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Introduction: Detachment on modern cars

Figure 1: 
BMW advertising 
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Detachment on… les modern cars

Figure 2: PIV experiment on Renault cars
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Figure 4: 
Alinghi CFD model, EPFL

Aero and/or hydro
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Figure 5: 
Rowing team

Drag reduction- waves at the free surface
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Figure 7: 
Tip vortices and cavitation on turbine

Figure 6: 
Cavitation erosion on turbine blades

Two-phase flows: Turbines, cavitation
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Figure 9: 
Rio Negro (slow and clean) meets amazon 

(quick and dirty)
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Geophysics (atmosphere, ocean, rivers)

Figure 8: Kelvin-Helmholtz instability over mountain 
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Figure 11: Waterspout

Geophysics: tornado

10



2/20/2023 Chap1: Introduction

Oil

Figure 13: Offshore oil rig
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Figure 15: Wave energy harvesting boat 
concept

Tidal and ocean waves energy harvesting

Figure 14: Pelamis snake
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Sports
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Swimming

Figure 19: 
Flow regions for analyzing fish propulsion: a) Anterior leading-edge 

section, b) Trailing side-edge section, c) Caudal-fin section 
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Agriculture

Figure 18: 
Irrigation sprinklers, Eggers and Villermaux (2008)

Size of the droplets?

15



• Continuous model

• Newtonian fluid

• Inviscid fluid

• Lubrication equation

• Potential flow

• Boundary layer

• Creeping/Stokes flow

• Turbulent flow

2/20/2023 Chap1: Introduction

Flow models
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• Unidirectional flow

• Incompressible flow



Mach > 0.3
« high velocity »

(discontinuities, choc waves…)

Mach < 0.3
« low velocity »
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Classification: Several types of flows

• Compressible/incompressible

17



The fluid sticks to the wall, 
which originates in a boundary 

layer
The fluid slips at the wall
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Classification: Several types of flows

• Viscous/Inviscid
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Laminar    Instability    Disorder/Pattern/Chaos   Turbulence

Transition

Hoyt and Taylor (1977)
Marmottant and 

Villermaux (2004)
Marmottant and 

Villermaux (2004)
Rayleigh (1891)
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Instabilities and turbulences
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Transition to turbulence

Unsteady, intermittent, no predictability, random
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• Integral relations of conservation laws

• Partial differential equations

• Harmonic fields

• Similarity analysis/ nondimensional numbers

• Boundary layers

• Matched Asymptotic expansions

• Self-similar solutions

2/20/2023 Chap1: Introduction

Tools to arrive to or to solve these models
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All the flows tackled in this class, although quite far from 
hydrodynamic applications, will hopefully help you to develop 
the required intuition to avoid falling into the engineer’s most 
frequent pitfall:

Using CFD software without thinking and simplifying
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Beware!
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Are you really going to implement a 3D-fluid  structure coupling CFD code 
before:

1. You determine the relevant nondimensional parameters?

2. You estimate the boundary layer thickness and evaluate the feasibility of a 
correct CFD computation?

3. You model the exact shape by a simplified one where literature might be 
abundant?
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Example
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Course: Monday 14h15-16h
Exercises: Monday 16h15-18h 
with Alice Marcotte, Timothée Salamon and Simeon Djambov

Grade:

2 intermediate exams, take home (20%)

1 final exam: written, take home (probably) 80%

Books: 
• Guyon Hulin & Petit, Physical hydrodynamics [Electronic version on BEAST in french]
• Kundu
• Ryhming PPUR
• Multimedia Fluid Dynamics (DVD or online, I was also upload movies)
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Hydrodynamics
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Outline

1. Introduction

2. Fluid: Definition and models

3. Fluid Kinematics 
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• Dictionary : not solid nor thick, flows easily. Takes the form of its container.

• Physicist : in a fluid, the spatial organization is not that of a solid (crystal)
nor the free agitation of molecules of a low pressure gaz.

• Mechanists : a solid is weakly deformable. A fluid is very deformable. Fluids
can take any form when they are subjected to forces, regardless of how
strong these forces are. Deformation continues until the strain stop (no
memory of the reference configuration).
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What is a fluid? Some definitions

Limits between solid/fluid rather fuzzy
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What is a fluid? Some definitions

Figure 23: 
Definition of a fluid from l’Encyclopédie Diderot, d’Alembert.

