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Introduction: Detachment on modern cars
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Figure 1:
BMW advertising
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Detachment on... les modern cars

Figure 2: PIV experiment on Renault cars
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Introduction: Naval hydrodynamics

Figure 3:
Boat under construction
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Introduction

Figure 4.
Alinghi CFD model, EPFL




Introduction: Drag reduction

Figure 5:
Rowing team
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Introduction: Turbines, cavitation
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Figure 6: Figure 7:
Cavitation erosion on turbine blades Tip vortices and cavitation on turbine
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Introduction: Geophysics

Figure 9:
Rio Negro (slow and clean) meets amazon
(quick and dirty)
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Introduction: Geophysics
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Image satellite du cyclone Luis au dessus de la Guadeloupe (4/9/1995).

© METEO FRANCE

Figure 10: Satellite image of Hurricane Luis above
Guadeloupe (1995), Meteo France
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Introduction: Geophysics

Figure 11: Waterspout
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Introduction: Aeronautics/Aerospace

Figure 12: Military seaplane
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Introduction: Qil
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Figure 13: Offshore oil rig

©2002 W. Ryan Holliday
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Introduction:

Tidal and ocean waves energy harvesting

Figure 15: Wave energy harvesting boat

Figure 14: Pelamis snake
concept
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Introduction: Construction

Figure 16: Figure 17:
Glen Canyon Dam Jiaozhou Bay bridge (26.4 miles)
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Introduction: Sports

2/18/2019
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Introduction: Agriculture

Size of the droplets?

Figure 18:
Irrigation sprinklers, Eggers and Villermaux (2008)
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Introduction

Figure 19:
Flow regions for analyzing fish propulsion: a) Anterior leading-edge
section, b) Trailing side-edge section, c) Caudal-fin section
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Introduction

i

(a) ¢ =23 mm

i

(a) ¢ =23 mm

FIGURE 2. Fluorescein dye visualization of the typical reverse BvK vortex street that
characterizes flapping-based propulsion (top), and an asymmetric wake (bottom) that is
produced by some flapping configurations even when the flap motion is symmetric.

Figure 20: Symmetry breaking of the reverse Bénard-Von Karman vortex street (PMMH-EPSCI-Paris)
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Introduction: Rayleigh-Taylor instability

Figure 21: Rayleigh-Taylor instability in a glass
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Introduction: But also...

Figure 22: Pint of Guinness and beer head
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Flow models
Continuous model
Newtonian fluid
Creeping flow
Inviscid fluid
Incompressible flow
Potential flow
Boundary layer

Turbulent flow



Flow models
Integral relations of conservation laws
Partial differential equations
Unidirectional flows
Harmonic fields
Similarity analysis/ nondimensional numbers
Boundary layers
Matched Asymptotic expansions

Self-similar solutions



Beware!

All the flows tackled in this class, although quite far from
hydrodynamic applications, will hopefully help you to develop
the required intuition to avoid falling into the engineer’s most

frequent pitfall:
Using CFD software without thinking and simplifying
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Example

Are you really going to implement a 3D-fluid structure coupling CFD code
before:

1. You determine the relevant nondimensional parameters?

2.  You estimate the boundary layer thickness and evaluate the feasibility of a
correct CFD computation?

3.  You model the exact shape by a simplified one where literature might be
abundant?
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Hydrodynamics
Course: Monday 14h15-16h

Exercises: Tuesday 8h15-10h
with Shaha Eghbali and Isha Shukla

Grade:
Homework (20%)

1. exercise
2. article study

Exam: Written

Books:

. Guyon Hulin & Petit, Physical hydrodynamics [Electronic version on NEBIS in french]
. Kundu

. Ryhming PPUR

. Multimedia Fluid Dynamics
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What is a fluid? Some definitions

* Dictionary : not solid nor thick, flows easily. Takes the form of its container.

e Physicist : in a fluid, the spatial organization is not that of a solid (crystal)
nor the free agitation of molecules of a low pressure gaz.

* Mechanists : a solid is weakly deformable. A fluid is very deformable. Fluids
can take any form when they are subjected to forces, regardless of how
strong these forces are. Deformation continues until the strain stop (no
memory of the reference configuration).

