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Introduction: Detachment on modern cars
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Figure 1:
BMW advertising
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Detachment on... les modern cars

Figure 2: PIV experiment on Renault cars
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Aero and/or hydro

Figure 4:
Alinghi CFD model, EPFL




Drag reduction- waves at the free surface

Figure 5:
Rowing team
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Two-phase flows: Turbines, cavitation

Figure 6: Figure 7:
Cavitation erosion on turbine blades Tip vortices and cavitation on turbine
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Geophysics (atmosphere, ocean, rivers)

Figure 9:
Rio Negro (slow and clean) meets amazon
(quick and dirty)

2/20/2021 Chap1: Introduction



2/20/2021

Geophysics: tornado

Figure 11: Waterspout
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Figure 13: Offshore oil rig
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Tidal and ocean waves energy harvesting

Figure 15: Wave energy harvesting boat

Figure 14: Pelamis snake
concept
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Figure 19:
Flow regions for analyzing fish propulsion: a) Anterior leading-edge
section, b) Trailing side-edge section, c) Caudal-fin section
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Agriculture

Size of the droplets?

Figure 18:
Irrigation sprinklers, Eggers and Villermaux (2008)
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Flow models

Continuous model
Newtonian fluid
Creeping flow

Inviscid fluid
Unidirectional flow
Lubrication equation

Incompressible flow
Potential flow
Boundary layer

Turbulent flow



Classification: Several types of flows

* Compressible/incompressible

Mach > 0.3
« high velocity »
(discontinuities, choc waves...)

Mach < 0.3
« low velocity »
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Classification: Several types of flows

* Viscous/Inviscid

The fluid sticks to the wall,
which originates in a boundary The fluid slips at the wall
layer
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Instabilities and turbulences

Laminar = Instability = Disorder/Pattern/Chaos = Turbulence

— —

Sy,

Transition

Marmottant and Rayleigh (1891) Marmottant and
Villermaux (2004) ylelg Villermaux (2004)
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Transition to turbulence

Unsteady, intermittent, no predictability, random
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Tools to arrive to or to solve these models

Integral relations of conservation laws

Partial differential equations

Harmonic fields

Similarity analysis/ nondimensional numbers
Boundary layers

Matched Asymptotic expansions

Self-similar solutions



Beware!

All the flows tackled in this class, although quite far from
hydrodynamic applications, will hopefully help you to develop
the required intuition to avoid falling into the engineer’s most

frequent pitfall:
Using CFD software without thinking and simplifying
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Example

Are you really going to implement a 3D-fluid structure coupling CFD code
before:

1. You determine the relevant nondimensional parameters?

2. You estimate the boundary layer thickness and evaluate the feasibility of a
correct CFD computation?

3.  You model the exact shape by a simplified one where literature might be
abundant?

2/20/2021 Chap1: Introduction 23



Hydrodynamics

Course: Monday 14h15-16h

Exercises: Monday 16h15-18h

with Shahab Eghbali and Pier-Giuseppe Ledda
ZOOM-Q&A

Grade:

2 intermediate exams, take home (20%)

1 final exam: written, take home (probably) 80%

Books:

. Guyon Hulin & Petit, Physical hydrodynamics [Electronic version on BEAST in french]
*  Kundu

. Ryhming PPUR
. Multimedia Fluid Dynamics (DVD or online, | was also upload movies)
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Introduction
Fluid: Definition and models

Fluid Kinematics
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What is a fluid? Some definitions

* Dictionary : not solid nor thick, flows easily. Takes the form of its container.

* Physicist : in a fluid, the spatial organization is not that of a solid (crystal)
nor the free agitation of molecules of a low pressure gaz.

* Mechanists : a solid is weakly deformable. A fluid is very deformable. Fluids
can take any form when they are subjected to forces, regardless of how
strong these forces are. Deformation continues until the strain stop (no
memory of the reference configuration).

Limits between solid/fluid rather fuzzy
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What is a fluid? Some definitions

« FLUIDE, adj. pris subst. (Phys. & Hydrodyn.) est
un corps dont les parties cedent a la moindre
force, & en Iui cédant sont aisément mies
entr'elles. Il faut donc pour constituer la fluidité,
que les parties se séparent les unes des autres, &
cedent a une impression si petite, quelle soit
insensible a nos sens ; c’est ce que font I'eau,
I'huile, le vin, I'air, le mercure... »

Figure 23:
Definition of a fluid from I’Encyclopédie Diderot, d’Alembert.

A Fluid is a body, the constituent parts of which break to the least force, and by breaking
are easily moved by one another. In order to constitute fluidity, the parts thus need to
separate and break at such a negligible effort that it is unperceivable to our senses;
which is what water, oil, air or mercury do...