A Fluid is a body, the constituent parts of which break to the least force, and by breaking
are easily moved by one another. In order to constitute fluidity, the parts thus need to
separate and break at such a negligible effort that it is unperceivable to our senses;
which is what water, oil, air or mercury do…
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• A fluid is a continuum medium that cannot be maintained at
rest when stressed.

• In general, this definition is sufficient.

• There exist materials which behave closer to a solid or a fluid,
depending on the applied forces, as the so called visco-elastic
materials for instance.
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What is a fluid? Some definitions
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Fluid or solid?

Figure 24:  Aletsch Glacier
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Fluid or solid?

Figure 25: Granular avalanche
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Fluid or not fluid?

Figure 26: Granular avalanche (PMMH/ESPCI)
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• 3 scalar quantities : p, ρ, T

• 1 vector quantity : u

• All these quantities depend on position and time
→ p(x,y,z,t)…
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Fluid properties

Homogeneous flow : these quantities are 
independent of the location

p(t)…
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Fluid properties

Fluids

Liquids

Gas

Similar mechanical laws

Compressibility!

Not always miscible: Free 
interface!

Is there a situation where water is seen to be compressible?
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Fluid models: How to relate the deformation of a 
fluid to the applied stress?

Fluids

Newtonian

Non Newtonian

Same laws,
Different equations

Stress proportional to deformation 
rate  (strain rate)
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Continuum hypothesis

Knudsen number:
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Continuum hypothesis: 

Micro-Electro-Mechanical systems

Vectorial

Analysis

L~100 nm
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Figure 27: “Lab on a chip” Burns & al (1998)
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Q1: By definition the velocity of a fluid can be 
everywhere 0 if and only if there are no external forces

1. True

2. False
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Q2: The constitutive law of a Newtonian fluid links 

1. A stress rate tensor to a strain tensor

2. A stress tensor to a strain tensor

3. A stress tensor to a strain-rate tensor
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Q3: Thanks to Cauchy’s continuum mechanics tensor formalism, 
the stress on any infinitesimal surface of arbitrary orientation at 

a certain point of space requires the knowledge of

1. 9 scalars

2. 6 scalars

3. a 3x3 symmetric tensor
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Q4: The flow is always directed from high to low 
pressure

1. True

2. False
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Q5: The drag exerted on a body decreases with the 
Reynolds number

1. True

2. False
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Outline

1. Introduction

2. Fluid: Definition, models and classifications

3. Navier-Stokes

What do we need?

1. F=ma and Lavoisier

2. Fluid Kinematics, Euler-Lagrange, transport theorem

3. A constitutive model

4. Differential operators 
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• Fluid kinematics is the study of fluid motion without taking 
into account of the forces at their origin.

• Two possible approaches:

- Eulerian description
- Lagrangian description
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Fluid kinematics: Euler/Lagrange



At each time-instant, we consider the velocity of a different 
fluid parcel

• One considers the velocity u(x,y,z) at a 
given fixed location M(x,y,z)

M(x,y,z)
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Eulerian description

t0 t1 t2

u(x,y,z,t0) u(x,y,z,t1) u(x,y,z,t2)
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At each time instant, one considers the same fluid parcel

• One considers the velocity u(x,y,z,t) of a 
fluid parcel in its motion, by specifying its 
position M0(x0,y0,z0) at time t0.

M0(x0,y0,z0)

t0
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Lagrangian description

t2

u(x,y,z,t2)

t1

u(x,y,z,t1)
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Lagrangian description

Trajectory:

Field:

Velocity:

Tag (label)
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Eulerian description

Field:

Location
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Trajectory:
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Total derivative

Total derivative Local derivative Convective 
derivative
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Special cases

6

Uniform flow

Stationary flow



• In the Eulerian description, one aims at quantifying the 
temporal variations of a quantity associated to a fluid 
parcel
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Total derivative (material derivative)
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Total derivative (material derivative)

Material derivative, i.e. temporal variation 
of b inside a fluid parcel

Local derivative, i.e. temporal variation of b at the location of the 
fluid parcel, i.e. at a geometric fixed location M0

Convective derivative, i.e. temporal variations of b in 
the fluid parcel due to the transport (advection) of 

the inhomogeneous field b at the velocity U into from 
the fluid parcel
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Example: I am floating in a 
heated pool i.e. T(t)
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Total derivative (material derivative)

T1 T2

Example: I am floating in pool where 
T=T(x,y,z)

u=0 u

52
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Lagrange/Euler?
Ex: felt temperature by a swimmer in a swimming pool with varying

depth and therefore temperature

deep

cold

shallow

hot

The swimmer is immobile. The temperature does not change with time

27o

24o



Lagrange/Euler?
The swimmer now swims at U

deep

cold

shallow

hot

The temperature felt by the swimmer increases with time

despite the fact that from an Eulerian point of view

27o

24o

U



Lagrange/Euler?
The swimmer is at rest again, but the sun shines hard

deep

cold

shallow

hot

The temperature felt by the swimmer increases with time

because it increases point wise. There is no motion, so that

Euler and Lagrange have the same point of view.

