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A significant number of practically important flows (application of coatings or paints,
lubrication flows between tight-fitting parts, liquid jets, etc.) have streamlines which are
almost parallel. We discuss first (Section 8.1) the so-called lubrication approximation,
which allows us to perform a theoretical calculation for these flows, and we give several
examples of flows between two solid surfaces. We use then the same method (Section
8.2) to deal with fluid films which have a free surface: we treat specifically problems of
wetting, dynamic contact angle and analyze the spreading of liquid layers or droplets.
A particularly interesting case is that of Marangoni effects, where the flow results from
spatial variations of the surface tension at the interface. Finally, we discuss a similar
problem involving the drop of a viscous jet and the Rayleigh-Plateau instabilities which
can appear, and which occur because of surface tension (Section 8.3).

8.1 Lubrication approximation

8.1.1 Quasi-parallel flows
We have discussed in Chapter 4 one-dimensional flows for which only one component of
the velocity does not vanish. In this case, the non-linear term (v ·∇) v of the Navier-Stokes
equation vanishes identically, because the gradient of the velocity v is normal to it. We then
end up with a linear equation of motion for the fluid (Equation 4.59) which applies whatever
the Reynolds number of the flow might be (so long as instabilities do not appear).

In this chapter, we study flows for which the streamlines are almost parallel, such as, for
example, flows between solid walls which are at a very small angle θ to each other, or flows
in a thin liquid layer. We can then neglect the non-linear terms, but only if certain specific
conditions are satisfied by the Reynolds number: in that case, we speak of the lubrication
approximation.

Later on, in Chapter 9, we discuss flows with arbitrary geometries: in that case, the
condition on the Reynolds number for being able to neglect non-linear terms, is even more
stringent (Re � 1).

We encounter quasi-parallel flows in a number of applications such as the spreading of
a fluid film, or the lubrication of rotating machinery. We can thus calculate the dynamics
of the spreading of a film in the former case, or the forces between the moving surfaces in
the latter, by making the assumption that the flows are effectively parallel to the surfaces of
these films.
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8.1.2 Assumptions of the lubrication approximation
We assume that we have an angle θ� 1 at all points between the walls, so that the char-
acteristic distances over which flow parameters change are everywhere much greater than
their separation, as shown in Figure 8.1. In the following, we consider a two-dimensional
configuration where only the x- and y-directions are involved, but these results can be easily
generalized to a three-dimensional case.

Let us find out what becomes of the different terms of the Navier-Stokes equation
(Equation 4.30) for two-dimensional flow in the x-y plane. As we have previously indicated
(Section 4.2.2), the flow does not result only from the pressure gradient, but from that of
the combination (p – ρg·r), where r is the radius-vector for the point in question. In order
to simplify the writing, we assume that ∇p, in fact, denotes ∇(p – ρg·r). The components
of Equation 4.30 then become:

∂vx
∂t

+ (v.∇) vx = –
1
ρ

∂p
∂x

+ ν
(
∂2vx
∂x2

+
∂2vx
∂y2

)
(8.1a)

and:
∂vy
∂t

+ (v.∇) vy = –
1
ρ

∂p
∂y

+ ν
(
∂2vy
∂x2

+
∂2vy
∂y2

)
. (8.1b)

We must add to this equation the condition for conservation of mass for an incompressible
fluid, i.e. ∇·v = 0:

∂vx
∂x

+
∂vy
∂y

=0. (8.2)

We first consider a stationary flow, which allows us to neglect terms such as ∂ /∂t, and we
carry out the discussion based on an approximate evaluation of the orders of magnitude of
the different terms. In the case of a stable and slow laminar flow, we observe experimentally
that the trajectories of the fluid particles follow the surface of the walls, as shown in Figure
8.1. Therefore, in the middle of the flow, we can assume that the angle between the velocity
and the wall y=0 is of the order of the angle θ (� 1) between the two walls, so that:

υy ≈ υx θ ≈ U θ , (8.3)

where U is the characteristic velocity of the flow (e.g., the average velocity or even the
maximum velocity at the center of the channel, both of which can be considered to be
of the same order of magnitude in terms of the approximation that we are carrying out).
Considering that we are assuming a Poiseuille-type velocity profile between the walls, we can
consider that the typical distance, over which variations of the velocity in the y-direction
occur, is the local thickness e(x), which we will assume to have a typical value e0 (this
amounts to saying that the relative change in the thickness is small along the length L).
We thus obtain:

θ

x

y

Ue0 e(x)

L

υx

υyFigure 8.1 Schematic diagram of the geo-
metry of a lubrication flow
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∂vx
∂y

≈ U
e0

(8.4a) and:
∂vy
∂y

≈ U θ
e0

, (8.4b)

from which, using Equations 8.2:

∂vx
∂x

= –
∂vy
∂y

≈ U θ
e0

(8.5)

(the orders of magnitude are specified in terms of their absolute values). Using the above
results, we estimate in the same way the second derivatives:

∂2vx
∂x ∂y

≈ Uθ

e20
, (8.6a)

∂2vx
∂y2

≈ U

e20
(8.6b)

and:
∂2vy
∂y2

≈ U θ

e20
. (8.6c)

We also state an upper limit for the absolute value of the terms ∂2vx/∂x2 and ∂2vy/∂x∂y
(which are opposite to each other because of the incompressibility condition) by taking
∂ /∂x ≈ 1/L; this leads to:

∂2vx
∂x2

= –
∂2vy
∂x∂y

≈ U θ
e0 L

(8.7a) and, similarly:
∂2vy
∂x2

≈ U θ
L2 . (8.7b)

These terms are therefore very small relative to the second derivatives with respect to y; the
latter will therefore be the only viscosity terms retained in Equations 8.1a and 8.1b.

Let us now consider the conditions under which the non-linear term of the component
of the equation of motion, in the direction of the average flow, is negligible relative to the
viscosity term. By using the previous results, we obtain:

vx
∂vx
∂x

≈ U2 θ

e0
, (8.8a) vy

∂vx
∂y

≈ U2 θ

e0
(8.8b) and ν

∂2vx
∂y2

≈ ν U

e20
. (8.8c)

The non-linear terms are therefore negligible if:

U2 θ

e0
� ν

U

e20
, (8.9a) i.e.: Re =

U e0
ν

� 1
θ
. (8.9b)

For flows in arbitrary geometry, the condition obeyed by the Reynolds number, in order
to be able to neglect the non-linear terms, is Re� 1. Equations 8.9b is then much less
restrictive because in the lubrication geometries the angle θ is small relative to 1. We can thus
continue to use a linear equation even for flows which correspond to a Reynolds number
Re significantly greater than 1. In the limiting case of a parallel flow, the non-linear term
vanishes at all values of the Reynolds number.

Let us calculate the component ∂p/∂y of the pressure gradient in the direction normal
to the average flow on the basis of Equations 8.1b. We estimate, as in the previous case:

vx
∂vy
∂x

≈ U2 θ

L
, (8.10a) vy

∂vy
∂y

≈ U2 θ2

e0
, (8.10b) ν

∂2vy
∂y2

≈ νU θ
e20

. (8.10c)
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The viscous term resulting from Equations 8.10c is thus smaller by an order of magnitude
in θ than that given by Equations 8.8c. If Re � 1/θ and e0/L is sufficiently small, the non-
linear terms in Equations 8.10a and 8.10b will be smaller than the viscous term in Equations
8.10c and, in any case, very small, in comparison with the viscous term of the equation, in
the x-direction. We can thus consider that the pressure gradient transverse to the flow is
zero (or, more precisely, that it reduces to the hydrostatic pressure) when θ is small, and the
Reynolds number sufficiently small.

We should, however, note that this entire discussion assumes that there is a fully de-
veloped unperturbed laminar flow. Beyond certain critical flow velocities, even if Equation
8.9b is satisfied, the flow between parallel planes becomes unstable, and significant velocity
components, normal to the average flow, appear. The preceding results are then no longer
valid.

8.1.3 Non-stationary effects
Let us now go back to Navier-Stokes equation, written as in Equation 8.1, and assume
that the flow changes over a characteristic time T , or that it is periodic with angular fre-
quency ω (a parameter better suited for a periodic flow). The term ∂v/∂t will then be either
of order U/T or, equivalently, of Uω. It will be negligible relative to the viscosity term if
|∂v /∂t| � |ν∇2v|, i.e.:

U
T

� ν
U

e20
or Ntν =

e20
νT

� 1.

The ratio Ntν of the characteristic times appeared already in Equation 4.95 during our
discussion of alternating flows between two planes (Section 4.5.4). The condition Ntν � 1
expresses that the characteristic time e20/ν for the diffusion of the velocity gradients (or of
the vorticity) over the thickness e0 of the fluid film is much smaller than the characteristic
time T for the evolution of the flow or, equivalently, small compared to 1/ω. One notes that
e20/ν represents also the time needed to establish a stationary velocity profile: if the above
condition is satisfied, the flow can then be considered as quasi-stationary, and the terms of
the type ∂v/∂t can be neglected.

8.1.4 Equations of motion in the lubrication
approximation

In this case, if instabilities do not appear in the flow, and the conditions θ � 1 and Re � 1/θ
are satisfied, Equations 8.1a and 8.1b simplify, for a steady state flow, to:

1
ρ

∂p
∂x

= ν
∂2νx

∂y2
(8.11a) and:

∂p
∂y

= 0, (8.11b)

which represents exactly the same system of equations as for a parallel flow. The velocity vx
will vary in the x-direction if the thickness is no longer a constant, but this variation will be
much slower than in the y-direction, for which the characteristic distance for change is e0.
In order to calculate the velocity profile, we then integrate Equation 8.11a relative to y,
as though ∂p/∂x were a constant (the x and y variables become decoupled). In effect,
if the requirements for the lubrication approximation are satisfied, ∂p/∂x is practically
independent of y, just as for a parallel flow; on the other hand, it varies, in the x-direction,
over distances which are much larger than the thickness e0 of the fluid layer. Weakly
non-stationary flows can be treated in the same manner if the time-dependent change
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in the velocity is sufficiently slow. We will see, further down, examples where the lack of
stationarity plays a significant role.

8.1.5 An example of the application of the equation
for lubrication: stationary flow between two
moving planes making a small angle to each
other

If we let a sheet of paper slide parallel to the horizontal surface of a smooth table, the
presence of a film of air between the table and the sheet helps the sliding; on the other hand,
if the sheet of paper has a few holes in it, it slides very poorly because there no longer exists
a pressure difference between the outside air and this intermediate sheet. The pressure
difference which exists in the former case is due to the formation of a wedge toward the
back between the sheet and the table, shown schematically in Figure 8.2.

LO x

p0

p

x

(a)

pm

p0

1
x2

e

x1

e(x)

e2e1

–U

y

m
υx

θ

(b)

Figure 8.2 Schematic diagram of the flow
resulting from the motion of an inclined plane
moving relative to a fixed horizontal plane;
(a) the velocity field is shown in the reference
frame in which the inclined plane is fixed;
(b) variation of the pressure in the region
between the two planes

For this calculation, we will assume that the sheets extend infinitely in the transverse
z-direction (perpendicular to the plane of the figure). Also, we will compute values of the
force, and of the flow rate, which correspond to a layer of unit depth in that direction.
Moreover, we change the reference frame and assume that the velocity of the sheet is zero,
and that the lower plane is moving with a velocity –U; this allows us to obtain a stationary
flow profile, because the lower surface moves in its own plane and the thickness of the fluid
is therefore constant at a fixed point relative to the upper plane. The distance between the
planes is given by:

e (x) = e1 + θx,

where the angle θ = (e2 – e1)/L is assumed to be small. In this case, and if Re � 1/θ , Equation
8.11b shows that the pressure p and, therefore, ∂p/∂x are independent of y.