Limits between solid/fluid rather fuzzy
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What is a fluid? Some definitions

« FLUIDE, adj. pris subst. (Phys. & Hydrodyn.) est
un corps dont les parties cedent a la moindre
force, & en lui cédant sont aisément mies
entr'elles. Il faut donc pour constituer la fluidité,
que les parties se séparent les unes des autres, &
cedent a une impression si petite, qu'elle soit
insensible a nos sens ; c'est ce que font l'eau,
I'huile, le vin, I'air, le mercure... »

Figure 23:
Definition of a fluid from I’Encyclopédie Diderot, d’Alembert.

A Fluid is a body, the constituent parts of which break to the least force, and by breaking
are easily moved by one another. In order to constitute fluidity, the parts thus need to
separate and break at such a negligible effort that it is unperceivable to our senses;
which is what water, oil, air or mercury do...



What is a fluid? Some definitions

e A fluid is a continuum medium that cannot be maintained at
rest when stressed.

* In general, this definition is sufficient.

 There exist materials which behave closer to a solid or a fluid,

depending on the applied forces, as the so called visco-elastic
materials for instance.
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Fluid or solid?

Figure 24: Aletsch Glacier
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Fluid or not fluid?

Figure 25: Granular avalanche
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Fluid or not fluid?
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Figure 26: Granular avalanche (PMMH/ESPCI)
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Fluid properties

 3scalar quantities: p,p, T
* 1 vector quantity : u

* All these quantities depend on position and time
- p(x,y,z,1)...

Homogeneous flow : these quantities are
independent of the location

p(t)...
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Fluid properties

Not always miscible: Free
interface!

Fluids

i
Liquids

Similar mechanical laws

Gas

v

Compressibility!

Is there a situation where water is seen to be compressible?

2/18/2019
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Fluid models: How to relate the deformation of a
fluid to the applied stress?

Stress proportional to deformation
rate (strain rate)

1

Newtonian

Same laws,

Fluids

Different equations

Non Newtonian
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Classification: Several types of flows

* Compressible/incompressible

Mach > 0.3
« high velocity »
(discontinuities, choc waves...)

Mach < 0.3
« low velocity »
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Classification: Several types of flows

* Viscous/Inviscid

The fluid sticks to the wall,
which originates in a boundary The fluid slips at the wall
layer
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Instabilities and turbulences

Laminar = Instability = Disorder/Pattern/Chaos = Turbulence

S —

——

Transition

Marmottant and Rayleigh (1891) Marmottant and
Villermaux (2004) yielg Villermaux (2004)
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Transition to turbulence

Unsteady, intermittent, no predictability, random
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Continuum hypothesis

1

<—€<<s<<L—>: L E

Knudsen number: Kn = % <1
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Continuum hypothesis:

Micro-Electro-Mechanical systems
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Figure 27: “Lab on a chip” Burns & al (1998)
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Fluid kinematics: Two approaches

* Fluid kinematics is the study of fluid motion without taking
into account of the forces at their origin.

 Two possible approaches:

- Eulerian description
- Lagrangian description



Eulerian description

* One considers the velocity u(x,y,z) at a
given fixed location M(x,y,z)

\%

At each time-instant, we consider the velocity of a different
fluid parcel

t, W t, W t, W
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One considers the velocity u(x,y,z,t) of a
fluid parcel in its motion, by specifying its
position My(X,,Yo,2o) at time t,

Lagrangian description

b

At each time instant, one considers the same fluid parcel

2/18/2019

u(xlylzftZ)
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Lagrangian description

X3

I

M,
lo
X
/O X>
X

/ Tag (label)
Trajectory: x = ®(X, 1)
Field: B = B(X, 1)
_oe

Velocity: U(X,t) = (X, 1)

ot
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Field:

2/18/2019

Eulerian description

13 Uy (Xa t)

X1
Tiectory: o = u (x, 1)
rajectory: Tt — U (X,
B:b()%,t) x(t=0)=X
Location
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Total derivative

B(X,t)= b(x,t) = b[®(X, 1), ]

