But this does still not explain the

aerodynamic drag scaling: % .U




Pressure gradient effect

Le cas de référence est lecas m=0ie S=7/(m+1)=7
correspondant a |'écoulement au dessus d’'une plaque plane :

T T T T T O 10

0. IIITE 0:4 ) DTG I:ITE 1
, . u/U
écoulement uniforme

Vp nul — couche limite de Blasius



Pressure gradient effect

Sim>0onafg=m/(m+1) < 7 correspondant a |'écoulement au
dessus d'un diedre rentrant :

0. 0.2 A 0.8 L.

I:I:ci 0
) o u/U
écoulement accéléré

V p accélérateur — couche limite + collée



Pressure gradient effect

Sim<0onaf@=mx/(m+ 1) > 7 correspondant a |'écoulement au
dessus d'un diedre saillant :

H 10

A 0.8 1.

0. 0.2

D:al ]
. . u/U
ecoulement ralenti

V p décélérateur — couche limite + épaisse



Pressure gradient effect

Adverse pressure gradient : —

P, P, > P, P;~P;

p(x)  p(x+dx)

Resulting pressure force



Pressure gradient effect

Adverse pressure gradient : —>0

P, P>~ P: p3 >P-

Close to the wall, the viscous effects dominate
The pressure gradient further decreases the velocity
= Detachement



Pressure gradient effect

op

Favorable pressure gradient: ~ <0
X
pl pZ < pl p3 <pz
[F—

p(x)  p(x+dx)

Resulting pressure force



Pressure gradient effect

Favorable pressure gradient: P <0

OX

pl pZ < pl p3 <p2

Close to the wall, the pressure gradient further increases
the velocity of the flow = no detachement



Pressure gradient effect

1 I I I I _1|:
- HE
- H

Blasius

0. 0.2 04 0.5 0.3 1. ' ' ' ' '
/ 0. 0.2 0.4 0.6 0.8 L
u/U

u/U



Falkner-Skan solutions

/
’

Uu _’J _// | 2
— - NN
———— T — —;-—\— F—“‘%ﬂﬁﬁ fmﬁf’;;’f

(a)

VRN RN

—K

(b) (c) (d)

Figure 5.2 Boundary layer flows represented by solutions of the Falkner-Skan equation
for different values of the parameter m: (@) m =0;(b)ym = 1;(c)0 <m < 1;(d) =1/2 <m <0



Falkner-Skan far field solutions

'F(%) - C=z"




Falkner-Skan boundary layer equations

1. Prandtl equations

~ U
by b — by = U2+ G

§=¢,=00n3=0, ¢;> Ulx)asy— 0.



Falkner-Skan boundary layer equations

1. Prandtl equations
lﬁﬁ ¢xy ¢x ¢yy = U?jU + {bm,

§=d;=00ny=0, §;> Ux)asy - co.
2. Self-similar solution

v(x, §) = (Axm ")\ f(n) where 5 = HAx""")"2



Falkner-Skan boundary layer equations

1. Prandtl equations

lﬁﬁ ¢xy ¢x ¢yy = U?jU + {bm,

b=¢,=00n§=0, § - Uix)asj- .
2. Self-similar solution
b(x, P) = (Axm")" f(n) where 5 = Hdx™")"2
3. Falkner-Skan equation
"+ 4m + D) 7+ ml - f?) =0
SO =/10) =0, f{ew) =1



Falkner-Skan boundary layer solutions

f'(n)=u/u
Figure 5.3 Sketch of velocity profiles given by solutions of the Falkner—Skan equation



Falkner-Skan boundary layer solutions




Boundary layer separation

§ ~ (x — x5)"%, so that % ~{x — x5) ?as x - x5



Boundary layer separation



Boundary layer separation




Decollement sur un profil d’'aile

Expériences en soufflerie menées a |'université de Stanford,
|"écoulement est visualisé grace a des fumées :

angle d'incidence | v = 0°

[ DVD ‘Multimedia Fluid Mechanics’, Homsy et al. 2004, Cambridge University Press ]