Integrating Equation 8.11a with respect to y under this assumption and taking into
account the boundary conditions υx ( y=0)= –U and υx ( y= e (x)) = 0, we obtain then:

υx (x, y) = –
1
2η

dp
dx

y [e (x) – y] –U
e (x) – y
e (x)

. (8.12)
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Just as in Section 4.5.3, the velocity field corresponds to the superposition of a Poiseuille
flow (parabolic term in y associated with the pressure gradient) and of a Couette flow (term
linear in y, related to the movement of the plane with velocity –U). In Figure 8.2a, we have
shown the parabolic velocity profiles between the two planes corresponding to different
distances along x.

We compute now the pressure distribution in the upper plane by integrating
Equation 8.12 with respect to y between 0 and e(x); the flow rate Q (per unit depth in the
z-direction) is constant with x because the flow is stationary in the reference frame selected
so that:

Q = constant =
∫ e(x)

0
vxdy = –

1
η

dp
dx

e(x)3

12
–
U e(x)

2
. (8.13)

As we might have expected, this equation coincides with Equation 4.72 when we replace
V 0 by –U and a by e(x). We therefore conclude, replacing x by e as the variable:

dp
dx

= θ
dp
de

= –
12 η Q

e(x)3
–
6 ηU

e(x)2
. (8.14)

We can obtain the value em of the thickness at the point where the pressure has an extreme
value (dp/de = 0), so that:

em = –2
Q
U

. (8.15)

Finally we obtain the pressure p(x) by integrating Equations 8.14 relative to e with
p (x = 0) = p0 (atmospheric pressure outside the thin film). We find that:

p(x) = p0 +
6 η Q
θ

[
1

e(x)2
–

1

e21

]
+

6 ηU
θ

[
1
e(x)

–
1
e1

]
. (8.16)

From this, we determine the value of the flow rate Q by writing that the pressure is also
equal to p0 at the other end of the plane (where e = e2). We then obtain:

Q = –
e1 e2
e1 + e2

U ; (8.17) whence: em = 2
e1 e2
e1 + e2

. (8.18)

Equation 8.18 indicates that, when e1 � e2, we have em ∼= 2e1: the point where the pressure
has an extreme value is then very close to the side where the thickness has the value e1.
In all cases, according to Equation 8.17, Q and U are opposite in sign, i.e. the average flow
of the fluid has the direction of the motion of the lower plane. Equations 8.16 can then be
transformed by replacing Q by its value as a function of U , so that we obtain:

p(x) = p0 +
6 ηU
θ

(e2 – e(x) ) (e(x) – e1)

e(x)2 (e1 + e2)
. (8.19)

The difference p (x) – p0 has then necessarily the same sign as U/θ , since e(x) is bounded by
the values e1 and e2. Figure 8.2b gives the corresponding pressure distribution.

Let us consider the velocity profiles between
the two planes on the basis of Equations 8.12,
taking the derivative with respect to y and re-
placing ∂p/∂x by θ(∂p/∂e), and ∂p/∂e by com-
bining Equations 8.14 and Equations 8.17. We
are specifically interested in the existence of a
maximum in the velocity profile. We take the
derivative:

∂vx
∂y

=
2y – e(x)

2η
θ
∂p
∂e(x)

+
U
e(x)

=
2U

e(x)2

[
3e1e2(2y – e(x))
e(x)(e1 + e2)

+ 2e(x) – 3y
]
.

(8.21)
Near the lower wall (y = 0) and the upper wall
(y = e(x) ), we have, respectively:

∂vx
∂y

=
2 U

e(x)2

[
–

3 e1 e2
(e1 + e2)

+ 2 e(x)
]

(8.22a)

and

∂vx
∂y

=
2 U

e(x)2

[
3 e1 e2
(e1 + e2)

– e(x)
]
. (8.22b)

The derivatives ∂vx/∂y of the velocity profile on
the upper and lower planes then vanish, respec-
tively when e (x1) = 3e1e2/ (2 (e1 + e2)) = 3em/4
and e (x2) = 3e1e / (e1 + e2) = 3em/2, i.e. on
both sides of the point where the pressure is
a maximum. For distances smaller than x1, the
velocity has a minimum; for distances greater
than x2, the velocity is positive in the neighbor-
hood of the upper wall, and it has a maximum.
In the section of thickness em corresponding to
the pressure maximum, the velocity varies line-
arly with the distance y: this is easily shown by
taking the second derivative ∂2vx/∂y2 of the ve-
locity profile vx(y) from Equation 8.21 so as to
obtain ∂2vx/∂y2 = (θ /η)(∂p/∂e(x)). The distance
x at which the curvature becomes zero corre-
sponds to the maximum in the pressure: this is
quite expected since, in the absence of a pres-
sure gradient, the Poiseuille component of the
flow becomes zero and only a Couette-type flow
remains.

The normal force FN on the lower plane, due to this excess pressure resulting from the
flow, is given by the integral:

FN = –
∫ L

0
( p – p0) dx = –

1
θ

∫ e2

e1
( p – p0) de = –

6 ηU
θ2

[
Log

e2
e1

–
2 (e2 – e1)
e2 + e1

]
. (8.20)
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We also determine the tangential frictional force on the lower plane, i.e.:

FT =
∫ L

0
η
∂vx
∂y

dx =
1
θ

∫ e2

e1

(
e(x)
2

dp
dx

+
ηU
e(x)

)
de

=
2ηU
θ

[
2Log

e2
e1

–
3(e2 – e1)
(e2 + e1)

]
.

(8.23)

For e2/e1 = 10, the prefactors of ηU /θ2 and ηU /θ respectively in Equations 8.20 and 8.23
are –4 and 4.3.

In the general case, the relative role of the values of θ , e1 and e2 is somewhat subtle
because, when θ → 0 and e2 → e1, both the numerator and the denominator of the expres-
sions for FT and FN approach zero. We will evaluate these two components for the particular
case where the thickness e2 is much greater than the thickness e1. In that case, we find:

The net resultant force on the fluid in the space
between the planes must be zero since the pres-
sure difference between the entry and exit of this
space is also zero. The x- and y-components
of the force on the upper plane must there-
fore be equal to –FT and –FN; they can also
be computed from the pressure and velocity on
that plane. However, the pressure and tangential
forces are respectively perpendicular and parallel
to the plane and, therefore, at an angle θ respec-
tively to y and x: they must then be projected
on these axis in order to retrieve the values –FT
and –FN.

From Equations 8.24a–b, FT and FN are ap-
proximately proportional to 1/θ and 1/θ2 only,
provided e2/e1 � 1 (then, θ ≈ e2/L). If e2/e1 →
1, we must use Equations 8.20 and 8.23, leading
to FN =0 when e2 = e1 (parallel planes).

FN � –
(
Log

e2
e1

– 2
)
6 ηU
θ2

(8.24a) and FT �
(
4Log

e2
e1

– 6
)
ηU
θ

. (8.24b)

where θ = (e2 – e1) /L � e2/L (for a given angle θ , the influence of e2/e1 on the values of FT
and FN is small). When the angle θ is small, FN can take on large values, while the tangential
frictional force FT will be smaller by an order of magnitude: this is the fundamental result
of the lubrication model.

This property is extremely useful in a wide range of applications: axles rotating within a
bearing of barely larger diameter, thus able to support much greater normal stresses without
excessive friction (bearings of rotating machinery, wheel axles of vehicles. . . ). In some cases,
the normal forces are so large that solid pieces can be deformed in regions where their
cross-section is very small; for this reason they are known as elasto-hydrodynamic forces.

Lubrication forces can also have rather undesirable effects: if we walk on an oil slick, the
normal forces will support our weight while the tangential force is insufficient to allow us to
maintain our balance. There is a similar effect when a car skids out of control along a wet
road (a phenomenon known as aquaplaning): the thin film of water between the tires and
the road can support the weight of a car, while the forces that prevent slip are too weak.

For e2 � e1, p(x) is highest for e(x) ≈ 2e1.
More generally, in lubrication flows, the pres-
sure is highest in the regions of small liquid
thickness: this allows one to obtain approximate
solutions. Take, for instance, two spheres of ra-
dius R approaching each other with a minimum
separation e1(t): the force between them may
be estimated from the pressure distribution on
the spherical cap with radius

√
R e1(t) where

the local separation between the surfaces of the
two spheres is between e1 and 2e1 (see similar
problems below).

8.1.6 Flow of a fluid film of arbitrary thickness
In this section, we consider the more general case of a flow of a thin film of fluid between
two solid surfaces with varying separation, and with relative motion in arbitrary directions.

Reynolds’ equation

We retain the assumption of a film of fluid sufficiently thin relative to the characteristic
distances along x over which the velocity and the thickness parallel to the film vary, so that
we can still consider the flow as quasi-parallel (Figure 8.3). We also assume that the lower
surface is a stationary plane y = 0 and that each point of the upper surface located at a height
h(x, t) has a velocity with components U(x, t) and V (x, t) in the x- and y-directions. The
longitudinal pressure gradient ∂p/∂x is considered constant over the thickness of the film, but
can exhibit a slow variation along this film. As seen in Section 8.1.2, the term ∂p/∂x needs to
be replaced by ∂p/∂x – ρ gx when the component gx of gravity in the plane of the film does
not vanish. In the present section, the upper surface is solid but not necessarily plane.

As in the preceding case, the local flow is a superposition of a Poiseuille-type and a
Couette-type flow. This can result from the relative displacement of the solid walls, which
limits the upper and lower surfaces of the film and/or, possibly, by an applied pressure
gradient.
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y
x x+dx

Q(x,t) h(x,t)

(U,V)

xO

Figure 8.3 Schematic diagram of a quasi-
one-dimensional flow in a thin fluid layer
between a plane and a solid upper surface
with a distance h(x, t) from the plane, which
can be a function of both time and position

Let us rewrite Equations 8.13 relating the local flow rate Q(x, t) in the film (per unit
length in the z-direction), the gradient ∂p/∂x and the velocity component U(x, t) in the
x-direction of the upper surface, with:

Q(x, t) = –
h3

12 η
∂p
∂x

+
U h
2

. (8.25)

In contrast with the case of Equations 8.13, Q can depend on x as well as on t. Let us now
analyze the conservation of mass in a thin layer of the fluid film over the range (x, x +dx):
the change (∂h/∂t)dx of the volume of fluid in this layer, per unit time, is equal to the
difference Q(x) – Q(x + dx) = - (∂Q/∂x)dx between the rates of flow of fluid entering and
exiting. We thus obtain, by taking the derivative of Equations 8.25 with respect to x:

The problem in Section 8.1.5 (flow between two
planes at an angle θ) can be treated as a partic-
ular case of Reynolds’ equation (Equation 8.26)
with ∂h/∂t = – U ∂h/∂x, h(x) = e(x) and ∂e/∂t
= – U ∂e/∂x. In this former section, we used a
reference frame fixed relative to the upper plane,
where the flow was stationary, whereas, here, we
are in a reference frame fixed with respect to the
lower plane and in which ∂h/∂t is non-zero (the
local velocity of the upper plane is then +U).
Equations 8.26 then becomes:

∂

∂x

[
h3
∂p
∂x

]
= –6 ηU

∂h
∂x

. (8.31)

We obtain the same equation by multiplying
Equations 8.14 by e(x)3 and taking the deriva-
tive with respect to x (Q is constant relative to
x in the reference frame used in Section 8.1.5,
while, here, it varies).