What is a fluid? Some definitions

e A fluid is a continuum medium that cannot be maintained at
rest when stressed.

* In general, this definition is sufficient.

 There exist materials which behave closer to a solid or a fluid,

depending on the applied forces, as the so called visco-elastic
materials for instance.
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Fluid or solid?

Figure 24: Aletsch Glacier
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Fluid or not fluid?

Figure 25: Granular avalanche
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Fluid or not fluid?

P Er

547 yards
—

Figure 26: Granular avalanche (PMMH/ESPCI)
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Fluid properties

 3scalar quantities: p,p, T
* 1 vector quantity : u

* All these quantities depend on position and time
- p(x,y,z,1)...

Homogeneous flow : these quantities are
independent of the location

p(t)...

2/20/2021 Chap1: Introduction
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Fluid properties

Not always miscible: Free
interface!

Fluids

1
Liquids

Similar mechanical laws

Gas

v

Compressibility!

Is there a situation where water is seen to be compressible?

2/20/2021
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Fluid models: How to relate the deformation of a
fluid to the applied stress?

Stress proportional to deformation
rate (strain rate)

1

Newtonian

Same laws,

Fluids

Different equations

Non Newtonian
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Continuum hypothesis

1

<—€<<s<<L—>: L E

[
Knudsen number: Kn = Z < 1
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Continuum hypothesis:

Micro-Electro-Mechanical systems

L~100 nm

SAMPLE
LOADING
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Figure 27: “Lab on a chip” Burns & al (1998)

Chap1: Introduction

RUNNING BUFFER
PORTS
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Outline

1. Introduction
2. Fluid: Definition, models and classifications
3. Navier-Stokes

What do we need?

1. F=ma and Lavoisier

2. Fluid Kinematics, Euler-Lagrange, transport theorem
3. A constitutive model
4

Differential operators
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Fluid kinematics: Euler/Lagrange

* Fluid kinematics is the study of fluid motion without taking
into account of the forces at their origin.

 Two possible approaches:

- Eulerian description
- Lagrangian description



Eulerian description

* One considers the velocity u(x,y,z) at a
given fixed location M(x,y,z)

\Y

At each time-instant, we consider the velocity of a different
fluid parcel

t, V t, WV t, W

2/20/2021 Chap1: Introduction 39




One considers the velocity u(x,y,z,t) of a
fluid parcel in its motion, by specifying its
position My(Xo,Yo,2o) at time t,

Lagrangian description

b

At each time instant, one considers the same fluid parcel

2/20/2021

u(XIylZItZ)

Chap1: Introduction
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Lagrangian description

X3
M
t
Mo
z 2
X
O X5
X Tag (label)
Trajectory: X = ‘I)(X, t)
Field: B = B(X,1)
0P
Velocity: U(X,t) = e (X, 1)
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Field:

2/20/2021

Eulerian description

*3 Uy (Xa t)

X1
Taiectory: o = (x,1)
rajectory: 7t — U (X,
B:b()T(,t) x(t=0)=X
Location

Chap1: Introduction 42



Total derivative

B(X,t)= b(x,t) = b[®(X, 1), 1]

. 0B 0b oP
B= b —
Ot 8t TV ot
: db  0b
B=— =2 +4Vb-
@ tVhm
Total derivative || Local derivative Convective
derivative
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Special cases

Uniform flow
Vu =
Stationary flow
ou

P

ou,

ox
Oy,

ox
o,

ox

ou,,
0y
Ouy
dy
o,
dy

U,

0z
Oy,

0z
ou .,

0z

\
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Total derivative (material derivative)

In the Eulerian description, one aims at quantifying the
temporal variations of a quantity associated to a fluid
parcel

2/20/2021 Chap1: Introduction
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Total derivative (material derivative)

db| |0b| ob ~0b ~ 0b
at| ot “or uyé’y )

derivative, i.e. temporal variations of b in
the fluid parcel due to the transport (advection) of
the inhomogeneous field b at the velocity U into from
the fluid parcel

\ 4
Local derivative, i.e. temporal variation of b at the location of the
fluid parcel, i.e. at a geometric fixed location MO

\ 4
\Vaterial derivative, i.e. temporal variation
of b inside a fluid parcel

2/20/2021 Chap1: Introduction
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Total derivative (material derivative)

db | 0b 0b 0b 0b

dt ot “or Uyay R

|

T, T,
Example: | am floating in a Example: | am floating in pool where
heated pooli.e. T(t) T=T(x,y,z)
| oT dT
ot ot dt
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Lagrange/Euler?

Ex: felt temperature by a swimmer in a swimming pool with varying
depth and therefore temperature

279

shallow
= hot

deep
=cold

24

The swimmer is immobile. The temperature does not change with time

DT_4
Dt




Lagrange/Euler?