Décollement sur un profil d’aile

Expériences en soufflerie menées a ['université de Stanford,
|"écoulement est visualisé grace a des fumées :

angle d'incidence | v = 5°

[ DVD ‘Multimedia Fluid Mechanics’, Homsy et al. 2004, Cambridge University Press ]



Décollement sur un profil d’aile

Expériences en soufflerie menées a |'université de Stanford,
|"écoulement est visualisé grace a des fumées :

angle d'incidence | v = 10°

[ DVD ‘Multimedia Fluid Mechanics’, Homsy et al. 2004, Cambridge University Press ]



Décollement sur un profil d’aile

Expériences en soufflerie menées a |'université de Stanford,
|"écoulement est visualisé grace a des fumées :

angle d'incidence | v = 15°

[ DVD ‘Multimedia Fluid Mechanics’, Homsy et al. 2004, Cambridge University Press ]



Décollement sur un profil d’aile

Expériences en soufflerie menées a |'université de Stanford,
I"écoulement est visualisé grace a des fumées :

angle d'incidence | v = 25° |:

[ DVD ‘Multimedia Fluid Mechanics’, Homsy et al. 2004, Cambridge University Press ]



Décollement sur un profil d’aile

Expériences en soufflerie menées a |'université de Stanford,
|"écoulement est visualisé grace a des fumées :

angle d'incidence | v = 30° |:

[ DVD ‘Multimedia Fluid Mechanics’, Homsy et al. 2004, Cambridge University Press ]



Décollement sur un profil d’aile

Expériences en soufflerie menées a |'université de Stanford,
|"écoulement est visualisé grace a des fumées :

angle d'incidence | v = 35° |:

[ DVD ‘Multimedia Fluid Mechanics’, Homsy et al. 2004, Cambridge University Press ]



Application to sailing
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Application to sailing




Example: Flow around a sphere

Laminar Separation

e

Transition to Turbulence

- _—Turbulent

4~  Separation

@ OMNERA,



Flow around a cylinder

|
pla,f) = 2,oUgo(l — 4sin 6°)

Y

\\/-
\_—//

\/




Flow around a cylinder

|
pla,0) = 2pU30(1 — 4sin 0°)

180

270



Origin of detachment: pressure gradient

A viscous flow close to the wall opposes the free-stream






Pressure coefficient

Cp(V)
I
0 | <«— couche limite turbulente Re = 6,6 x 105
1 <— couche limite laminaire Re = 2,4 x 105
9
<«— €coulement potentiel
-3 | |
0 90 180 v

25/05/2016



Form drag

180

270



Drag coefficient

___ trawnée
CX o %pUzA

Shape Effects on Drag e

Research
Center

|

The shape of an object has a very great
effect on the amount of drag.

Cp =195  Fialplate

| Cd=1.28 Cd=1.14

Flat Plate prism Cd= 295 0) Cp =142 Hamisphare
Flow Bullet
S——

—

Cd=07 to .5
Sphere

D

Cd -7z “ ittol

CD & U F‘B HM‘M'“

Cp = 0,007
—, Akl

HHH

A =frontal area All objects have the same frontal area.



drag

L)

section, somewhat arbitrary...

Cy

C){ p

1,27

0.9

0,52

0.34

0,2

0,43

0.75

09




Separation control




Application to sailing

39



Thickness effect

Attached

Detached

40



A gallery of detached flows




A gallery of detached flows




A gallery of detached flows




Hydrodynamics 13
Waves




Waves

Z A
Air
Dynamic boundary conditions
a—— yie
Kinematic boundary conditions
V
/ T_) Potential flow /
U

Water



General case: two fluids

/ /

P2 P,

4




General case: two fluids

/ /

V
T Potential flow //
U

Dynamic boundary conditions

Kinematic boundary conditions

Potential flow



o0k wWhE

Linear waves dispersion relation

Equations and boundary conditions
Base state

Linearized equations

Normal mode expansion
Dispersion relation

Analysis of the dispersion relation



1. Equations

A(I)l = 0
Potential flow
A(I)Z = (
0d, 0P,
Ul — %7 Vl - E Velocity field
8<I>2 8@2
Uy=—~= Vo= —=
*T ox E




