
1 

 But this does still not explain the 
aerodynamic drag scaling: SU
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Pressure gradient effect 



Pressure gradient effect 



Pressure gradient effect 



Adverse pressure gradient : 0




x

p

p1 p2 > p1 p3 >p2 

p(x+dx) p(x) 

Resulting pressure force 

Pressure gradient effect 



Adverse pressure gradient : 

p1 p2 > p1 p3 >p2 

Pressure gradient effect 

Close to the wall, the viscous effects dominate 

The pressure gradient further decreases the velocity 

Detachement 
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Favorable  pressure gradient: 

Pressure gradient effect 

p1 p2 < p1 p3 <p2 

p(x+dx) p(x) 

Resulting pressure force 



Close to the wall, the pressure gradient further increases 

the velocity of the flow  no detachement 
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p1 p2 < p1 p3 <p2 

Favorable  pressure gradient: 

Pressure gradient effect 
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Pressure gradient effect 

Blasius 

F.S. Blasius 

F.S. 



Falkner-Skan solutions 



Falkner-Skan far field solutions 



Falkner-Skan boundary layer equations 

1. Prandtl equations 



Falkner-Skan boundary layer equations 

1. Prandtl equations 

2. Self-similar solution 



Falkner-Skan boundary layer equations 

1. Prandtl equations 

2. Self-similar solution 

3. Falkner-Skan equation 



Falkner-Skan boundary layer solutions 



Falkner-Skan boundary layer solutions 



17 

Boundary layer separation 
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Boundary layer separation 
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Boundary layer separation 



Decollement sur un profil d’aile 



Effet du gradient de pression 
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Application to sailing 
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Application to sailing 



Example: Flow around a sphere 



Flow around a cylinder 

θ 

p 



Flow around a cylinder 
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Origin of detachment: pressure gradient 

P- 

P+ 

A viscous flow close to the wall opposes the free-stream 



P+ 

P- 

P+ 
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Pressure coefficient 

34 Chapitre 8: Couches limites 



Form drag 



Drag coefficient 
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x 

drag 

section, somewhat arbitrary… 
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Separation control 
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Application to sailing 

Foc 

Grand Voile 
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Thickness effect 

Attached 

Detached 



41 

A gallery of detached flows 
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A gallery of detached flows 
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A gallery of detached flows 
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Hydrodynamics 13 

Waves 
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Waves 

Potential flow 

z 

x 

Dynamic boundary conditions 

 

Kinematic boundary conditions 

V 

U 

Air 

Water 
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ρ2, φ2 

ρ1, φ1 

z 

x 

General case: two fluids 
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General case: two fluids 

Potential flow 

Potential flow 

z 

x 

Dynamic boundary conditions 

 

Kinematic boundary conditions 

V 

U 
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Linear waves dispersion relation 

1. Equations and boundary conditions 

2. Base state 

3. Linearized equations 

4. Normal mode expansion 

5. Dispersion relation 

6. Analysis of the dispersion relation 
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1. Equations 

Potential flow 

Velocity field 
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1. Boundary conditions 

far-field 

? 
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1. Kinematic boundary condition 

η(x,t) 

x 

V
┴

= ∂η/∂t cos(α) 

z 

α 

No fluid particles going across the interface through the normal direction 

Kinematic condition : impermeability (no penetration) 

V
┴
 

V 
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1. Kinematic boundary condition 

η(x,t) 

x 

V
┴

= ∂η/∂t cos(α) 

y 

α 

No fluid particles going across the interface through the normal direction 

Kinematic condition : impermeability (no penetration) 

u
┴1= v1 cos(α)+ 

V
┴
 

V 

u 

v 

u
┴1 
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1. Kinematic boundary condition 

η(x,t) 

x 

V
┴

= ∂η/∂t cos(α) 

y 

α 

No fluid particles going across the interface through the normal direction 

Kinematic condition : impermeability (no penetration) 

u
┴1= v1 cos(α)- u1 sin(α) 

V
┴
 

V 

u 

v 

u
┴1 

∂η/∂t=v1- u1 tan(α)      ∂η/∂t=v1- u1∂η/∂x 
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1. Kinematic boundary conditions 

far-field 

- 

- 
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1. Dynamic boundary conditions 
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1. More equations 

2nd Bernouilli relations 

 

= 0 

= 0 
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2. Base state 
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3. Perturb and linearize 

perturbation expansion 

Variables Small perturbation Base state 
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3. Linearized equations 

   perturbed potential flow 
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3. Perturbed kinematic boundary conditions 
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3. Perturbed kinematic boundary conditions 
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3. Flattened kinematic boundary conditions 

Taylor expansion around 0: 
0 

transforms a b.c. at an unkwown interface into a fixed place! 



63 

3. Perturbed dynamic boundary conditions 

Replace P1=-gρ1z, … 

flatten 

and linearize 

g 
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3. Perturbed and linearized Bernouilli 

Perturbed 2nd Bernouilli relations 

 

Linearized 2nd Bernouilli relations 
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4. Normal mode expansion 

Fourier transform in x and t 
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4. Normal mode expansion 

Solution to Laplace equation: 
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4. Normal mode expansion 

Solution to Laplace equation: 

z 

2 

1 
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4. Normal mode expansion 

Solution to Laplace equation: 
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4. Normal mode expansion 

Replace in boundary conditions 

This is an eigenvalue problem iωX=MX! 
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5. Dispersion relation 

•Neutral if for all ω, Im(ω)=0: 

•Unstable if  there exists one ω, Im(ω)>0 

•Stable (or damped) if  for all ω, Im(ω)<0: 

The flow considered is not damped, we have 

neglected dissipation by neglecting viscosity 
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Instability analysis: 

1. Equations and boundary conditions 

2. Base state 

3. Linearized equations 

4. Normal mode expansion 

5. Dispersion relation 

6. Analysis of the dispersion relation 
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Dispersion relation 

ρ2 

ρ1 
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Dispersion relation 

z 
ρ2 

ρ1 
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Dispersion relation 

Capillary wavenumber: 

Length scale: 

Time scale 

One single non-dimensional parameter 
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Dispersion relation 

gravity capillary 

shallow water 

Deep water 

~ 
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t 

x 

Difference between group velocity v and 

phase velocity c 
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Dispersion relation 

gravity capillary 

shallow water 

Deep water 
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Dispersion relation 

wavenumber k Capillary wavenumber kc 

capillary waves gravity waves 
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c~k1/2 c~k-
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kc=10; h=1 



79 

Trajectories below the waves 

exp(-ky) 

2π/k 

ch(ky) 
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Stokes drift! 
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Why are the waves parallel to the shore? 

h 

λ 

T=10s; ω=0.62 
c~(gh)1/2 

λ~T(gh)1/2 
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Refraction and diffraction of waves 

Satellite view Namibian coast 
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Nonlinear waves, wavebreaking 

The celerity increases with the depth 
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Dispersion relation 

wavenumber k Capillary wavenumber kc 

capillary waves gravity waves 
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c~(gh)1/2 

c~k1/2 c~k-

1/2 

kc=10; h=1 

min(cφ)~20cm/s 



Conditions for wave pattern formation? 
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