∂h
∂t

=
1

12 η
∂

∂x

[
h3
∂p
∂x

]
–
1
2

(
h
∂U
∂x

+U
∂h
∂x

)
. (8.26)

This result applies to a two-dimensional flow, translationally invariant in the z-direction.
Equation 8.26 is known as Reynolds’ equation. In practice, we frequently fix the values of the
pressure at the two ends of the fluid layer.

Let us now take note of the fact that the vertical V and horizontal U components of the
local velocity of the wall are related to the derivative ∂h/∂t by the geometric condition:

∂h
∂t

= V –U
∂h
∂x

. (8.27)

A horizontal displacement of the upper wall results indeed in a change in the local depth,
if the wall itself is not locally horizontal. This variation is added to that resulting from the
vertical velocity V of the wall. We see then, according to Equations 8.27, that h remains
constant if the upper wall moves in its own plane (V /U = ∂h/∂x).

In the case of a two-dimensional film, where the thickness h(x, z, t) varies in the x- and
z-directions parallel to the lower plane, we must replace Equations 8.25 by:

Q//(x, z, t) = –
h3

12 η
∇// p +

U// h
2

, (8.28)

where U// is the projection onto the z-x plane of the velocity U of the upper surface with
respective componentsW and U in the z- and x-directions. The components Qz and Qx of
Q// represent the local rates of flow through unit cross-sections respectively perpendicular
to the z- and x-directions. The symbol ∇// indicates the gradient in the directions parallel to
the plane. By writing the equation of conservation of mass in the three-dimensional form
∂h/∂t + ∇·Q// = 0, we obtain the generalization of Equations 8.26:

∇ ·
[
h3 ∇//p

]
= h3 ∇2p + 3 h2 (∇//h) · (∇//p) = 6η

(
h ∇// ·U// +U// · (∇//h) + 2

∂h
∂t

)
. (8.29)
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Similarly, Equations 8.27 becomes:

∂h
∂t

= V –U// · ∇//h. (8.30)

Application of Reynolds’ equation: a sphere dropping toward
a plane, in a viscous fluid

Consider a rigid sphere of radius a dropping vertically toward an horizontal flat plane
(Figure 8.4

2a

r

Upat

h0(t) h(r,t)

υr(r,z,t)

z

Figure 8.4 Schematic diagram for a sphere
dropping toward an infinite plane

): we denote by h0(t) the minimum distance between the sphere and the plane,
i.e. along the axis of the system. Considering the rotational symmetry (the pressure being
solely a function of r and t) and the condition U// = 0, Equations 8.29 becomes:

1
r
∂

∂r

[
r h3

∂p
∂r

]
= 12η

∂h
∂t

(8.32) with
∂h
∂t

=
dh0(t)
dt

.

This last condition corresponds to the requirement of a uniform vertical velocity ∂h/∂t for
all points of the surface of the sphere. We can calculate the global force F on the sphere by
integrating the pressure:

F =
∫ rM

0
2π r p(r) dr =

∫ hM

h0
2πa p(h) dh,

so that we obtain: F = –
6 π a2

h0

dh0
dt

, (8.33)

provided that the thickness hM as we get away from the region of minimum depth is
significantly greater than h0.

Proof
In order to calculate p(h), we first integrate Equations 8.32 with respect to r, after having
multiplied both sides by r. We then obtain:

r h3
∂p
∂r

= 6 η r2
∂h
∂t

. (8.34)

The constant of integration is zero because none of the derivatives diverge when r = 0.
In order to calculate the pressure distribution, we substitute h for the variable r, by using the
approximate geometrical relationship:

h(r, t) = h0(t) +
r2

2a
, (8.35)

whence dh = r dr/a and dp/dr =(r/a) dp/dh.

Thus: dp = –3 η a
dh0
dt

d
[
1
h2

]
and p(h) = p0 –

3 η a
h2

dh0
dt

. (8.36)

The pressure must indeed be equal to the atmospheric pressure p0 when h becomes large.
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For a sphere of radius a, falling under its own weight and with respective densities ρs and
ρf of the sphere and the fluid, we find, by equating the weight of the sphere, decreased by
the buoyancy due to the Archimedes force, to the viscous force from Equations 8.33 that:

d(Log h0)
dt

= –
2π

9
a (ρs – ρf )g

η
(8.37) i.e.: h0(t) = h0(0) e–t/τ , (8.38)

with τ =9 η/[2πa (ρs– ρf) g]. Theoretically, the sphere will take an infinitely long time to
touch the plane because its motion is continuously slowing down! Practically, however, the
roughness of the surfaces involved will lead to contact when the separation becomes of the
order of this micro-roughness, although there still remains a tiny free space for the fluid to
be evacuated.

If, on the other hand, we specify a drop velocity Vz = dh/dt, the force that needs to be
applied for keeping Vz constant diverges, according to Equations 8.36, as 1/h0 when the
distance h0 approaches zero, while the pressure diverges as 1/h20 in the region of minimum
thickness h0: this can result in a local deformation of the surface of the sphere.

For the case where the sphere is replaced by a
flat-bottomed cylinder parallel to the plane, we
find that the force varies as 1/h3 instead of 1/h
for a given velocity, because the viscous forces
are more uniformly distributed over the bottom
of the cylinder, instead of being localized in the
region of minimum thickness.

8.1.7 Flow between two eccentric cylinders
with nearly equal radii

An important industrial application of lubrication is the motion of moving objects with a
narrow region between the parts (piston-and-cylinder, axle-and-bearing, etc.) filled with
lubricating fluid.

Here we are specifically interested in the flow of the lubricant in the small gap be-
tween a rotating axle and its bearing, as well as in the forces which result from it:
this system is schematized in Figure 8.5 by two cylinders of nearly equal radii R and
R + δR (δR/R = ε� 1), with their axes parallel but offset by a distance a= λ δR (λ≤ 1).
We assume that only the inner cylinder rotates at an angular velocity � and that the flow
is invariant in the z-direction of the axes of the cylinders. We will take, as the origin of the
polar coordinates, the point of intersectionO of the axis of the larger cylinder with the plane
of the figure; the angle θ =0 corresponds to the direction of the segment OO’ (and, also, to
the minimum e0 of the local distance e(θ) between the cylinders); α is the angle that OO’
makes with the vertical. The distance e(θ) satisfies the equation:

e (θ) = δR – a cos θ = εR (1 – λ cos θ). (8.39)

O
O'

R

r
M

Ώ

R+δR

θ

e0

α

fp(θ1)fp(–θ1)
θ1

–θ1

e(θ)
Figure 8.5 Schematic diagram of the cross-
section of an axle rotating within its bearing,
the z-axis being perpendicular to the plane of
the figure. The points O and O ′ correspond to
the intersection of the axes of the two cylinders
with the plane of the figure
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Proof
The distance r = |OM| between O and a point M of the inner cylinder such that OM
makes an angle θ with the segment OO ′ connecting the axes satisfies, to first-order:

r = R + a cos θ = R + λ δR cos θ

Equation 8.39 is then obtained by subtracting r from the radius R+δR of the outer cylinder
and replacing δR by εR.

In the region around a given angle θ , we consider that the flow is identical to that between
two parallel planes separated by a distance e(θ), one of which (corresponding to the inner
cylinder) moving at a velocity �R. This assumption is equivalent to eliminating curvature
effects, such as the gradient in the pressure due to the centrifugal force; the latter is ac-
tually transverse to the flow and does not affect it. We can then apply Reynolds’ equation
(Equations 8.26) in the form:

1
R2

∂

∂θ

[
e(θ)3

∂p
∂θ

]
=6 η�

∂e(θ)
∂θ

(8.40) so:
∂p
∂θ

= 6 η�R2 1

e(θ)2
+

C

e(θ)3
, (8.41)

where C is a constant of integration. In order to go from Equations 8.26 to Equations 8.41,
we have merely replaced the derivatives ∂ /∂x by (1/R) ∂ /∂θ . The element of length ds in the
direction tangent to the surfaces of the cylinders, corresponding to an angular change dθ , is
indeed equal to R dθ (still assuming that δR � R); ds here plays the role of dx in the problem
involving planes. Figure 8.6 displays the changes in pressure as a function of θ calculated
for λ=0.9, by numerical integration of Equations 8.41, and using Equations 8.39. We have
large minima and maxima of the pressure near x = 0 because of the large value of the term
in 1/e3: we can observe here cavitation bubbles in the region of low pressure (see Section
8.3.2).

The characteristics of the curve in Figure 8.6 re-
sult from the form of Equations 8.38 and 8.41.
The variation of e(θ) and that of ∂p/∂θ are sym-
metric with respect to θ = 0: as a result, the
pressure changes p(θ) – p(0) obtained by inte-
gration are anti-symmetric. We must, moreover,
also have the condition that p(π) = p(–π) since
these two values of θ correspond to the same
physical location diametrically opposite to the
point of minimum thickness. If p(θ)-p(0) is not
constant, it must have, at least, two extrema of
opposite signs at points which are symmetric
relative to θ = 0 so that the constant C must
be opposite in sign to � (see Equations 8.41).
In the neighborhood of θ = 0, the term 1/e3 in
Equations 8.41 dominates the other term, and
the derivative ∂p/∂θ(0) is opposite in sign to �
(< 0 in Figure 8.6). The presence of the term in
1/e3 implies that the smaller the minimum thick-
ness e(0) is relative to the maximum value e(π),
the larger the absolute values of the pressure
extrema will be, and closer to the point θ =0.

p(θ)-p(0) (u. a.)

(radians)
π –3 2 3 π

3

2

1

–1

–2

–3

–2 –1 0 1
θ

Figure 8.6 The variation of the pressure in
the region between the axle and its bearing in
Figure 8.5

Just as in the case of the two planes which we discussed in Section 8.1.5, we assume that
the viscous friction forces, which act tangentially to the cylinders, are negligible relative to
the pressure forces in the normal direction. Let us now investigate how these forces can
support heavy weights as in the cases of a wheel axle or of the axis of rotating machinery.
To this end, let us look at the pressure forces per unit area fp = dFp/dS acting on the inner
cylinder at corresponding points θ1 and –θ1 (Figure 8.5). We can neglect the effect of the
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average pressure p(0) because the integral of the force which results on the entirety of each
cylinder is zero. We will therefore assume that p(θ1) = –p(–θ1). The sum of the vertical
components fzp(±θ1) of the pressure forces per unit area at θ1 and –θ1 will be:

fzp (θ1) + fzp (–θ1) = –p (θ1) cos (α + θ1) + p (–θ1) cos (α – θ1) = 2p (θ1) sinα sin θ1. (8.42)

Thus, the vertical resultant of the pressure forces is a maximum when the angle α of
OO’ with the vertical has the value π/2 (OO’ is then horizontal). The value Fpπ/2 of this
force per unit length along the axis is then given by the integral:

Fpπ /2= –

θ∫
–θ

sin (θ) p(θ)R dθ which can be shown to equal to: Fpπ /2 =
6 ηA � R
ε2 λ

. (8.43)

Here, A is a constant dependent on λ. This bearing force varies as 1/ε2: when ε is very small,
one can generate very significant bearing forces.

The form of equation 8.43 may seem counter-
intuitive. We might think that the force of gravity
would require the point of minimal thickness to
be at the lowest point of the bearing in the verti-
cal direction from the axis O: OO’ would be in
that case vertical with α = 0. However, the verti-
cal resultant of the pressure forces would vanish,
because the contribution of each point at a po-
sition θ is cancelled out by that of a point at the
angle –θ : the pressure p(θ) is then opposite to
that at p(–θ) and the vertical component of the
normal to the surface is the same. In contrast,
if α = π/2, the pressure force also changes sign
when we replace θ by – θ , but so does the verti-
cal component of the normal to the surface. The
contributions to the force then have the same
sign and they add up. The value of α will adjust
to a value intermediate between 0 and π/2 de-
pending on the weight which must be supported.

