< V2+gy>d1/

7 7
£ = PJ( V2+gy>dy ——psVzdy+—;jpg(772 —><Z)
—h —h

Neglect potential energy of fluid at rest



Wave energy

KE+PE—p”j< Vz+gy> 1/
E= pf( V2+gy>dy=——ij dy+:lng(77 ><2)

Neglect potential energy of fluid at rest

ow?A?

!
T aalaa s




Wave energy

KE+PE—p”j< V2+gy> v

Neglect potential energy of fluid at rest

2 42 1

E = }pgA% + 1pgA?cosi(kx — wt)

E_




Wave energy

KE+PE—p”j< V2+gy> v

7 7

Neglect potential energy of fluid at rest

E = }pgA? + LpgA?cosi(kx — wt)

On average: E = %pgAZ



Wave energy flux

One can show that the energy travels at the group velocity...



Energy balance (in ship’s frame)

21rU2

et
E T NG S P g
:-'-I: %tgz zl-pgAZU =\

Energy input : -work of drag=-D.U
Energy output: (Vg-U)E



Energy balance (in ship’s frame)

2
e 21rU

—
E T NG S P g
::I': %1E= Zl-pgAZU i

Energy input : -work of drag=-D.U
Energy output: (Vg-U)E
Deep water: Vg=U/2
D=E/2

D = }pgA*



Wave production from bow

displacement 7 = g cos(kx + ¢)

dispersion

. = 2
relation k= g/U

wave amplitude @

wave energy 4 pga®






Wavelength selection as a function of velocity
Which of these two ships has the highest velocity?

small wavelength

ot

~

L small amplitude

—

¢

PRI e /




Superimpose wave of opposite amplitude
from stern located at a distance |

displacement

y = acos (kx + ¢) — acos (kx + ¢ + kl)
— Re {aet'(kx'f'E)(l - e!'k'l)}.

dispersion k = g/U*?
relation

wave amplitude A = a|l — e*| = 2a|sin(}k0)|

wave energy D = pga? sin’(}kl)



Superimpose wave of opposite amplitude
from stern located at a distance |

A n
D = pga® sin®(% kl)

3 =

!

D

-";pgaz 2r

| -
@) L U l ] fi
0.0 0.5 .0 .5



The missing ingredient is now to determine
the wave amplitude!

Combination of theoretical and empirical
results.



Generalisation to 3D

dE

3= :1,_ pgj'Az(Vg cos @ — U)dz.

n/2
D = 57U [ | 40) 2 cos*0 db.

—m/2

|l ess Interference
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Which boat has less wave drag?

: — (b)
A( 4“
I\ e
o
Ar ' s - ,‘R
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B R
(3 A B
| %'ic R QU e
By 2 3 -
. D S

Figure 2: (a) Apparatus and (b) hull shapes used by Pieter van Zwijndregt in his towing
experiments around 1757. The model hulls were towed over a 50 m distance. Reprinted
from [6].



Submerged vessels feel less drag

Submarine name Speed at the surface Speed when submerged

(km/h) (km/h)
Daphné (FR) 28 22
Agosta (FR) 37 23
Classe Franklin (US) 39 30
Classe Ohio (US) 37 22
Typhoon (USSR) 50 40
Oscar I (USSR) 59 28

Table 1.2: Speeds of different submarines at the surface and when submerged.



Michell's theory[1]

Boundary conditions. The condition that water particles do not cross the hull boundary
1s written:

Similarly, ensuring that water particles do not cross the air-water interface yields the kine-
matic condition . The Bernoulli equation at the air-water interface is
written:
1 2 1 T2 1 9
Po + §pu + pg& = po + 5,0(/' . (1.34)

with po the atmospheric pressure. It is then straight-forward to obtain the dynamic condi-
tion:

29 + @7 + O + 2 =U" . (1.35)

[




Michell's theory|[2]

For an infinitely deep fluid, we further have lim._,_, ®. = 0 (for a fluid of finite depth A,

this condition is replaced by ®.(z = —h) = 0). The last condition to ensure is the radiation
condition given in Eq. (1.26).

Linearisation. The main assumption of Michell’'s model is to consider that the hull is thin
(w < ¢, corresponding to small longitudinal slopes f,., f. < 1).