1. Boundary conditions

@1:Oa.tz:—oo
Gy =0at z =+

at z =mn-

far-field



1. Kinematic boundary condition

\)<

n(x,t)

Kinematic condition : impermeability (no penetration)
No fluid particles going across the interface through the normal direction

V,=adnlét cos(a)



1. Kinematic boundary condition

Vv

VJ_ -~ UJ_:L\
u n(x,t)

> <
\)<

Kinematic condition : impermeability (no penetration)
No fluid particles going across the interface through the normal direction

V,=adnlét cos(a)

u,,=Vv, cos(a)+



1. Kinematic boundary condition

> <
\)<

u n(x,t)

Kinematic condition : impermeability (no penetration)
No fluid particles going across the interface through the normal direction

V,=adnlét cos(a)

} onlot=v - u, tan(a) = | anlot=v - u,onlox
u,,= Vv, cos(a)-u, sin(a)



1. Kinematic boundary conditions

@1:Oa.tz:—oo

far-field
Gy =0at z =+
0 0
Uyt =V ==
0 0
Uy — Vo =



1. Dynamic boundary conditions

0
P - P = B at z =
1 2 = 7 9 al < =17
O )3/2
O
n:(—&cn,l)
1+ 02

C=V.n




1. More equations

00, U+V: P

Y | ) | o o =
00, Us+Vy D

| | gz =
ﬁt 2 P2

2nd Bernouilli relations



2. Base state



3. Perturb and linearize
perturbation expansion

D, =( Hed,
D, = Heps
Uy = Heuy
Vi = Hevy |
U = Heus et
Vo =0 Hevs
Py |=—pgz Hem
Py |= —pagz Hepo
i = Heo

Variables Base state Small perturbation



3. Linearized equations

Agbl — 0
perturbed potential flow
Ay = 0
Uyp = % U1 = %
or 0z
U9y = % Uy = %
or 0z




3. Perturbed kinematic boundary conditions

0 =0at z=—-0

Py =0 at z =+
) 80 do t
—€c U €Uy = €— al 2 = €0
B TN TG
) 80 do t
—€c U €Uy — €— dl 2 = €0
T




3. Perturbed kinematic boundary conditions

0 =0at z=—-0
Py =0 at z =+

o do

— € UUN— + vy =e— at z = €0
o
0 U+fU aaatz
—€“UWY— + €1y = €— = €0
T ot

@Jt
Vi = — al 2 = €0
Yo

@Jt
vy =—at 2 =¢€0
T ot




3. Flattened kinematic boundary conditions

Jpr _ do at 2
MAC = €0
0z ot
% — Jo at z = €0
0z Ot j
Taylor expansion around O: Cb(EO-) — CD(O) (EO-)% 0
% — 86’_(; at 2 =0
Joy  do B
- = at 2 =10

=transforms a b.c. at an unkwown interface into a fixed place!



3. Perturbed dynamic boundary conditions

Nl do
(Pl_|—€p1_P2_€p2)‘m: _,}/Eamg (13/26 (823) )

Replace P,=-gp,z, ... ﬂ and linearize
0°0
9(p2 = p1)o+ (pr = p2)l,, = —7@

flatten ﬂ
00

(/02 - /01)90 T (p1 - p2)|0 — 7(%2




3. Perturbed and linearized Bernouilli

Perturbed 2" Bernouilli relations

o)l P1
— — =0
ot +P1



4. Normal mode expansion

Fourier transform in x and t

o1 = filz)expli(kr —wt)),
by = falz)exp(i(ke — wi)).
o = Cexp(i(kr — wt)),

k is the wavenumber and w the frequency (in rad

A =2n/k T =21/w
f=w/(2n)




4. Normal mode expansion

Solution to Laplace equation:



4. Normal mode expansion

Solution to Laplace equation:

¢ = (aexp(kz) + fexp(—kz))exp(i(kx — wt))

1

¢ = (aexp(kz) + Bexp(—kz))exp(i(kx — wt))



4. Normal mode expansion

Solution to Laplace equation:

01
02

Aexp(kz)exp(i(kr — wt)),
Bexp(—kz)exp(i(kx — wt)),
Cexp(i(kx — wt)).