Let us now evaluate the viscous frictional force Fνπ/2 in the direction of θ = π/2. Per unit
area, this force is of the order of η � R/((1 – λ) ε R) in the region of minimum thickness; if
this is applied along a distance of order R, we obtain then:

Fvπ/2 ≈ η� R
(1 – λ) ε

. (8.44)

This viscous frictional force, varying as 1/ε, is smaller than the bearing force by an order of
magnitude in ε, as we have assumed.

8.1.8 Lubrication and surface roughness
The examples which we have given and, specifically, that of the axle and its bearing, sug-
gest that the distance between the solid surfaces should be as small as possible: this will be
limited by the roughness of the surfaces which, in our calculations, have been assumed to
be perfectly smooth. If the rough areas of the surfaces actually come into contact, there will
appear solid-solid frictional forces which would block any motion. Another example is the
interaction between particles in a suspension when they are separated by a small distance.
As we have seen in Section 8.1.5, the viscous forces increase when a sphere approaches a
wall very closely; when the distance becomes small, we must again take into account the
effects of surface roughness. An example is given in Figure 8.7.

(a)

(b)

Figure 8.7 Relative motion of two spheres.
(a) ideal case without any interaction other
than those due to hydrodynamics; (b) Real
case of rough spheres: the two spheres undergo
a shift in their trajectories, instead of coming
back on the same straight line which they fol-
lowed initially (an analogous effect is observed
in the case where the two spheres display
inter-particle interactions such as electrostatic
repulsion) In the case of two perfectly

smooth spheres which come together, the final trajectory coincides with the line of initial
displacement (Figure 8.7a): this is the result of the time-reversal invariance in solutions of
Stokes’ equation of motion at small Reynolds number (see Section 9.2.3). This reversibility
can be broken by the effect of the roughness of the particles (Figure 8.7b). Quite a number
of problems related to lubrication, to friction and to wear depend on the heterogeneity of
surfaces.

The reversibility argument assumes that the ve-
locity field takes on, at every instant, the equi-
librium configuration which corresponds to the
instantaneous distance between the obstacles;
we have described a similar problem in Section
8.1.3 which discussed the stationarity of lubrica-
tion flows. When the two spheres come together
at a distance d, with relative velocity U , the time
for establishing the velocity profile is of the or-
der of d2/ν: this must be small relative to the
characteristic time d/U over which the distance
between particles evolves. The Reynolds num-
ber Ud/ν must then be small. In the opposite
case, the dynamics of the motion of the sphere
would depend on its previous history. We en-
counter effects of this type, for which we will
not go into detail here, in the case of strongly
accelerating particles (specifically, effects known
as Basset forces).

8.2 Flow of liquid films having a free
surface: hydrodynamics of wetting

Other situations where inertial forces and non-linear terms in the equations of motion of
fluids are negligible are encountered in the case of thin fluid films with a free surface: there
again, the velocity of the fluid is almost parallel to the surface of the film. Such flows are
often present in nature and have, additionally, important applications such as the spreading
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of coatings, paints or cleaning fluids on various materials; also, some thermal exchangers
make use of flowing liquid films. This situation is similar to that of lubrication, but the
presence of free surfaces affects the boundary conditions, and additional forces appear due
to surface tension. We have discussed this idea in Section 1.4 and have described some static
properties of the resulting interfaces. Using the Young-Dupré equation (Equation 1.62), we
have also introduced the spreading parameter and the static contact angle.

In this discussion, we are interested in flows of thin films with a free surface resulting
from a competition between surface tension, gravity and viscosity. In all cases, we will make
broad use of the lubrication approximation.

First of all, we analyze the simple case of the flow of liquid layers uninfluenced by surface
tension, such as the falling of a liquid film along a flat isothermal wall. Then, in the situation
of complete wetting, we study the dependence of the dynamic contact angle of an interface
on the velocity at which the contact line moves. We use this result to predict the spreading of
small droplets and compare this to that of larger drops under the influence of gravity. Finally,
we look at the case ofMarangoni effects in which temperature or concentration gradients, in
tensioactive compounds, result in surface tension gradients, which, themselves, induce flow.

8.2.1 Dynamics of thin liquid films, neglecting
surface-tension effects

The influence of surface tension is negligible for films which have a surface flat or slightly
curved because the difference in the Laplace pressure between the two sides of the interface
is then either zero or very small. We will discuss situations where the surface tension is
constant all over the surface so that Marangoni effects will not come into play.

Flows of liquid films with a free surface have specific characteristics. First of all, if surface
tension is not in play, the pressure equals the atmospheric pressure throughout the inter-
face. Just as for other quasi-parallel flows, the pressure gradients normal to the interface
(and thus normal to the flow velocity) are reduced to the hydrostatic pressure. Given the
small thickness of the films, the pressure is everywhere close to the atmospheric pressure:
the pressure gradients parallel to the film (and to the velocity of the fluid) are thus generally
much smaller than for the flows between two solid surfaces which we have previously con-
sidered. Often, this gradient will be zero (specifically for films of constant thickness) and
the driving force of the flow is the component g// of gravity parallel to the surface of the film:
we recall that in the Stokes equation (and in that of Navier-Stokes), the driving force of the
flow is represented by the sum ∇p – ρ g and not just by ∇p.

If, externally, we have air at rest (or at moderate velocities), we can consider that the
stress at the interface vanishes (Section 4.3.2): the derivative of the velocity in the direction
normal to the surface thus also vanishes. We have then an extremum of the velocity at the
surface and not a zero value as would be the case at a solid wall.

This will no longer be the case when there is a
high-velocity flow of air (e.g., high winds above
the surface of a lake or river.)

Example: viscous film falling along a vertical wall, at a fixed flow rate
We can create a fluid film (density ρ, viscosity η) along a vertical wall by injecting fluid
through a horizontal slit (Figure 8.8

q
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η

Figure 8.8 Flow along a vertical wall due to
an injection of fluid through a horizontal slit

). The flow rate q in the slit, per unit width in the
z-direction, is constant. We shall now predict the dependence of the thickness of the fluid
layer on the flow rate q, in the region where this layer has a constant thickness h. Assuming
that the flow is invariant and has zero velocity in the z-direction, the Navier-Stokes equations
become:

1
ρ

∂p
∂x

– ρg = η
∂2vx
∂y2

(8.45a) and
∂p
∂y

= 0. (8.45b)
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Because we have constant external pressure, continuous at the surface and continuous at all
horizontal levels, we have p = patm throughout the fluid film: the pressure gradient parallel
to the velocity also vanishes (∂p/∂x=0). The flow thus results merely from the vertical
component g>0 of gravity. Integrating with the boundary conditions, vx( y=0)=0 and
∂vx/∂y( y = h) = 0, we find:

vx =
ρ g
2 η

y (2 h – y) (8.46a) and q =

h∫
0

vx dy =
ρ g h3

3 η
. (8.46b)

The thickness of the fluid layer varies with the injected rate of flow as q1/3.

For sufficiently large velocities, such flows de-
velop instabilities which cause the thickness of
the film to vary and create local curvature at
the surface. Then, one needs to take into ac-
count both the surface tension and the pressure
gradients parallel to the surface.

We obtain similar results for a flow along a
plane inclined at an angle θ relative to the verti-
cal. We must then replace –ρ g by –ρ g cos θ in
Equations 8.45a and add a term –ρg sin θ into
Equation 8.45b. However, since this last term
is constant, ∂p/∂x still vanishes even though the
hydrostatic pressure gradient in the y-direction
no longer vanishes. Equations 8.46a and 8.46b
remain applicable when we replace g by g cos θ .

8.2.2 Dynamic contact angles
Case of complete wetting: Tanner’s law

In contrast to the previous example, surface tension plays a key role in problems involv-
ing the contact line between a gas-liquid interface (or a liquid-liquid interface) and a solid
surface. Here, we are interested in the changes, of hydrodynamic origin, in the contact an-
gle as a function of the velocity V of the line: it is referred to as a dynamic contact angle.
We consider here the case of complete wetting for which the initial spreading parameter
S = γ sg – γ sl – γ (defined in Equation 1.59) is positive (we use here the notation γ for γ lg).
The motion of the interface at a velocity V changes the contact angle from the value θ s =0
(static contact angle) for V = 0 to a finite value θ(V ). In such systems with complete wet-
ting, we always have, upstream of the contact line, a precursor film of submicron thickness:
the dynamic contact angle θ(V ) is in fact an apparent contact angle, with the wall, of the
macroscopic region of the meniscus (Figure 8.9).
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x x +V dt O
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Figure 8.9 Schematic diagram for the mo-
tion of a contact line relative to a solid surface
in the presence of the precursor film upstream
of the meniscus

Let us first consider the equilibrium of forces acting on the contact line by assuming a
two-dimensional geometry. Following the same steps as those used in Chapter 1 in order
to prove the Young-Dupré equation (Equation 1.62), we find a resultant force, per unit
length, with horizontal component: Fr(θ ) = γ sg – γ sl – γ cos θ . However, according to
this equation, the condition of static equilibrium Fr = 0 cannot be satisfied at zero velocity
even when θ =0. The excess force per unit length equals S(> 0), and we assume that
its use is to create the precursor film, and that this contribution remains constant when
V is not zero. The effective resultant force which causes the motion of the region of
macroscopic thickness of the meniscus (to the left of the point O on Figure 8.9) is thus:
Fr(θ) –S = γ (1 – cos θ). The corresponding power (energy per unit time) dEts/dt is then:

dEts
dt

= γ (1 – cos θ) V . (8.47)

This energy, provided by the capillary forces, is dissipated through viscosity in the flow
of the film resulting from the motion of the interface. We note that dEts/dt should vanish for
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an angle θ = 0, which would correspond to an almost motionless interface for which all the
available energy is dissipated in the residual film.

Let us now analyze the flow in the macroscopic region of the fluid film of thickness ξ(x)
at a distance x from the contact line. We assume that we are sufficiently close to this contact
line that gravity effects are negligible for the small vertical distances which we are consider-
ing. We will also assume that the apparent macroscopic contact angle θ is sufficiently small
that we can use everywhere the lubrication approximation. Let us call Q(x) the rate of flow
(per unit length normal to the figure) in the cross-section of the film: the change between
the times t and t + dt in the volume contained between the cross-section at x and the contact
line equals Q(x)dt (this is the volume injected in the same time interval). Let us assume,
moreover, that the interface moves without deformation at velocity V : the preceding change
in volume must also be equal to that ξ(x)(Vdt) of a layer of fluid of thickness V dt, located
in the neighborhood of cross-section x, whence:

Q(x) = V ξ(x). (8.48)

It follows therefore that the average velocity in section x defined by Vm(x) =Q(x)/ξ(x) is
constant with x and equal to V . In the lubrication approximation, the tangential stress
η ∂vx/∂z on the interface z = ξ(x) vanishes (condition at a free surface); and, moreo-
ver, vx(0) = 0. We will then have a velocity profile of the type vx(z) =A(x)(ξ(x) – z/2)z.
Integrating between 0 and ξ(x) relative to z so as to calculate Q(x), we find that:

Our approach here, based on an estimate of the
driving and dissipation effects, is only approxi-
mate. In fact, the assumption of a plane interface
implies that there is zero capillary pressure dif-
ference between the sides of the interface, and,
consequently, a constant pressure within the
fluid. This contradicts the prediction (Equations
8.49) for the velocity profile, which requires a
pressure gradient ∂p/∂x = –3ηQ/ξ3. Thus, the
interface needs to display a variable radius of
curvature near the contact line so that the dif-
ference in capillary pressure can balance such
gradients.

vx(x, z) = 3
Q(x)
ξ3(x)

[
ξ(x) –

z
2

]
z. (8.49)

We note that the velocity vx(x, ξ) of the fluid at the interface equals 3 Q(x)/(2 ξ(x)): it is
then higher than the average velocity Vm(x)= V and also independent of x.

