Chapter 2
1. Vector analysis
2. Transport theorem
3. Stress modeling
4. Navier-Stokes



Vector

Analysis



Divergence

Vectoriel field U(x,y,z)=U.e +U,e, +U.e.
(ex : velocity)

- —— oU
divU =V.U = U, +— o,
ox Ay 0z

- Divergence of vector = scalar



Divergence : physical
iInferpretation

The divergence of the velocity field corresponds to the
volumetric dilatation rate of a fluid volume




Stretching

UxA UxB
Instant t e > X:
A B
Instant t+dt | X:
A B

AB is a line of fluid particles in a flow such that U,,<U,p. Since the
velocity is higher in B than in A, the segment AB is stretched in the x
direction. This deformation is called a stretching. The relevant
quantity is the derivative of the velocity with respect to the direction
tangential to this velocity



Stretching

A'B-AB=(U, g-U, ,)dt= . {dxal
X




Volume (surface area) change
.

oU, dU
(A"B”)(A"C")-(AB)(AC)=(AB)(AC)(—+—=) df
ox dy




Gradient of a scalar

Scalar field  p(x,y,z)
(ex : pressure)

gradp=§p= —

——
V Gradient operateur (nabla)

> Gradient of scalar = vector



Gradient of a vector: application to the
velocity field
Taylor expansion of the velocity field

u(x + 0x) = u(x) + Vu 0x

[Vul-[D}+ 2]

Velocity gradient ~ Symetric part Antisymetric part

D=_((Vu)+(Vu)')

L\le—\ L\DI}—k

()= ((Vu) (Vu)T)




Deformation of a fluid parcel centered in X

Taylor expansion of the velocity field

u(x + 0x) :er Vu 0x
Vu=39 ++

trace-free antisymmetric

u(x)

X X X X

Translation Rotation

>

Pure deformation




Gradient of a vector: application to the
velocity field

Taylor expansion of the velocity field

u(x 4 0x) = u(x) + Vu éx

Vu=_S9 +.+.

trace free antisymmetric



Rotation and vorticity

The action of the antisymetric part of the velocity gradient can be
reexpressed as a vectorial product

1
Q:§<(VH)—(VU)T)

o o o _ o _ ou _ o ;
((?y—l_f):z?) 0 (az ay> 0y 5% M| W

\CEg) (k) o N (B

5X:%E/\(5X

Ly

PO | —
DO | —

‘w:VAﬂ




Rotational

Vectorial field U(x,y,z)=U,e +U,e, +U.e,
(ex : velocity)

(AU, _aUy\

Ay 0z

roi U=V AU =| 2% _9Y

0z 0x

U, _aUx
\ dx Ay )

- Rotational of vector = vector

Q=rot U Vorticity



Rotational : physical
Intferpretation

The vorticity characterizres the instantaneous rotation
of a parcel of fluid around its center

Rotational motion

rotU = ()



Rotational : physical
Intferpretation

The vorticity characterizres the instantaneous rotation
of a parcel of fluid around its center

Irrotational motion

rotU =0



Laplacian

Scalar field U.(x,y,2)
(ex : one component of the velocity field)

0°U. 0°U. 00U
AUx = 2x + 2x + 2x
ox ady 0z

- Laplacien of scalar = scalar



Laplacian

Vector field U(x, ¥,2)
(ex : velocity)

(AU
AU =| AU

y

\AUZ)

- Laplacian of vector = vector



Navier-Stokes equations



Transport theorem



Material Volume
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Transport theorem

d

4 ?
o Jow b(x,t)dQ(t) ¢



Transport theorem

d (db —

= = dQ(1)+ bdQ(1
di J o (1)+bdQ(1)

dt

b(x,1)dQ(r) = [

§2(1)



Transport theorem

d (db —

= = dQ(1)+ bdQ(1
di J o (1)+bdQ(1)

dt

b(x,1)dQ(r) = [

§2(1)

700) = 42 (1)divU



Transport theorem

% o b(x,t) dQ (1) = f%) (Z—l; dQ(1) + b@r))
700) = 42 (1)divU
d

(d—b +b diVQ) dQ(t)
dt

" b(x,1)d(t)= [

Q1) Q1)



Material derivative

B(X.t)=b[9(X.1).1]

B'=&B=&b + grad b.—= P
ot ot ot
B = b _ é)—b + grad b.U
dt ot
Material Local  Convective

derivative derivative derivative



Transport theorem

Lf banae(-f (Edg(z)ng(r))
2Q(1) = dQ(1)divU

d db .