4. Normal mode expansion

Replace in boundary conditions

9(/02 — /01)0 +iwp A —iwp B = ”}/kQC
kA = —iwC
—kB = —w(C

This is an eigenvalue problem iwX=MX!

kg(ps — p1)C +w’piC + w’psC = 7k°C.



5. Dispersion relation

o _ Zhglps = pr) + ok
P11 P2

sUnstable if there exists one w, Im(w)>0 pQ > /01

Neutral if for all w, Im(w)=0: P1 > P2

-Stable (or damped) if for all w, Im(w)<O:

The flow considered is not damped, we have
neglected dissipation by neglecting viscosity



o0k wWhE

Instablility analysis:

Equations and boundary conditions
Base state

Linearized equations

Normal mode expansion
Dispersion relation

Analysis of the dispersion relation



Dispersion relation

o _ Zhglpr = pr) £0K

P11 P2




Dispersion relation

2 o _ Zkglpr—py) + 9K
p1tpPe

]{33
w* = tanh(kH) (’)/ | gk)
p




Dispersion relation

]{33
w* = tanh(kH) (7 | gk)
p

Capillary wavenumber: kc = /Og/’)/

Length scale: k= /{/kc

Time scale W= W/\/ﬁ

~

One single non-dimensional parameter H = ch

P d

5 = tanh(kA) (123 | 1’%)




Dispersion relation

" = tanh(kH) (1}3 + Z%)

P A

gravity k<1 capillary ks 1
shallow water
k< 1/H +k +k*V H
Deep water
> 1/H +VE +iVE




Difference between group velocity v and
phase velocity c




Dispersion relation

gravity L« 1

capillary E>1

shallow water
k< 1/H

'J-‘-:Shafiowfgrarity ~ :l:k."\,.« gH

Cshallow/gravity ™ =+ QH

Ushallow/gravity ™ + QH

2 /
Wshallow/capillary ™ =all V ".‘."'Hf P
!
Cshallow [capillary ™ j:’l' \/ ’:Hf &
Ushallow /capillary ™ +2k V ’:foﬂ'f’}

Deep water

k> 1/H

Wdeep/gravity ™ =+ .U;'-.

4
‘H'dﬁﬂpfg-rm_:ity e :l:\/;
I

Udeep/gravity ™ j:; I

P

E | ..3_..".;2 N I."

Wdeep/capillary ™ +/ m
12/

(1{fﬂﬂg}fcap-i££a.r.y ™ :t;. ! m

e _l’fg -
Udeep/ capillary ™ j:?’f 2k Vo x‘fi'{}




Dispersion relation

gr4avity waves

capillary waves

k.=10; h=1

shallow water
deep water

1 | | | | | | |
0 5 10 15 20 25 30 35 40

Capillary wavenumber k,wavenumber Kk



Trajectories below the waves

profondeur infinie | faible profondeur



Stokes drift!

wave phase 11/ T=0.000




Why are the waves parallel to the shore?

c~(gh)?
A~T(gh)12

T=10s: w=0.62

honle incidents §\
lexd 46 5ome— ~ f\;'

150 |

125

100 f

St

a0

- o s e s e e e e .

25

20 40 &0 80



Refraction and diffraction of waves

“— ¥ ;\> = ...‘,.»..-‘::
\ ’ g tf

vy
Pointeur 25°43'16.44" S 14°50'52:23" E élév. 3 m

Satellite view Namibian coast




Nonlinear waves, wavebreaking

t3

t2

t1

The celerity increases with the depth



Dispersion relation

gravity waves capillary waves

T T

k.=10; h=1

shallow water
deep water

1 | | | | | | |
0 5 10 15 20 25 30 35

Capillary wavenumber k,wavenumber Kk

40



Conditions for wave pattern formation?