Let us now write that the power dEts/dt given by Equation 8.47 equals the total
power dEη/dt dissipated by viscosity in the flow corresponding to the velocity profile from
Equations 8.49. From Equation 5.26, the dissipated power per unit volume is η (∂vx/∂z)2.
We obtain the total dissipation dEη/dt (again per unit length in the transverse direction) by
first integrating this expression between 0 and ξ(x) with respect to z and then with respect
to x. Let us now take ξ(x) = θ x, which amounts to neglecting the curvature of the interface
in the x-plane: assuming that the greatest part of the dissipation occurs very close to the
contact line, the resulting error will be quite small. Using Equations 8.48 and 8.49, we then
obtain in absolute magnitude:

dEη
dt

=
∫

3 η
Q2(x)
ξ3(x)

dx=3 ηV 2
∫

1
ξ(x)

dx=3 η
V 2

θ

∫ xM

xm

1
x
dx. (8.50)

Here, we needed to introduce an upper limit xM and lower limit xm, because of the loga-
rithmic divergence of the integral as x approaches zero and infinity. We can assume that
the upper limit xM corresponds to a length of the order of the size of the droplet in the
x-z plane, but we have a much more serious problem from the divergence of the dissipated
power at very small distances from the contact line. This issue is, still at this time, the object
of significant study and of numerical simulations on a molecular scale, and there is no exact
solution presently available. Considering then xm as an adjustable parameter of this model,
we obtain:

dEts
dt

= γ (1 – cos θ)V =
dEη
dt

= 3 η
V 2

θ
Log

(
xM
xm

)
. (8.51)
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In the approximation of small contact angles, where (1 – cos θ) ≈ θ2/2, we finally find
Tanner’s equation:

θ3 = 6
ηV
γ

Log
(
xM
xm

)
= 6 Ca Log

(
xM
xm

)
. (8.52)

The dimensionless capillary number Ca = ηV /γ indicates the relative importance of the
effects due to the viscosity and those due to capillarity. The pressure differences of viscous
and capillary origin are indeed respectively of the order of ηV /L and γ /L, so that their ratio
is of the order of Ca, if the gradients of the velocity and the radii of the curvature of the
interfaces have the same characteristic length L (if this were not the case, the ratio would still
be of the order of Ca, but we would need to introduce a geometrical correction factor). The
capillary number can also be considered as the ratio of the velocity V characteristic of the
flow to a velocity γ /η characteristic of the fluid (of the order of 102 m/s for water). This result
does not involve the value of the spreading parameter: this merely indicates the fact that the
excess energy corresponding to a positive value of this parameter is assumed to be dissipated
in the residual film, without influencing the dynamics of the macroscopic meniscus.

Figure 8.10 shows the experimental verification of Tanner’s law, using measurements
carried out by an optical method on a meniscus of silicone oil moving inside a capillary
tube. The continuous curve displays the theoretical variation predicted by Tanner’s equation
(Equations 8.52) but with a multiplying factor equal to 9 instead of 6 as indeed predicted
by more complete models. The ratio ε = xm/xM, is taken as equal to 10–4, a value which
gives the best agreement with the experimental points. These points follow very closely the
theoretical prediction up to surprisingly large values of the angle θd, of the order of 100º.
The corresponding value of xm is of the order of 100 nm.

The experimental value of xm (caption of
Figure 8.10) is of the same order of magnitude
as that resulting from the small-scale analysis of
both the connection between the macroscopic
meniscus and the precursor film, and the dis-
sipation of energy in the precursor film. In this
model, where the interface can no longer be
considered as a sharp corner with angle θ , the
transition region starts when the thickness of the
film reaches a value smaller than a/θ (a is a length
on an atomic scale). The corresponding value
of the distance xm is thus of order a/θ2; this
explains why xm is large compared to atomic dis-
tances and accounts for the experimental value
of xm/xM.
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Figure 8.10 Change in the contact angle as
a function of the capillary number, Ca, for
an interface silicone oil-air in a capillary
tube, under conditions of complete wetting.
(�) Experimental data. (document courtesy
of M. Fermigier and P. Jenffer). The solid
curve is inferred from Tanner’s law, using
ε = xm/xM = 10–4

Contact angles under conditions of partial wetting

We can apply a similar approach to the case of partial wetting, so long as the wetting angle
is not far from zero. The equations which we then obtain are more poorly obeyed than
Tanner’s law; we therefore use, in general, a rather empirical approach which generalizes
this law. Other models involving molecular adsorption processes have also been suggested.

One of the difficulties involves the definition of the static contact angle, discussed in
Section 1.4.3: depending on the direction of the motion of the contact line, the contact
angle takes indeed general different values (for forward or backward motion) in the limit of
small velocities.
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8.2.3 Dynamics of the spread of droplets
on a flat surface

Small droplets with complete wetting

Here, we are interested in the changes, as a function of time, of the radius of droplets
of a non-volatile liquid which lie on a solid substrate, under conditions of total wetting.
We will assume, just as we did in order to derive Tanner’s law, that the dynamics of the
droplet results from a continuous equilibrium between the viscous dissipation and the work
done by capillary forces on the contact line. We assume (as we will discuss later), that it
is enough to take into account the viscous dissipation in the region near the contact line
(i.e. at distances small relative to the radius of curvature). We will thus apply to this three-
dimensional system the equations which we have used above for the two-dimensional case
of a straight contact line. More precisely, we assume that they continue to be valid so long
as the radius of curvature of the interface is much greater than the thickness of the droplet.

Let us denote by � the volume of the droplet and assume that it keeps the shape of a
spherical cap of height h(t), with a radius of curvature R(t) and with a contact radius rg(t)
with the plane (Figure 8.11

R(t)

(t)h(t)

rg (t)

θ

Figure 8.11 Spreading of a droplet under
the action of capillary forces

). We then have:

� = (π/4) r3g θ . (8.53)

Proof
We have an exact relationship (2R– h) h= r2g (Figure 8.11) between the geometrical pa-
rameters. We obtain the volume of the spherical cap by integration from zero to h(t) of
π r2 dz = π(2R – z) z dz (here r is the radius, expressed in terms of the same equation, of
the horizontal cross-section of the cap at an arbitrary value of the height z, taken as positive
downward from the top of the cap). We then obtain:

�=π

(
R h2 –

h3

3

)
≈π R(t) h2(t) =

π

2
r2g (t) h(t). (8.54)

Moreover, we also have h(t) = rg(t) tan(θ /2) so that we obtain Equation 8.53 by assuming
that the angle θ is much smaller than 1.

Combining Equations 8.52 and 8.53 and substituting drg/dt for V , we obtain then:

drg
dt

=
γ

η

1

6 Log
(
xM
xm

)
[
4�
πr3g

]3

, (8.55) thus:
[
rg(t)

]10 =
5
3

γ

η Log
(
xM
xm

)[
4 �
π

]3
t. (8.56)

We therefore predict a very slow growth, as t1/10, of the radius of the droplet as a func-
tion of time. Because the product r3g(t) θ(t) is constant (Equation 8.53), θ(t) decreases as
t–3/10 under these circumstances. The numerical coefficients can be easily calculated by
combining Equations 8.54 and 8.56. We note that the solution obtained here can only be
approximate because we have assumed that the radius of curvature is constant along the
interface, since it is taken as a spherical cap. Also, the pressure just below the free sur-
face is constant along that surface: this in fact contradicts the existence of a spreading flow
which leads to pressure gradients resulting from the viscosity (we have already discussed
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Figure 8.12 Variation with time (in log-log
coordinates) of the radius rg(t), for a series of
droplets of silicone oil of variable volume �,
(η=0.02 Pa.s, γ = 20 mN/m), which are
spreading on flat plates of hydrophilic glass.
The dashed line indicates the boundary be-
tween the regimes dominated by gravity and
by capillarity. The solid lines respectively to
the right and to the left of the dashed line
correspond to the change in the power-law of
the exponents, from 1/10 and 1/8. (document
courtesy of A.M. Cazabat, and M. Cohen
Stuart)

this concept when we dealt with Tanner’s law). The exact solution is quite complicated:
it predicts a similar dependence of rg(t) on the physical parameters, but with somewhat
different numerical coefficients.

Figure 8.12 displays the variation as a function of time of the radius of a series of droplets
of silicone oil lying on smooth plates of hydrophilic glass. The variation of rg(t) as t1/10 is
only observed at short times (to the left of the dashed line) when rg is small enough so that
the capillary effects dominate. At longer times, we enter into a regime dominated by gravity
which is applicable to the droplets of larger diameter which we will now describe. We have
in fact shown in Section 1.4.4 that it is the relative values of the radius rg and of the capillary
length which determine the relative importance of the capillary and gravity effects.

The gravitational spread of large drops

In this case, gravity plays a dominant role in determining at the same time the geometry
of the drop and its dynamics. The drops can then be viewed as flat in the center region,
with their curvature localized at the edges (Figure 8.13). We will first compare the energy
dissipation per unit time due to the viscosity in the center region (dEηcr/dt) to that near the
contact line (dEηcl/dt) which has already been calculated in the preceding case. Their ratio
has the value: [

dEηcr
dt

]/[
dEηcl
dt

]
≈

[
rg θ
4 h

]/[
Log

[
xM
xm

]]
. (8.57)
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Figure 8.13 Schematic diagram of a large-
radius drop spreading out under the effect of
gravity
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Within a logarithmic coefficient, this ratio is of the order of magnitude of the ratio of the
radius rg of the drop to the width (≈ h/θ) of the transition zone between the contact line
and the flat center region of the drop. Thus, for drops of outer radius rg large relative to
h/θ , the dissipation by viscosity in the flat region of the drop ends up being the dominant
one, in contrast to the small droplets discussed previously for which the dissipation near the
contact line is the most significant.

Proof
Let us assume that, in the central region, the drop has a thickness h(t) independent of the
distance r to the axis. Let us analyze the conservation of the mass of liquid in a cylinder
of radius r, with the same axis as the drop, and of constant height H always larger than
the thickness of the drop (H>h(t)). The volume rate of flow Q(r) through the walls of this
cylinder is opposite to the change per unit time of the amount of fluid inside, so that:

Q(r) = 2π r h Vm(r) = –πr2
dh
dt

(8.58a) or:
1
h
dh
dt

= –2
Vm(r)
r

= cst with r, (8.58b)

where Vm(r) is the average, over the thickness h of the drop, of the radial velocity vr(r, z)
of the fluid. Moreover, as in Equations 8.48, the average velocity Vm(rg) equals the spread
velocity V (rg) = drg/dt at the edge of the drop. Combining this result with Equations 8.58b,
applied to the radii r and rg, we obtain:

Vm(r) = Vm(rg)
r
rg

=
drg
dt

r
rg
. (8.59)

Just as in Equation 8.49, the velocity profile vr(r, z) in the thickness of the drop is a half
parabola with a velocity maximum equal to 3Vm(r)/2 at the interface. We then find that
the absolute value of the viscous energy dissipation per unit time dEηcr/dt in the flat center
region of the drop, with radius approximately equal to rg, satisfies:

dEηcr
dt

= η
∫ rg

0
2π r dr

∫ h(r)

0

(
∂vr
∂z

)2
dz =

3
2

πηV 2 r
2
g

h
=

3
2

πη

(
drg
dt

)2 r2g
h
. (8.60a)

Applying Equations 8.51 along the perimeter 2πrg of the drop, we find the energy dEηcl/dt
dissipated by the viscosity per unit time, in the area of the contact line:

dEηcl
dt

= 6π η rg
V 2

θ
Log

(
xM
xm

)
. (8.60b)

We then recover Equation 8.57 by taking the ratio of these two dissipation terms.