27o

24o



Lagrange/Euler?
The swimmer is at rest again, but the sun shines hard

deep

cold

shallow

hot

The temperature felt by the swimmer increases with time

because it increases point wise. There is no motion, so that

Euler and Lagrange have the same point of view.

27o

24o



Lagrange/Euler?
The swimmer starts swimming again and clouds arrive…

deep

cold

shallow

hot

27o

24o

U

Lagrangienne derivative

Total derivative

Eulerian derivative

Advective derivative



The acceleration is the particular derivative of the velocity
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Acceleration

Local acceleration Convective acceleration
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• Stationary flow in a convergent pipe

The acceleration is not zero (= convective acceleration)
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Acceleration
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Trajectory
A trajectory is the path of a particle

ODE

Initial condition

t2

t1
t0



Trajectories can cross
In an usteady flow, trajectories can cross

t3
t2t1

t2

t1
t0



Path lines
Collection of locations of particles at t=T, that went through M0 at t<T

t3
t2t1

t2

t1
t0

t3

t1
t0 t2 t0

t3

Went through M0 at t0

went through M0 at t1

went through M0 at t2

went through M0 at t3

M0 T=t3



Trajectories and path lines
In an unsteady flow, trajectories and path lines are not 

superimposed



Streamlines
Eulerian concept : curve everywhere tangent to the velocity field

This is a geometric property at a given time t



Streamlines
A streamline does not touch walls

Unless at a stagnation point*, where a separatrix emanates

*where the wall shear stress is zero



Streamline equation
Curve everywhere tangent to the flow field

Differential equation



Beware of the reference frame!
A cylinder moves at constant velocity in a very viscous fluid

Lab reference frame Cylinder reference frame



Impacting jet

u

v



Stationary jet

Flow field



Streamline



Trajectory (till T=4) 

Particle position every dt

Particle position avery 10dt



Streakline

Particule released every dt

Particule released every 10dt



Trajectory = Streakline = Streamline

Particle position every dt

Particle position avery 10dt

Particule released every dt

Particule released every 10dt



Oscillating jet : instantaneous streamline



Trajectory (till T=2) 

Particle position every dt

Particle position avery 10dt



Streakline

Particule released every dt

Particule released every 10dt



Trajectory = Streakline = Streamline

Particle position every dt

Particle position avery 10dt

Particule released every dt

Particule released every 10dt
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2. Fluid: Definition, models and classifications

3. Navier-Stokes

What do we need?

1. F=ma and Lavoisier

2. Fluid Kinematics, Euler-Lagrange, transport theorem

3. A constitutive model

4. Differential operators 
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Outline
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3. A constitutive model
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Divergence

z

U

y

U

x

U
UUdiv zyx














 .

Vectoriel field
(ex : velocity)

zzyyxx eUeUeUzyxU ),,(

→ Divergence of vector = scalar
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V

t t+dt

dt

dV

V
Udiv

1


Divergence : physical 
interpretation

The divergence of the velocity field corresponds to the 
volumetric dilatation rate of an infinitesimal fluid volume

V+dV
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A B

UxBUxA

x

AB is a line of fluid particles in a flow such that UxA<UxB. Since the
velocity is higher in B than in A, the segment AB is stretched in the x
direction. This deformation is called a stretching. The relevant
quantity is the derivative of the velocity with respect to the direction
tangential to this velocity

A’ B’
x

Instant t

Instant t+dt

Stretching
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A B
x

A’ B’
x

x

U x





UxBUxA

Stretching

A’B’-AB=(UxB-UxA)dt=          dxdt
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A B

x

A’

B’

x

U x





UxBUxA

Volume (surface area) change

UyA

UyC

C

y

UxC

UyB

C’
C’’

B’’

(A’’B’’)(A’’C’’)-(AB)(AC)=(AB)(AC)( +         ) dt
y

U y




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Gradient of a scalar







































z

p

y

p

x

p

ppgrad

Scalar field
(ex : pressure)