The linearisation of the kinematic condition on the hull boundary (1.33) leads to:

Py(x, 20, 2) = FUL, . (1.36)

The combination of the linearised kinematic and dynamic conditions (1.23, 1.35) gives on
z =0

72
b+ —D,, =0. (1.37)
g

Michell solves the Laplace equation (1.22) with the boundary conditions given in Eqs. (1.25,
1.26) and Eqgs. (1.36, 1.37) using Fourier-transform methods.



Michell's theory[3]

In Michell’s theory [7, 28], the wave drag for an infinitely deep fluid Ry can be written as:

4pU* /+°° 5 A _
Ry (f) = Le( A Fr)|"——d\ ., 1.38
v»(f) AR . ‘ f( - I‘)‘ )\Q—IC - ( )

where:

)\ FI' / dz g f ., _V) /\22/(51:}2)G.z‘./\;l‘/(é]:"rz)d:r ) (139)
—d —3



Effect of finite depth
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Figure 1.14: Wave drag coefficient C,, as a function of the Froude number Fr predicted
by Michell’s model for increasing water depth v = h/l¢ (for a = 6.7, § = 2.3 and f =
1/2exp(—1632)). The black curve corresponds to the infinite depth case.



Comparaison with experiments

0.1 |
Tuck (1987)
0.08 - X % Chapman (1972) | |

0.06 |

0.04 -

0.02 |-

| |
OO 0.5 1

Fr

Figure 1.13: Wave-drag coefficient C}, as a function of the Froude number Fr predicted
theoretically by [32] together with experimental data points from [31] (black crosses). The
hull has a parabolic shape with oo = 6.7 and 5 = 2.3.



Role of hull shape

0.1 I
—— Gaussian hull (num.)
0.08 X Parabolic hull (num.) | _|
A Tuck (1987)
0.06 |- /. x Chapman (1972) |
Cy [ F
0.04 |- [ B
0.02| / X N |
0 - / B | | ———

Fr

Figure 3.4: Wave-drag coefficient (', as function of the Froude number Fr for a gaussian hull
and a parabolic hull for &« = 6.7 and [ = 2.3. These results are compared to the theoretical
curve from [32] and experimental data points from [31] (black crosses).



Role of hull shape asymmetry in air

Figure 4.1: Two dimensional shapes of minimum drag found by [83] for (a) Re = 20, (b)
Re = 5000 and (¢) Re = 20000. (d) Picture of the Dymaxion car n°l1, designed by the
American inventor and architect Buckminster Fuller in 1933. This car had an aerodynamic
bodywork to increase its fuel efficiency and reach top speed [85].



Role of hull shape asymmetry on the water
surface

Ar ¢ - > 1[\
u \\ g
\\‘1§5 : Uy /-;/;//
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Q/; AQ\ B

T?'ic Xy,

‘\ - Q\‘\ D shics ;/

Figure 2: (a) Apparatus and (b) hull shapes used by Pieter van Zwijndregt in his towing

experiments around 1757. The model hulls were towed over a 50 m distance. Reprinted
from [6].



Role of hull shape asymmetry on the water
surface [JP Boucher’s thesis]

e>0
U

e<0
U _ > e

Figure 4.4: Schematics illustrating the two different configurations ¢ < 0 and € > 0

0.5
(a)

0.25

Ia_ 0

—0.25

—05
205 —025 0 025 05
I

Figure 4.5: (a) Profile aj = +f(&) for five different sets of the parameters (a, b, a, ) in
Eq. (4.3), with increasing asymmetry. (b) Picture of the five 3d-printed model hulls defined
by the functions f; to f;. They are 18 cm-long, 3 cm-wide and 5 cm-high.



Role of hull shape asymmetry on the water
surface [JP Boucher’s thesis]

0.1
' ' Y - e- Hull 1
0.08 | 8 e Hullz
o -8 Hull 3
0.06 '“._ 5 iy {l'__"\. -1 [-®- Hull 4
! B e ~e- Hull 5
0.04 | 8 i
- » s © 8-3-3
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sign(e) Fr

Figure 4.8: Total drag coefficient as a function of the signed Froude number sign(e) Fr for
the five hulls for d/D = 0.75. The use of the parameter sign(e) Fr allows us to compare a
given hull moving with the rounded part first (e > 0, right part of the plot) or with the
pointed part first (e < 0, left part of the plot) (see Fig. 4.4).