We determine now the spreading equation for drops, for the case where gravity is the dom-
inant force (Figure 8.13). Just as in the previous case, we assume that the liquid in question
is non-volatile, in order to avoid evaporation phenomena which, often accompanied by
changes in the surface tension, create additional flow by virtue of the Marangoni effect
(we will be discussing this in Section 8.2.4, which follows).

We estimate the spreading law by assuming that the thickness of the drop is uniform
all over its surface. The dissipation of energy through viscosity must, at every instant
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of time, correspond to the change in potential energy of the drop which has the value:
(d/dt)[(π/2)ρ g r2g h

2]. Moreover, the volume� = π r2g h of the drop is constant. We thus have,
using Equations 8.60a to evaluate the viscous dissipation, the following energy balance:

d
dt

(π

2
ρ g r2g h

2
)
= –

3
2
ηπ

(
drg
dt

)2 r2g
h

· (8.61)

Let us now substitute for h its value as a function of � and rg. We then obtain:

r7g
drg
dt

=
2 �3

3 π3

ρ g
η

, (8.62) so that: rg(t) =
(
�

π

) 3
8
(
16
3
ρ g t
η

) 1
8
. (8.63)

In this way, we then predict (assuming that the radius of the drop is zero at time t = 0), a
growth of the drop as t1/8, instead of t1/10 in the previous case. This result is in agreement
with the growth at long times, which we observe on the curves in Figure 8.12.

We can evaluate rg(t), in the same manner, but
with more precise coefficients, by assuming that
the thickness h(r, t) of the film is no longer ex-
actly constant as a function of the distance from
the axis, but is described by a self-similar pro-
file; more precisely, it must satisfy a relation
of the type h(r, t) = h(0, t) f (r/rg(t)) in which
rg2(t) h(0, t) is constant with time in order to
keep constant the liquid volume, and f (x) = 0
for x > 1.

The spreading behavior as t1/8 and t1/10 represents two limiting cases, applicable to drops
spreading under conditions of complete wetting. Other types of spreading behavior (as t1/4)
are observed for flow on a rotating plate, or on some surfaces with roughness. Adapting
these models to the geometries and properties of more complex fluids has very important
applications to the spreading of decorative or protective coatings. Another important prac-
tical problem, which we will not discuss here, is the appearance of interfacial instabilities
in flowing films, which can be brought on by deformations, often very significant, of the
contact line, or by changes in the depth.

8.2.4 Flows resulting from surface-tension
gradients: the Marangoni effect

Principle of the Marangoni effect

Gradients in the surface tension due to changes in temperature or in the concentration of
solutes (e.g., affecting surface tension) can create surface stresses and cause fluid motion.
Fluid flow resulting from such stresses is known as the Marangoni effect; this is also known
as the thermo-capillary effect when it results from temperature gradients.

Thus, if a layer of water covers a surface, and a piece of soap touches a point on that
surface, we see this part of the surface “drying out” (Figure 8.14

OO

γ = γ0
γ = γ0

γ < γ0

Figure 8.14 Deformation of a fluid layer
by the local addition of a small amount of
tensioactive product

): the surface tension is
indeed locally reduced and the forces due to surface tension become unbalanced. We thus
have flow toward the neighboring regions where the surface tension is unchanged (this can
be visualized by the motion of dust particles initially present on the surface).

Such motion of the fluid can also be due to variations in the temperature T from one
point to another of a liquid-air or liquid-liquid interface. As shown in Section 1.4.1, the
surface tension coefficient depends on temperature according to an equation which, for
moderate changes in temperature, takes on the linear form:

γ (T) = γ (T0) (1 – b (T – T0)). (8.64)

A temperature gradient parallel to the surface of a liquid causes a tangential stress on it
(Figure 8.15 below). Along a strip of width δx, the surface tension forces are no longer
in balance. The resultant force is directed toward the regions of lower temperature.
Corresponding to a temperature gradient dT/dx, there is a surface-tension gradient equal to:

dγ
dx

=
dγ
dT

dT
dx

= –b γ (T0)
(
dT
dx

)
. (8.65)
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Figure 8.15 The appearance of tensile
stresses at the free surface of a liquid as a
result of a horizontal temperature gradient

This gradient causes a stress σ (γ )xy , in the x-direction, on the surface element L δx, where:

σ (γ )
xy =

F2 – F1
L δx

=
(γ2 – γ1)L
L δx

=
dγ
dx

= –b γ (T0)
(
dT
dx

)
. (8.66)

The negative sign appearing in σ (γ )xy indicates the fact that the resultant tension (and the
flow that results from it) acts in the direction of lower temperature.

Flow created in a horizontal liquid layer by a temperature gradient

The stress σ (γ )xy on the interface due to the surface-tension gradient will generate a flow of
velocity vx( y) which, in turn, will induce a viscous friction stress σ (η)xy = –η (∂vx/∂y) at the
interface. For a free, plane, gas-liquid interface, the total tangential stress must vanish so
that the stresses σ (γ )xy and σ (η)xy must balance each other. We then have:

σ (γ )xy + σ (η)xy = –b γ (T0)
dT
dx

– η
(
∂υx

∂y

)
interface

= 0. (8.67)

Let us now calculate the resultant flow-profile in a fluid film bounded from below by a solid
horizontal plane y = 0, of average thickness a, and extending infinitely in the z-direction
(Figure 8.16). We assume, as in the previous sections, that the flow is one-dimensional, the
only non-zero component being vx( y).

The pressure gradient in the y-direction satisfies: (∂p/∂y) = –ρg. Let us assume that,
at the onset, the upper surface is perfectly horizontal, that the density of the fluid is not

h(x)
a

y

x

x(y)

d  >
 0

        dT 
< 0dx dx

γ

υ

Figure 8.16 Velocity profile within a
finite-length fluid film, in the presence of a
horizontal temperature gradient, which
causes a recirculating flow due to the
Marangoni effect. The pressure gradient
resulting from the parabolic velocity profile
causes a deformation of the free upper surface
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a function of temperature, and that this density is uniform throughout the depth h. The
pressure satisfies everywhere the equation:

p = patm + ρ g (a – y). (8.68)

The pressure is then independent of x and the x-component of the equation of motion
reduces to:

η
∂2vx
∂y2

= 0. (8.69)

The velocity vx then varies linearly with y, just as for simple shear flow. Making use of
Equations 8.67, we find:

vx( y) = –
b γ(T0)
η

(
dT
dx

)
y. (8.70)

In a real situation, the film is of finite length in the x-direction. As a result, the fluid piles
upon the side towards which the flow is directed leading to a gradient in the thickness h(x)
of the film. Let dh/dx be the slope of the free surface (dh/dx � 1); the flow remains quasi
one-dimensional and the vertical pressure gradient is still equal to –ρg. The only effect of
the slope in the surface is thus to induce a horizontal pressure gradient ρg(dh/dx). Under
stationary conditions, the latter creates a subsurface counterflow which exactly compensates
the shear flow near the surface, to give a zero net-flow rate. The profile of the interface then
satisfies the condition:

h2(x) – h2(x0) = –
3b γ (T0)
ρg

(
dT
dx

)
(x – x0). (8.71)

The phenomenon we have just described can be easily observed by bringing the tip of a hot
soldering iron near a water surface; a dip can be seen in the surface just below the tip.

Proof
The equation of motion corresponding to the overall stationary state can be written:

η
∂2vx
∂y2

= ρ g
dh
dx

.

Integrating, with the conditions:

∫ h(x)

0
vx( y) dy = 0 and: vx(0) = 0, we obtain: vx =

ρg
η

dh
dx

(
y2

2
–
y h
3

)
. (8.72)

This flow is therefore a superposition of a shear flow and a Poiseuille flow. We can find the
value of dh/dx by using again the condition of Equations 8.67 for the surface stress, thus:

h
dh
dx

= –
3
2
b γ (T0)
ρg

(
dT
dx

)
. (8.73)

Equation 8.71 results from this, by integration.

Surface-tension gradients resulting from temperature differences are the basis of numer-
ous hydrodynamic instabilities. Among the best-known of these is the Bénard-Marangoni
instability of a horizontal fluid layer with a free surface, heated from below. We will discuss
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in more detail, in Section 11.3.1, this phenomenon which causes the appearance of a hex-
agonal lattice of convection cells. We also observe the rise of a liquid film when we dip a
vertical plate, heated at the top, into the liquid. Finally, liquid drops begin to move if they
are placed on a plate or on a wire where there exists a temperature gradient.

In industrial applications, flow resulting from surface gradients of thermal origin can
have significant practical importance. For example, this occurs in the case of very pure
single crystals produced by cooling in the presence of temperature-gradients: defects can
appear because of this flow. The motion of bubbles resulting from such gradients can also
greatly influence thermal transfer for boiling occurring along a heated wall.

Marangoni effect resulting from changes in the chemical composition

We can cause changes in the surface tension of a fluid by adding tensioactive compounds:
one example is that of the amphiphilic molecules that we mentioned in Section 1.4.1, which
can significantly reduce the surface tension when they are present along an interface. A con-
centration gradient of such molecules along a gas-liquid or liquid-liquid interface leads to a
surface tension gradient which will result in Marangoni flow.

A spectacular example of this is the phenomenon of “wine legs” or “tears of wine” which
can be seen in a glass partly filled with wine having a sufficiently high alcohol content.
Swirling the glass creates a liquid film along the walls, above the surface of the wine. We see
the liquid film rise, first creating a bulge near the top, followed by the appearance of droplets
which fall regularly downward after a certain amount of time.

This phenomenon is the result of the decrease in surface tension of a water-alcohol
solution (the wine!), as the concentration of alcohol increases. The evaporation of the al-
cohol from the liquid film leads to an increase in its surface tension, and causes the rise of
the fluid film above the free surface where the surface tension is unchanged. In the bulge,
the evaporation diminishes and the gradients in the surface tension can no longer balance
the effects of gravity on the droplets, which fall in “tears of wine”, also called “wine legs”
(Figure 8.17).

We have seen at the beginning of this section the example of putting a small amount of
soap on a thin, horizontal layer of water: the water “dessicates” because the surface tension
is highly decreased at this point, and all of the liquid is pulled toward other regions. This
phenomenon is found to have practical applications in the drying of certain fragile and very
expensive objects, such as the disks (wafers) of silicon used in microelectronic applications
(in this last case, the process involves blowing alcohol vapor or a similar compound).

(a) (b)

“teardrop”

α

Figure 8.17C (a) Top view of the rise of
a liquid along the walls of a glass due to
the Marangoni effect, and of the fall of the
liquid with a lower alcohol concentration in
the form of “teardrops” or “wine legs.” (b)
Close-up side view of a model experiment
which displays this phenomenon. One pulls
a plate inclined at an angle α relative to
the horizontal from the water-alcohol mix-
ture: this creates on the plate a fluid film
which drops back as legs or teardrops. The
narrower transverse ridges correspond to a
different flow instability (documents courtesy
of J. Bush and P. Hosoi, MIT)
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8.3 Falling liquid cylindrical jet
In every example discussed so far in this chapter, the flow occurred in the presence of one or
more walls: in the stationary flow regime, forces due to gravity or to the pressure gradients
could then be balanced by the viscous stresses on the wall(s).

This is no longer the case when we have a free jet flowing from an opening, as shown
in Figure 8.18.