),,( zyxp

→ Gradient of scalar = vector

 Gradient operateur (nabla)



Velocity gradient Symetric part Antisymetric part

Taylor expansion of the velocity field

Gradient of a vector: application to the 
velocity field



Deformation of a fluid parcel 
centered in  

diagonal antisymmetrictrace-free

Translation Pure dilationRotation Pure deformation

Taylor expansion of the velocity field



Taylor expansion of the velocity field

Gradient of a vector: application to the 
velocity field

diagonal antisymmetrictrace free



The action of the antisymetric part of the velocity gradient can be 

reexpressed as a vectorial product

Rotation and vorticity

vorticity
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


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
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y
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U
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U
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U
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U

y

U

UUrot
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zx

yz

zzyyxx eUeUeUzyxU ),,(

→ Rotational of vector = vector

Rotational

Vectorial field
(ex : velocity)

Urot vorticity
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Rotational : physical 
interpretation

The vorticity characterizres the instantaneous rotation
of a parcel of fluid around its center

t1

t2

Rotational motion

0Urot
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Rotational : physical 
interpretation

The vorticity characterizres the instantaneous rotation
of a parcel of fluid around its center

t1

Irrotational motion

t1

t2

0Urot
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Scalar field
(ex : one component of the velocity field)

Laplacian

2

2

2

2

2

2

z

U

y

U

x

U
U xxx

x













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),,( zyxU x

→ Laplacien of scalar = scalar
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Vector field
(ex : velocity)

Laplacian

























z

y

x

U

U

U

U

),,( zyxU

→ Laplacian of vector = vector
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Material Volume
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?

Transport theorem
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•

Transport theorem
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•

Transport theorem
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•

Transport theorem



101

Material derivative

Material 
derivative

Local 
derivative

Convective
derivative
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volumetric form

Transport theorem



103Surface flux expression

Transport theorem
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Stress modeling

Fundamental laws

Balance

Mass

Momentum

Angular 
Momentum

Energy

ρ

ρ

ρ

ρ
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= -

M(t)

Mass conservation of a fluid element
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= -

Continuity equation

Incompressible flow

The density is constant on a trajectory
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Volume sources

Surface fluxes

Fundamental laws
Local forms

Conservative form
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Continuity equation

Fundamental laws
Local forms

Conservative form

Non conservative form



Outline
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Conservation of momentum

Newton’s second law

Force balance : 

• pressure forces

• viscous forces

• volumetric forces f

 Fam
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What type of stresses?

• Volumetric stresses, associated to a volumetric force 
distribution

→ gravity, electro-magnetic force (conducting 
fluid)…

• Surface stresses, applying at the surface of a 
continuum parcel

→ friction, pressure, surface tension,…
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Momentum conservation

Cauchy stress tensor
Surface forces

Normal

Volumetric forces

A theorem due to Cauchy, using small tetrahedra of arbitrary orientation, 

shows that the surface force is linear with the normal to the surface and 

allows us to represent the cohesion forces by a stress tensor
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Hydrostatics

Pressure
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Stresses in a fluid at rest : pressure

A fluid at rest is subjected to isotropic normal forces!
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Archimedes law
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Archimedes law
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?

?

Equilibrium position of floating
stab as a function of its density
(and shape)  
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dS

n

Stresses in a moving fluid

In addition to the normal isotropic pressure force, the fluid 
element feels both normal and tangential viscous forces  

dF = -pn dS

F = ∫∫-pndS
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Newtonian fluid model :

• The stresses do not apply in preferential direction
• The intensity of the stress is a linear function of the 
velocity gradient.

Most usual fluids (water, air, quicksilver…) are well
approximated by the Newtonian fluid model.

Stress in a moving fluid: viscous 
stress tensor
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Viscous stress tensor

: dynamic viscosity
(kg/m/s)

n=/r :
Kinematic viscosity
(m²/s)

Newtonian fluid model  
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Divergence of velocity field, 
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A B
x

A’

B’

x

Instant t

Instant dt later

Stresses : shear

y

y

UyB

UyA

AB is a line of fluid particles in a flow such that UyA<UyB. Since the
velocity is higher in B than in A, the segment AB will rotate. This
deformation is called shear. The relevant quantity is the derivative of
the velocity with respect to the direction normal to this velocity
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2. Fluid Kinematics, Euler-Lagrange, transport theorem

3. A constitutive model

4. Differential operators 
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theorem

Green’s 

identity
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Newtonian incompressible fluid
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Viscous stress
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Newtonian incompressible fluid


