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Chapter 2

1. Vector analysis

2. Transport theorem

3. Stress modeling

4. Navier-Stokes
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Analysis 
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Divergence

z
U

y
U

x
UUUdiv zyx

∂

∂
+

∂

∂
+

∂

∂
=∇= .

Vectoriel field
(ex : velocity)

zzyyxx eUeUeUzyxU ++=),,(

→ Divergence of vector = scalar



4

V

t t+dt

dt
dV

V
Udiv 1
=

Divergence : physical 
interpretation

The divergence of the velocity field corresponds to the 
volumetric dilatation rate of a fluid volume

V+dV
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A B

UxBUxA

x

AB is a line of fluid particles in a flow such that UxA<UxB. Since the
velocity is higher in B than in A, the segment AB is stretched in the x
direction. This deformation is called a stretching. The relevant
quantity is the derivative of the velocity with respect to the direction
tangential to this velocity
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Stretching
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Gradient of a scalar
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Velocity gradient Symetric part Antisymetric part

Taylor expansion of the velocity field

Gradient of a vector: application to the 
velocity field



Deformation of a fluid parcel centered in  

diagonal antisymmetrictrace-free

Translation Pure dilationRotation Pure deformation

Taylor expansion of the velocity field



Taylor expansion of the velocity field

Gradient of a vector: application to the 
velocity field

diagonal antisymmetrictrace free



The action of the antisymetric part of the velocity gradient can be 
reexpressed as a vectorial product

Rotation and vorticity

vorticity
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(ex : velocity)

Urot=Ω vorticity
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Rotational : physical 
interpretation

The vorticity characterizres the instantaneous rotation
of a parcel of fluid around its center

t1

t2

Rotational motion

0≠Urot
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Rotational : physical 
interpretation

The vorticity characterizres the instantaneous rotation
of a parcel of fluid around its center

t1

Irrotational motion

t1

t2

0=Urot
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Scalar field
(ex : one component of the velocity field)

Laplacian
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Vector field
(ex : velocity)

Laplacian
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Navier-Stokes equations
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Transport theorem



20

Material Volume
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?

Transport theorem
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•

Transport theorem
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Transport theorem
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Transport theorem
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Material derivative

Material 
derivative

Local 
derivative

Convective
derivative
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volumetric form

Transport theorem



27Surface flux expression

Transport theorem



28



29

Stress modeling

Fundamental laws

Balance

Mass

Momentum
Angular 

Momentum
Energy

ρ

ρ

ρ

ρ
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= -

M(t)

Mass conservation of a fluid element
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= -

Continuity equation

Incompressible flow

The density is constant on a trajectory
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Volume sources

Surface fluxes

Fundamental laws
Local forms

Conservative form
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Continuity equation

Fundamental laws
Local forms

Conservative form

Non conservative form
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Conservation of momentum

Newton’s second law

Force balance : 

• pressure forces

• viscous forces

• volumetric forces f

∑= Fam
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What type of stresses?

• Volumetric stresses, associated to a volumetric force 
distribution

→ gravity, electro-magnetic force (conducting 
fluid)…

• Surface stresses, applying at the surface of a 
continuum parcel

→ friction, pressure, surface tension,…
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Momentum conservation

Cauchy stress tensor
Surface forces

Normal

Volumetric forces

A theorem due to Cauchy, using small tetrahedra of arbitrary orientation, 
shows that the surface force is linear with the normal to the surface and 
allows us to represent the cohesion forces by a stress tensor
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Stress modeling
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Hydrostatics

Pressure
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Stresses in a fluid at rest : pressure
A fluid at rest is subjected to isotropic normal forces!
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Archimedes law
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Archimedes law
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dS

n

Stresses in a moving fluid

In addition to the normal isotropic pressure force, the fluid 
element feels both normal and tangential viscous forces  

dF = -pn dS

F = ∫∫-pndS
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Newtonian fluid model :

• The stresses do not apply in preferential direction
• The intensity of the stress is a linear function of the 
velocity gradient.

Most usual fluids (water, air, quicksilver…) are 
newtonian fluids.

Stress in a moving fluid: viscous 
stress tensor
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Viscous stress tensor

µ: dynamic viscosity
(kg/m/s)

ν=µ/ρ :
Kinematic viscosity
(m²/s)

Newtonian fluid model  
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Divergence of velocity field, 
i.e. volumnetric dilatation

Viscous stress tensor
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Viscous stress tensor
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A B

UxBUxA

x

AB is a line of fluid particles in a flow such that UxA<UxB. Since the
velocity is higher in B than in A, the segment AB is stretched in the x
direction. This deformation is called a stretching. The relevant
quantity is the derivative of the velocity with respect to the direction
tangential to this velocity

A’ B’
x

Instant t

Instant t+dt

Stresses : stretching
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A B
x

A’ B’
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UxBUxA

Stresses : stretching

A’B’-AB=(UxB-UxA)dt=          dxdt
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A B x
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B’

x

Instant t

Instant dt later

Stresses : shear

y
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UyB

UyA

AB is a line of fluid particles in a flow such that UyA<UyB. Since the
velocity is higher in B than in A, the segment AB will rotate. This
deformation is called shear. The relevant quantity is the derivative of
the velocity with respect to the direction normal to this velocity
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The equations of fluid 
mechanics
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Momentum conservation for 
incompresible fluid

Newton’s 
second law

Transport
theorem

Green’s 
identity
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Newtonian incompressible fluid
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Viscous stress
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Newtonian incompressible fluid
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Boundary conditions
1. Liquid/solid interfaces

the solid is viewed as undeformable

NO SLIP BOUNDARY CONDITION 
Uliq=Usol

sometimes relaxed to
NON PENETRATION (FREE SLIP)
Uliq.n=Usol.n

2. Liquid/liquid interfaces
U1=U2 Continuity of velocity
U1.n= U2.n=Vinterface   Non penetration (free slip)
σ1.n= σ2.n Continuity of stress
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Boundary conditions

3. Free surface (liquid/gas interface)

U.n=Vsurface   Non penetration (free slip)
σ.n= 0 No stress
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Solid or fluid?
Pure shear

Elastic solid

Newtonian fluid

Characteristic time
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Viscoelastic medium

Elastic solid

Newtonian fluid
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The earth’s mantel
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Deborah number