2 a
0

2 a1

r,

z ,υz

Q

ρ,η,γ

υ

Figure 8.18 Jet of viscous fluid falling from
an orifice. The jet falls onto a plane at the bot-
tom of the figure, which leads to the observed
coiling; this coiling is not discussed here, and
we will interest ourselves only in the straight
portion of the jet (image courtesy of N. Ribe)

The viscous shear stress σ ′
zr at the free surface of the jet (r = a(z)) can, in

this case, be considered to be negligible: this leads to the conclusion that the radial gradient
of the velocity component vz also vanishes near the surface (Section 4.3.2, Equation 4.37).
The absence of this viscous shear stress component σ ′

zr which might otherwise cause radial
changes in the velocity of the jet leads us to assume that vz is independent of r.

Even if the cross-section of the jet changes slowly with distance, and the flow is quasi-
parallel, the assumptions of the lubrication approximation must be entirely revised: this
approximation was indeed based on the existence of equilibrium between the shear stresses
and either the pressure gradients or gravity.

Other viscous terms which we have so far neglected relative to σ ′
xr need to be taken

into account: these are, specifically, the diagonal components of the viscous shear tensor
which oppose the stretching of the jet as the fluid velocity changes in the x-direction. In the
present case, the components which have to be taken into account include: σ ′

zz =2 η ∂vz/∂z
and σ ′

rr = 2 η ∂vr/∂r (Chapter 4, appendix 4A.2).

8.3.1 Stable flow regime
Equations of motion

In the one-dimensional model discussed here, the change in the cross-section A(z) = π a2(z)
and the velocity vz(z) of the jet satisfy the following equation of motion proven below:

ρg A(z) = ρA(z)
(
vz(z)

∂vz(z)
∂z

)
+ πγ

∂a(z)
∂z

– 3η
∂

∂z

[
A(z)

∂vz(z)
∂z

]
. (8.74)

This equation of motion expresses the fact that the force of gravity is balanced by a
combination of three terms:

• the inertial term, indicating the acceleration of the fluid along its trajectory;

• the change in the z-direction of the capillary pressure;

• viscous stresses related to the lengthening of the jet in the z-direction, to the decrease
of its cross-section and to the resulting change in velocity.

Proof
Let us integrate with respect to r the condition of incompressibility ∇·v = 0 in cylindrical
coordinates (Chapter 4, appendix 4A.2), taking into account the finite velocity vr at r =0
and the fact that vz, and thus its gradient ∂vz/∂z, are not functions of r. We then obtain:

υr = –
r
2
∂vz
∂z

, (8.75)

from which we infer: σ ′
rr = 2η

∂vr
∂r

= – η
∂vz
∂z

= –
σ ′
zz

2
. (8.76)

In order to ensure that the jet is in mechanical equilibrium in the transverse direction, we
must have p – σ ′

rr independent of r. Since, from Equations 8.76, σ ′
rr must be independent of
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r, the same needs to be true regarding the pressure. On the other hand, if p is the pressure
inside the fluid at the level of the interface, we must also have:

p – σ ′
rr = patm +

γ

a(z)
, i.e.: p = patm +

γ

a(z)
– η

∂vz
∂z

. (8.77)

We assume, moreover, that the flow is stationary; the rate of flow Q of the fluid in the jet is:

Q = π a2(z)υz(z) = A(z) υz(z) (8.78)

must be constant as a function of z and of t in order to ensure the conservation of mass
(A(z) is the cross-section of the jet at the distance z). Let us now write Equation 5.10 for
the conservation of momentum in a slice of the jet located between the cross-sections z and
z + δz:

ρ g A δz =
[
ρQ vz(z) + ( p(z) – patm)A(z) – σ ′

zz A(z)
]z+δz
z . (8.79)

Rewriting this equation in differential form, and using Equations 8.75, 8.77 and 8.78, we
obtain Equation 8.74.

We assume, first of all, that the change in capillary pressure has a negligible effect, and
we will look for the laws involving changes in the two limiting cases, where either the inertial
term or the viscous term dominate.

Inertial regime

Equation 8.74 reduces to: g = vz
∂vz
∂z

,

so that, by integration: υ2z (z) – υ
2
z0 = 2 gz. (8.80)

We recognize that this is the change in velocity with distance of an object in free fall: this
is a logical result since the only frictional forces are of viscous origin, and, here, we assume
they are negligible. When υz(z) � υz0 the velocity thus increases as the square root of the
distance (vz(z) =

√
2 g z).

Viscous regime

Equation 8.74 becomes: ρ gA(z) = –3 η
∂

∂z

[
A(z)

∂vz(z)
∂z

]
. (8.81)

From this, we infer the following variations of the flow velocity and the cross-section, as
functions of z:

vz(z) =
g
6ν

(z – zi)2 (8.82a) and A(z) =
6νQ
g

(z – zi)–2. (8.82b)

We can then determine zi (< 0) from the value vz0 of the flow velocity at z = 0. For υz � υz0,
the velocity increases as the square of the distance (vz = g z2/6ν).
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Proof
Gravity is compensated, in the present case, by the viscous stresses resulting from the
stretching of the jet. Let us assume that, as in the previous situation, vz has a power-law
dependence on z or, more precisely, on (z – zi), where zi is an arbitrary origin so that
vz = Cη (z – zi)α : this implies that A = (Q/Cη) (z – zi)–α . Inserting this into Equations 8.81,
we obtain (z – zi)2–α =3 ν ηCη/g, which requires α = 2 and Cη = g/6ν . This leads to
Equations 8.82a and 8.82b.

For an injection orifice of diameter d, this
self-similar power-law solution is only valid far
downstream of the orifice, when the cross-
section A(z) of the jet is small compared to
its initial value πd2/4. Combining this condi-
tion with Equation 8.82a, we obtain: z – zi �√
(24 /π)

(
νQ/(d2g)

)
.

Transition from the viscous to the inertial regime

The viscous regime is found in the start-up phase where the viscous forces maintain a low
flow velocity. Subsequently, the inertial effects take over.

Let us evaluate, in the viscous regime and where υz � υz0 (z�zi), the change with
distance in the inertial and viscous terms in Equation 8.74, by means of Equations 8.82a
and 8.82b. We find:

ρ A
(
vz
∂vz
∂z

)
� ρ Qg z

3 ν
(8.83a) and: – 3 η

∂

∂z

[
A
∂vz
∂z

]
� 6 ηQ

z2
. (8.83b)

The ratio of the inertial to the viscous term is thus of the order of g z3/(18 ν 2): the inertial
term increases with the distance while the viscous term decreases (because of the decrease
of A(x)). The distance zc corresponding to the transition (ratio of the order of unity) is then:

We find Equation 8.84b by writing Equation
8.82a for z = zc, assuming vz � vz0, and then
multiplying both sides by zc2.

zc ∼=
(
18 ν2

g

)1/3

(8.84a) from which we infer: υz(zc) zc ∼= 3 ν. (8.84b)

In order for the viscous regime to extend throughout the length of the jet, we must have
zc ≥ L: in the limit zc = L, we then have: vL L ∼= 3 ν. The Reynolds number ReL = vL L/ν,
based on the length of the jet must be at most of the order of unity.This condition is much stricter than that for the

lubrication approximation, for flow in the pres-
ence of a wall, which here would be vLa0/ν <
1/θ ≈ L/a0; this is equivalent to ReL < (L/a0)2

where (L/a0)2 � 1. This result reflects the much
smaller values of the viscous terms in the absence
of a wall: these terms then result uniquely from
the stretching of the jet, which leads to longitudi-
nal and transverse flow-velocity gradients which
are much smaller than for a shear flow in the
presence of a wall.

Even for a slow change of radius as a function of the distance (quasi-parallel flow), the
viscous terms will only be dominant, in a real situation, if we use very viscous fluids in order,
from Equation 8.84a, to satisfy the condition zc ≥ L.

In the case of water (ν ≈ 10–6 m2/s), one finds zc ≈ 0.12 mm which makes any exper-
imental observation extremely difficult. In order to reach a value of the order of 0.1 m we
need a viscosity around 2.5× 10–2m2/s, i.e., about 25,000 times the viscosity of water.

8.3.2 Capillary effects and Rayleigh-Plateau
instability of the jet

Until now, we have neglected surface-tension effects in the flow of vertical jets. In fact,
for very viscous fluids, the flow described just above remains stable. On the other hand, for
liquids with low viscosity, such as water, the effect of surface tension can lead to an instability
and to the formation of drops; we can easily observe this by looking at the evolution, as a
function of distance, of a jet of water, originally cylindrical (Figures 8.19a,b).

In order to explain this instability, known as the Rayleigh-Plateau instability, let us cal-
culate the changes in the capillary pressure resulting from a deformation of the external
surface of an originally cylindrical jet of liquid. When no deformation is present, the cap-
illary pressure difference pcap between the inside of the jet and the (constant) atmospheric
pressure pat outside satisfies p0cap = γ /R0. Let us assume now that the jet remains axially
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symmetric, and that its local radius, R(z) is modulated sinusoidally in the z-direction of its
axis (Figure 8.19b):

R (z, t) = R0 + h (t) cos kz. (8.85)

Here, we assume that the velocity profile in the jet is uniform and we study the deformations
in a reference frame moving at the corresponding (gravity is assumed to have no influence
on the instability). We also assume that h(t) � R0 and that the slope of the interface remains
small (dR/ dz � 1). The variation �pcap(z, t) = pcap(z, t) – p0cap of the capillary pressure
difference due to the deformation is:

�pcap(z, t) = γ h(t) cos kz

(
k2 –

1

R2
0

)
. (8.86)

Justification
The pressure difference pcap(z) is determined from the Young-Laplace law (Equation 1.58),
in terms of the sum of the contributions of the two radii of curvature R1 and R2 of the jet
surface respectively in planes containing and perpendicular to the axis. We then obtain:

pcap(z, t) = γ
(

1
R1

+
1
R2

)
= γ

(
–
∂2R(z, t)
∂z2

+
1

R(z, t)

)

= γ
(
k2h(t) cos kz +

1
R0 + h(t) cos kz

)
,

(8.87)

Expanding the last term on the right-hand side in terms of h/R0 and substracting p0cap, we
obtain Equation 8.86.

R0

h(t)

R(z,t)

pat
pat+
∆pcap

z

O
r

(a) (b)

ρ,γ

λ =2π/k

Figure 8.19C Destabilization, by the
Rayleigh-Plateau mechanism, of a vertical
cylindrical liquid jet. a) experimental obser-
vation of the development of the instability,
followed by the formation of drops (document
courtesy of J. Aristoff and J. Bush, MIT);
b) Schematic diagram for the development of
the instability

When k2 – 1/R2
0 < 0, �pcap becomes negative in the regions where R(x) >R0 (cos kz > 0)

and, in contrast, positive for R(z) <R0 (cos kz<0). Since the pressure inside the non-
deformed jet is constant (and equal to pat + γ /R0), the pressure in the regions where the
radius of the jet increases due to the deformation will be larger than in those where it de-
creases. The flow resulting from these pressure differences thus reinforces the instability.
The absolute amplitude of these pressure changes is greatest when |k| � 1/R0 and decreases
when k approaches 1/R0.

This larger value of the changes in capillary pressure as a function of z for long-
wavelength deformations might seem paradoxical: capillary effects generally increase indeed
with the curvature of the interfaces. But, here, the contribution to the Young-Laplace law of
the curvature in planes containing the axis (k2 term in Equations 8.86) stabilizes the inter-
face; it is the curvature in the planes normal to the axis which is destabilizing (term varying
as –1/R2

0). It is thus logical that the destabilising capillary pressure is highest when the first
term almost vanishes, for k → 0.