The swimmer now swims at U

279

deep
=cold

24

shallow
= hot

DT
The temperature felt by the swimmer increases with time — > (

despite the fact that from an Eulerian point of view

DT oT
i § el
Dt ox

Dt

oT
g—O



Lagrange/Euler?

The swimmer is at rest again, but the sun shines hard

279
deep shallow
=cold = hot
24
: : L DT
The temperature felt by the swimmer increases with time — >0

because it increases point wise. There is no motion, so tha.
Euler and Lagrange have the same point of view.

DT oT
Dt Ot




Lagrange/Euler?

The swimmer is at rest again, but the sun shines hard

279
deep shallow
=cold = hot
24
: : L DT
The temperature felt by the swimmer increases with time — >0

because it increases point wise. There is no motion, so tha.
Euler and Lagrange have the same point of view.

DT oT
Dt Ot




Lagrange/Euler?

The swimmer starts swimming again and clouds arrive...

277

shallow
= hot

deep
=cold

24

: ative |DT| [0T JoT T T
#agrangl_enn.e derivative (U1 | _ H = + ty=— + 1, ——
otal derivative Dt dy

ot ox 02

Advective derivative

Eulerian derivative



Acceleration

The acceleration is the particular derivative of the velocity

Local acceleration Convective acceleration
T T
Ou, | Ou, | Ou,, | Ou,,
CLQ; — | qu | u [ uz
ot Ox 7 Oy 0z
CLy —
a, —
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Acceleration

e Stationary flow in a convergent pipe

The acceleration is not zero (= convective acceleration)

2/20/2021 Chap1: Introduction
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Trajectory
A trajectory is the path of a particle

Initial condition d

ODE



Trajectories can cross

In an usteady flow, trajectories can cross



Path lines

Collection of locations of particles at t=T, that went through M, at t<T

went through M, at t,

) ’
went through M, v/ent through M, at t;



Trajectories and path lines

In an unsteady flow, trajectories and path lines are not
superimposed

~
~
\\
LY
O



Streamlines

Eulerian concept : curve everywhere tangent to the velocity field

This is a geometric property at a given time t



Streamlines

A streamline does not touch walls
Unless at a stagnation point*, where a separatrix emanates

10

*where the wall shear stress is zero



Streamline equation

Curve everywhere tangent to the flow field

Differential equation

uNdx =0



Beware of the reference frame!

A cylinder moves at constant velocity in a very viscous fluid

Lab reference frame Cylinder reference frame
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Flow field

Stationary jet
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Trajectory (till T=4)
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Streakline
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Trajectory = Streakline =
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Oscillating jet : instantaneous streamline

Ty = SIH(Qt) V=1
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Outline

1. Introduction
2. Fluid: Definition, models and classifications
3. Navier-Stokes

What do we need?

1. F=ma and Lavoisier

2. Fluid Kinematics, Euler-Lagrange, transport theorem
3. A constitutive model
4

Differential operators
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Outline

1. Introduction
2. Fluid: Definition, models and classifications
3. Navier-Stokes
What do we need?
1. F=ma and Lavoisier

Fluid Kinematics, Euler-Lagrange, transport theorem

2
3. A constitutive model
4

Differential operators
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Divergence

Vectoriel field U (x, y,z)=UX§+Uy€+UZ€
(ex : velocity)

ou, U, au,
+ +

OX oy oz

divU =VU =

— Divergence of vector = scalar



Divergence : physical
interpretation

The divergence of the velocity field corresponds to the
volumetric dilatation rate of an infinitesimal fluid volume




Stretching

UxA UxB
Instant t T > )z
A B
Instant t+dt | )z
A B

AB is a line of fluid particles in a flow such that U,,<U,;. Since the
velocity is higher in B than in A, the segment AB is stretched in the x
direction. This deformation is called a stretching. The relevant
quantity is the derivative of the velocity with respect to the direction
tangential to this velocity



Stretching

hu,

A’B’-AB=(U, 4-U, ,)dt=—=|dxdt
OX

78



Volume (surface area) change
.

C’

y

UyC
C
UxC
UyA UyB
A UxA B UxB ”
(a7B)(A"C”)-(AB)(AC)=(AB)AC)Vx + Yy ) gt

OX oy



Gradient of a scalar

Scalar field p(x,y,2)
(ex : pressure)

grad p:%’p: —

——
V Gradient operateur (nabla)

— Gradient of scalar = vector



Gradient of a vector: application to the

velocity field
Taylor expansion of the velocity field

u(x 4 0x) = u(x) + Vu éx

[Vul-[D+|0

Velocity gradient ~ Symetric part Antisymetric part

D= ((Vu) (Vu)T)

h:)lb—L Mll—l

()= ((Vu) (Vu)T)