: 0B Ob oPb
B=ar=a "V &
: db ob

/

T

N

Total derivative

Local derivative

Convective
derivative

2/18/2019
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Special cases

Uniform flow
Vu =
Stationary flow
ou

o

U,

ox
Oy,

ox
ou.,

ox

0,
0y
Ouy
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0y
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Total derivative (material derivative)

* In the Eulerian description, one aims at quantifying the
temporal variations of a quantity associated to a fluid
parcel

db  0b ob

b 0b ob
it ot T or

2/18/2019 Chap1l: Introduction



Total derivative (material derivative)

db| |0b| ob ~0b ~ 0b
dt| ot “or uyé’y )

derivative, i.e. temporal variations of b in
the fluid parcel due to the transport (advection) of
the inhomogeneous field b at the velocity U into from
the fluid parcel

\ 4
Local derivative, i.e. temporal variation of b at the location of the
fluid parcel, i.e. at a geometric fixed location MO

\ 4
\Material derivative, i.e. temporal variation
of b inside a fluid parcel
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Total derivative (material derivative)

db | 0b ob ob ob
I— U, | |

dt Ot ox Yy Oy | uZ&

!

T, T,
Example: | am floating in a Example: | am floating in pool where
heated pooli.e. T(t) T=T(x,y,z)
| oT dT
@17& 0 —=0 but — #£(
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Lagrange/Euler?

Ex: felt temperature by a swimmer in a swimming pool with varying
depth and therefore temperature

279

shallow
= hot

deep
= cold

24

The swimmer is immobile. The temperature does not change with time

DT_4
Dt




Lagrange/Euler?

The swimmer now swims at U

279

deep
= cold

24

shallow
= hot

DT
The temperature felt by the swimmer increases with time — >0

despite the fact that from an Eulerian point of view

DT oT
e § el
Dt ox

Dt

oT
g—()



Lagrange/Euler?

The swimmer is at rest again, but the sun shines hard

279
deep shallow
=cold = hot
24
: : L DT
The temperature felt by the swimmer increases with time — >0

because it increases point wise. There is no motion, so tha.
Euler and Lagrange have the same point of view.

DT oT
Dt Ot




Lagrange/Euler?

The swimmer is at rest again, but the sun shines hard

279
deep shallow
=cold = hot
24
: : L DT
The temperature felt by the swimmer increases with time — >0

because it increases point wise. There is no motion, so tha.
Euler and Lagrange have the same point of view.

DT oT
Dt Ot




Lagrange/Euler?

The swimmer starts swimming again and clouds arrive...

279

shallow
= hot

deep
= cold

24

- vative [DT'| |0T oT oT oT
#agrangl_enn.e derivative [~'= | _ ity =— + ty=— + U, —
otal derivative Dt dy

ot ox 02

Advective derivative

Eulerian derivative



Acceleration

The acceleration is the particular derivative of the velocity

Local acceleration Convective acceleration
T T
Ou., | Ou., | O, | O,
Cla; — | u(L‘ | u [ UZ
ot ox 7 Oy 0z
CLy —
a, —
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Acceleration

» Stationary flow in a convergent pipe

The acceleration is not zero (= convective acceleration)
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Trajectory
A trajectory is the path of a particle

Initial condition d

ODE



Trajectories can cross

In an usteady flow, trajectories can cross



Path lines

Collection of locations of particles at t=T, that went through M, at t<T

went through M, at t,

‘ ,
went through [V g through M, at t,



Trajectories and path lines

In an unsteady flow, trajectories and path lines are not
superimposed

~
~
\\
L )
Q



Streamlines

Eulerian concept : curve everywhere tangent to the velocity field

This is a geometric property at a given time t



Streamlines

A streamline does not touch walls
Unless at a stagnation point*, where a separatrix emanates

10

*where the wall shear stress is zero



Streamline equation

Curve everywhere tangent to the flow field

Differential equation

uNdx =0



Beware of the reference framel!

A cylinder moves at constant velocity in a very viscous fluid

Lab reference frame Cylinder reference frame
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Trajectory (till T=4)
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Trajectory = Streakline = Streamline
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Oscillating jet : instantaneous streamline
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Trajectory (till T=2)
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