On the other hand, the change as a function of k of the rate of increase σ does not
depend only on �pcap but also on the fact that the time for transfering matter between the
regions of smaller and larger radii acts over a distance of the order of a half wavelength: the
decrease in this distance as k increases must then, to the contrary, lead to an increase in σ .
The approximate estimate of σ (carried out below) for an inertial flow:

σ 2 ∝ k2R2
0

(
1 – k2R2

0

)
(8.88)
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combines these two effects. This rate of increase is only positive if k<1/R0 (unstable case),
and has a maximum when k = 1/(R0

√
2) ≈ 0.7/R0: this value is quite close to that experi-

mentally observed, and corresponds to a wavelength of 1.4 times the perimeter of the jet.
This last result is applicable to numerous instabilities which display a range of unstable

wavelengths: the dominant instability is that of the wavelength for which the rate of growth
is a maximum. Moreover, the simple model which we discuss here takes no account of the
effects of the viscosity or of the average flow rate.

Justification of Equation 8.88For highly viscous fluids, the Rayleigh-Plateau
instability can still be observed, because the
changes in the capillary pressure related to the
deformations of the interface (Equation 8.86)
remain the same. In contrast, Equation 8.88
is no longer valid because the development of
the instability then results from the equilibrium
between the capillary and the viscous forces.

In the cases for which the instability is best visible (fluids with small viscosity), we are gen-
erally in an inertial regime for which the effect of viscosity can be neglected: the acceleration
∂vz/∂t of the fluid is then proportional to the pressure gradient in the z-direction. Assuming
that this pressure gradient is uniform over the cross-section and equal to the capillary-
pressure gradient, and that the velocity is also uniform, we have: ρ ∂vz/∂t ≈ –∂�pcap/∂z.
Using Equation 8.86 to estimate �pcap, the corresponding flow rate Q(z, t) satisfies:

∂Q(z, t)
∂t

≈ –
πR2

0

ρ

∂�pcap(z)
∂z

=
π γ h(t) R2

0

ρ
sinkz k

(
k2 –

1

R2
0

)
. (8.89)

The conservation of the flow rate of fluid can be written locally for a given z in the form:

The Rayleigh-Plateau instability can also be ob-
served in the case of some, very soft, solids, such
as gels. All solids are characterized by a surface
energy: in contrast to liquids, the corresponding
forces are, however, generally negligible in com-
parison with the elastic forces. Their ratio can
be characterized by the length h= γ /E, where γ
is the surface energy and E is Young’s modulus
(the ratio of the stress F/S to the resulting rela-
tive deformation �L/L). For iron, for example,
this length is 3× 10–13 m and the surface en-
ergy has no significant effect on deformations on
this scale. This is no longer the case for gels for
which Young’s modulus has a value of a few Pa
(instead of ≈ 2× 1011Pa for iron): the length h is
then a few mm. Surface-tension forces are then
sufficently great to result in a Rayleigh-Plateau
instability (but, in contrast, the elastic forces can
prevent the breaking up into droplets).

2π R0 cos kz
dh(t)
dt

= –
∂Q
∂z

, (8.90)

where the left-hand side represents the change with time of the cross-section of the jet (again
when h�R0). Taking the derivatives of Equations 8.89 and 8.90 respectively with respect
to z and to t and setting the results equal, we obtain after dividing both sides by 2π R0h(t)
cos kz:

1
h(t)

d2h(t)
dt2

≈ γ

2 ρ R3
0

k2R2
0

(
1 – k2R2

0

)
(8.91a)

or: σ 2 ≈ γ

2 ρ R3
0

k2 R2
0 (1 – k2R2

0),

(8.91b)

assuming that h(t) increases with time as exp(σ t). The exponential growth coefficient σ
then satisfies Equations 8.88. If we take into account the pressure and radial velocity gra-
dients, we obtain a similar result, where the factor k2R2

0/2 is replaced by a function f (kR0)
whose maximum corresponds to k=0.697/R0, remarkably close to the value obtained from
the simple approximation above.

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EXERCISES
In the following exercises, the lubrication approximation (see Section 8.1.2) is assumed to
be valid and the thickness of the liquid films is assumed to vary slowly with distance parallel
to the flow.

1) Flow of a fluid layer around a horizontal cylinder
R

h(φ,t)

φ

g

q patm

ρ,ν
A horizontal circular cylinder of radius R and axis along z (see in the margin), is coated
externally by a layer of a Newtonian fluid of initial thickness h0 �R constant with re-
spect to the coordinates z and ϕ (using cylindrical coordinates r,ϕ,z). This represents,
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for instance, the painting of a tube by means of a brush: we are interested in the sub-
sequent flow of the paint leading to azimuthal variations of its thickness. Show that the
influence of the pressure gradients on the flow is negligible compared to that of grav-
ity. Using the procedure of Section 8.2.1, compute the flow rate q(ϕ,t) per unit length
along z through a cross-section ϕ = constant as a function of h(ϕ,t) and the viscosity ν.
Both h and q are assumed to remain independent of z. Show that the equation govern-
ing the variation of the thickness h(ϕ, t) is: ∂h/∂t = –gh2/(3νR) (3∂h/∂ϕ sinϕ + h cosϕ).
Neglecting surface tension effects, compute, for a constant viscosity ν, the variations
h(ϕ, t)/h0 at the top and the bottom of the tube (ϕ = 0 and ϕ = π), using the character-
istic flow time constant τf = 3 νR/

(
2 g h20

)
. Compute then h(ϕ,t)/h0 for ϕ = 0 and ϕ = π

when ν increases exponentially with time as ν = ν0 exp(t /τd) (in order to simulate the
drying of the paint). What is the thickness variation at times short or long compared to
τ d depending on the relative values of τ d and τ f?

2) Spin coating

z

r

patmh(r,t)

O

r

Ω

υr(r,z,t)

In the “spin coating technique”, in order to obtain a thin layer of constant thickness
of viscous fluid an initially thicker layer is placed over a horizontal disk rotating at a
constant angular velocity � around the z-axis. Neglecting surface tension and gravity,
show that the flow rate q(r) through a cylinder of radius r and axis Oz, higher than the
maximum of the thickness h(r, t) of the layer, is q(r) = 2π

(
�2r2h3(r, t)

/
3ν

)
. Write the

relation between ∂h/∂t and q and show that, if h(r, t) is constant with r at a time t, it
remains so thereafter. What is then the variation h(t) for an initial thickness h0? What is
the thickness after 10 s and 100 s for � = 60 π rad/s, ν =10–5 m2/s and h0 = 0.5 mm?

3) Rough sphere dropping away from a plane

z rO

a

h0 2E

g

z

η,ρf

ρs

We generalize the analysis of Section 8.1.6 to a rough sphere of radius a. The roughness
is represented by a distribution of half spheres of radius ε�a. The space between the
sphere and the plane is filled by a Newtonian liquid. In contrast to the case of Figure
8.4, the rough sphere is initially below the plane and in contact with it (we assume
that three of the small half spheres are at an atomic distance h0(0) = h0m� ε from the
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plane); the sphere moves away under its weight thereafter. Due to the reversibility of low
Reynolds number flows, the flow velocity field is the opposite, for a same distance from
the plane, of that for a sphere falling towards it. In the early phase of the motion during
which h0 � ε, how should equation 8.33 be modified? What becomes of the equation
when ε � h0 � a? At larger distances h0 > a, equations 8.33 must be replaced by the

empirical expression F = –6πηa
(
1 + a

h0

)
dh0/dt. Show that it is valid for a sphere with

smooth walls both for h0 � a and h0 � a. Show that the equation of motion of the

sphere is then 4π
3 a3(ρs – ρf )g = 6π ηa

(
1 + a

h0(t)+ε
+ 3 ε2

a h0

)
dh0
dt and that the distance

h0(t) satisfies the implicit relation:

2a2

9η
(ρs – ρf )t = h0(t) – h0m + a Log

h0(t) + ε
h0m + ε

+
3ε2

a
Log

h0(t)
h0m

.

We want to use this equation in order to determine the relative roughness ε/a of the
sphere by measuring the times ta and t2a for its move away by distances a and 2a from
the plane (J.R. Smart and D.T. Leighton, 1989). Show that ε/a can be written as a
function of solely ta and t2a.

4) Liquid film draining under gravity along a vertical plate

q(
x,

t)

y

h(x,t)

η

patm

g

x

υx

O

ρ

A vertical plate ( y = 0) is dipped into a viscous fluid and then quickly pulled out: it car-
ries with it a layer of fluid of thickness h(x, t) (x = 0 at the top of the layer) which drains
down due to gravity (surface tension is neglected). Compute the flow rate q per unit
length along z through a section x = constant (see Section 8.2.1). Show that, because
of the conservation of mass, h(x, t) satisfies the relation ∂h/∂t + (g/ν) h2(∂h/∂x) = 0.
We assume that, after a transitory phase, the variation of h corresponds to a self-similar
solution: h = f (x / tα). Determine α and the function f . What is the corresponding
thickness of the film at a distance x = 0.2 m for ν = 10–3 m2/s and t = 1, 10, 100
and 104 s?

5) Rayleigh-Plateau instability on a cylindrical fiber

h(t)

  =2π/k

ρ,γ

patm

patm+∆pcap

z

λ

r

O
R0

e0

We examine the instability of a viscous film of initially constant thickness e0 upon a
horizontal cylindrical fiber of radius R0 � e0 and axis z. Surface tension and vis-
cosity effects are taken into account while gravity is neglected. The flow along the
film is supposed to be quasi-stationary and controlled by viscosity as in Equation 8.25
and not by inertia as in Section 8.3.2. Assuming a sinewave distorsion of the interface
(e(z) = e0 + h(t) cos k z) and using a relation similar to Equation 8.86, compute the
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pressure p(z) and show that the flow rate Q(z) through a cross-section z = constant
is Q(z) =

[
2πγ kh e30/(3 ηR0)

]
(k2R2

0 – 1) sin kz. Using this result, write the con-
servation of mass at a distance z and show that the governing equation for h(t) is
1/τ(k) = (1/h) (dh/dt) =

[
(k2 e30 γ )/(3 η R

2
0)

]
(1 – k2R2

0). For what value of k does τ(k)
reach its minimum value τmin ? Using the results of Exercise 1, what is the condi-
tion on τmin which must be satisfied by τmin in order for gravity to be negligible, as
assumed above? Compute τmin and the corresponding wavelength for η=10–1 Pa.s,
γ =5× 10–2 N/m, R0 = 0.5 mm and e0 = 20 μm.

6) Liquid film rising due to the Marangoni effect (Section 8.2.4)

q(
z,

t)

x

h(z,t)

η

patm

g

ρ

υz(x,z,t)

O

z

h0

V(h)

A vertical plate (x = 0) is dipped into a liquid bath of horizontal free surface at z = 0.
A vertical temperature gradient ∂T /∂z<0 is established on the plate at the origin time
t = 0. It creates a vertical gradient ∂γ /∂z = –b γ (∂T /∂z) of the surface tension which
causes a liquid film of thickness h(z, t) to move up on the plate. Determine the velocity
profile vz(x) as a function of h and show that the local flow rate q per unit distance along
y is q = σ (γ ) (h2/2η)–ρg (h3/3η). What is the value of the stress σ (γ ) on the surface? As
the film rises, the point where the thickness h has a given value also moves. Show that
its velocity V is equal to dq/dh and that it is constant with time and depends only on h
(use the equation of conservation of mass to relate the variations of q and h). What is
the geometrical transformation leading from the profile h1(z) at a time t1 to h2(z) at the
time t2 ? Show that the variation V (h) of the velocity with h displays a maximum. What
are the corresponding thickness hmax and velocity V (hmax) ? Assuming that h > hmax

for z = 0, explain qualitatively why the profile must be cut off (h goes abruptly to zero)
for a value of h which must be larger than hmax.