Deformation of a fluid parcel
centered in

Taylor expansion of the velocity field

u(x +0x) = -I—Vu 0X

Vu =[S +.+.

trace-free antisymmetric

u(x)

X

Translation

Rotation

_|_

A

A

X

>

Pure deformation



Gradient of a vector: application to the

velocity field
Taylor expansion of the velocity field

u(x +0x) = u(x) + Vu ox

Vu=$ +I+l

trace free antisymmetric



Rotation and vorticity

The action of the antisymetric part of the velocity gradient can be
reexpressed as a vectorial product

1
925((VU)—(VU)T)
N N A (AT e

ou o _ ow . bu_iw ~
T 0 (8z 8y> Oy —|_8z ox A Oy

(22 (-2 0 (o) Bl o)

0X %E A 0X

ty

—
p—

o |
S [=2
=
[
=
O |

‘w:VAﬂ




Rotational

Vectorial field U(x, Y, Z) :UX€+Uyg+UZ€
(ex : velocity)

/auz_auy\
oy 0z
rotU =v AU =| &Y= _ Y,
Oz OX
ou, au,
. OX 8y)

— Rotational of vector = vector

Q=rot U vorticity



Rotational : physical
interpretation

The vorticity characterizres the instantaneous rotation
of a parcel of fluid around its center

Rotational motion

E’EU;ﬁO



Rotational : physical
interpretation

The vorticity characterizres the instantaneous rotation
of a parcel of fluid around its center

Irrotational motion
rotU =0



Laplacian

Scalar field  U,(xy,2)
(ex : one component of the velocity field)

2 2 2
AUX:6U2X+8U2X+8U2X
OX oy Oz

— Laplacien of scalar = scalar



Laplacian

Vector field U(x,Y,2)
(ex : velocity)

(AU
AU =| AU,
\AUz/

— Laplacian of vector = vector



1.
2.
3.

2/20/2021

Outline

Introduction

Fluid: Definition, models and classifications

Navier-Stokes

What do we need?

1.

2
3.
4

F=ma and Lavoisier

Fluid Kinematics, Euler-Lagrange,|transport theorem

A constitutive model

Differential operators

Chap1: Introduction 90



Material Volume

91



Transport theorem

d

@ ?
o Jow b(x,t)dQ(t)



Transport theorem

d (db g

diJ e

b(x.1)dQ(r) = [

| de()+pae(y

dt



Transport theorem

d (db g

diJ e

b(x.1)dQ(r) = [

| de()+pae(y

dt
~~
Q1

dQ(1)=dQ(t)divU



Transport theorem

(%dg(z)méé\(z))

da
dt v Q1)

b(x,1)dQ (1) = [

Q2(1)

/"'.'\

Q1) = dQ (1) divU

db

o )b()_c,t)dQ(t)= fg(t)(5+bdivg)d9(t)



Material derivative

B(X,t)=b[¢(X.1).1]

: 0
B= B _ b + grad b.—Q
ot ot ot
B = @=@ + grad b.U
dr ot
Material Local Convective

derivative derivative derivative



Transport theorem

o IR COTCTORY N E e ORt)
700) = dQ(1)divU
% Q(t)b(;_g,t)dg(t)=fg(t)(%+bdivg)d9(t)
- fg(t)(‘;’;miv(b Q))dsz(r)

volumetric form



Transport theorem

d

a1 (‘”’ 101 )+b§'&z))

dt

b(x.1)dQ(r) = [

Q1)

700) = dQ(1)divU

>(

° )
=/ (ab+d1v(b U))dQ()
U.n)da(t

= [ bx.r)dQ(r)= [

dt v (1) Q(1
Q)

@+ bleU)dQ(
dt
ot

%Q(t)b(x,t)dg(t) f —dsz f 7

Surface flux expression



Finite control
volume fixed
in space

M pdv + [ pVedS=0
1% S

|

Integral form
Conservation form

\u\,_//

P

Infinitesimally small
element fixed in space
L AR e

Path C

1L

L 2 4ve(pV)=0

Path B

Finite control
volume of fixed
mass moving
with the flow

IL

Path A D it
D {}p’ pdvV=0

Integral form
Nonconservation form

\%
,//*@\s
Infinitesimally small fluid element

of fixed mass moving with the flow
V. %

or

Differential form
Conservation form

SN S P

Differential form
Nonconservation form

Path D




Fundamental laws

Balance b(x,1)
Mass P
Momenfum pU
Angular P OM AU
Momentum
Enerqy o e+ U2




Mass conservation of a fluid element

d M(t D
():/w(t) £ - pdivo| dV

dt Dt
_ dp |
_/w(t) _airdlv(pfv). dVv
D
D—§=-pdivv




Continuity equation

Dp 1
— =- pdivw
pr P

Incompressible flow

diveo =0

The density is constant on a trajectory