» Q(t)b(;_c,t)dg(t)=fg(t)(5+bdlvg)d9(t)

= fg(t)(f;?+div(b Q))dsz(r)

volumetric form



Transport theorem

d

i (‘”’ 101 )+b§5?t))

dt

b(x,1)dQ(r) = [

Q(1)

700) = 42 (1)divU
d
dr sz(:)b(’—c’t)dg(t)=f9(t)(
(1)

f 421
=f9 ((%+dlv(b Q))dQ(Z‘)
n da

d—+bleU)
d

ot

%Q(t)b(x,t)dg(t) [ —dQ )+ [ gy (U

Surface flux expression



Finite control
volume fixed
in space

Finite control
volume of fixed
mass moving
with the flow

Differential form
Conservation form

E II.
Path A
TR e jg; M padv +* [ pVedS=0 |(— gi o pdv=0 '|lg—
1% S e
Integral form Integral form
Conservation form Nonconservation form
s \"\P/
-g A%
o (arcp o furfuap P
Infinitesimally small B :
element fixed in space Infinitesimally small fluid element
— of fixed mass moving with the flow
111, B IVichre g
a ,
HEY gf +Ve (pV)=0 |la— —> Ripvevao fe—

Differential form
Nonconservation form

Path D




Fundamental laws

Balance b(x,1)
Mass P
Momentum pU
Angular P OM AU
Momentum
Energy o e+ U2




Mass conservation of a fluid element

d M(t) "Dp .
= Fpd av
dt /w(t) Dt g IVU.
_ / Op
w(t) L Ot

Dp_
— =- pdivv
pt P

+div (pv) | dV




Continuity equation

D
—[Z=- p divo

Incompressible flow

diveo =0

The density is constant on a trajectory



Fundamental laws
Local forms

Conservative form

%(pb)+div(pb U)=0+divA

Volume source

Surface fluxes



Fundamental laws
Local forms

Conservative form

%(pb)+div(pb U)=0Q+divA

. l Continuity equation
Non conservative form

p@=Q+diVA

dt



Conservation of momentum

Newton's second law

ma = EF
Force balance :
* pressure forces

- viscous forces

- volumetric forces f

d
d / b dV = / £dS + / ofdv
df ,-_,._,1(1%] -ﬂ.‘,u(f) L:.J(f)



What type of stresses?

» Volumetric stresses, associated to a volumetric force
distribution
- gravity, electro-magnetic force (conducting

fluid)...

» Surface stresses, applying at the surface of a
continuum parcel
— friction, pressure, surface tension,...
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Momentum conservation

R /)1‘(/\':

(// J w1 J ()

(7))

tdS

Volumetric forces

A theorem due to Cauchy, using small tetrahedra of arbitrary orientation,
shows that the surface force is linear with the normal to the surface and
allows us to represent the cohesion forces by a stress tensor

=0\

Surface forces

Cauchy stress tensor



Stress modeling



Hydrostatics

Pressure
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Stresses in a fluid at rest : pressure

A fluid at rest is subjected to isotropic normal forces!




Archimedes law
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Stresses in a moving fluid

In addition to the normal isotropic pressure force, the fluid
element feels both normal and tangential viscous forces

o(x)=-p()1+z(x

df =T(x.n(x))da = —p(x)n(x)da+z(x)- n(x)da

p(x) : pression I(x) : tenseur des contraintes d’origine visqueuse



Viscous stress tensor

Newtonian fluid model

ch=(—pZ+%.Z>dS

(1. T, T.\(n \ (Tuh +T 0, +T 1)

X

T, T, T,.||n,

T N +T N, +T N

T Ty T )\M) \ T TR +Ton

ZZZ/



Stress in a moving fluid: viscous
stress tensor

Newtonian fluid model :

* The stresses do not apply in preferential direction
* The intensity of the stress is a linear function of the
velocity gradient.

Most usual fluids (water, air, quicksilver...) are
newtonian fluids.



Viscous stress tensor

Newtonian fluid model
2 (aUx 10 aUZ) U,
+ /

T =-= + +
ST P dy 0z

2 (U, 99U, 9U, U,
T,=——"U + + +
3 0x ay 0z ay
2 (oU, dU, oU oU
=TT M——+ +—= [+2u—
3 ox ay 0z 0z

u: dynamic viscosity
(kg/m/s)

v=u/p :
Kinematic viscosity
(m?/s)



Viscous stress tensor

2 [(oU. dU, oU oU |
T, =—— + + +2u

3 ox ay 0z 0x

2 YoU, U, oU U,
T, =—= + + +2u

3 0x ay 0z ay

2 YoU, U, oU, oU.,
T, = -3 + + +2u

0x ady 0z j 0z

!

Divergence of velocity field,
i.e. volumnetric dilatation




Viscous stress tensor

T __2 +2u oY,
T3 ox
2 oU

T, =—-— +2 :
3 “ Jy
2 oU

T, =—— +2 2
zz 3 M aZ

!

> =0 if flow is incompressible



Viscous stress tensor

X

H 0x
5 c)Uy
T = A
U
T, =2Uut+——=
“ 0z

Stretching terms



Stresses : stretching

UxA UxB
Instant t e > X:
A B
Instant t+dt | X:
A B

AB is a line of fluid particles in a flow such that U,,<U,p. Since the
velocity is higher in B than in A, the segment AB is stretched in the x
direction. This deformation is called a stretching. The relevant
quantity is the derivative of the velocity with respect to the direction
tangential to this velocity



Stresses : stretching

A'B-AB=(U, g-U, ,)dt=

0x

dxdt
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Viscous stress tensor

Shear terms

B



Stresses : shear

UyB
Instant t Uya Iy
A B X
/B,
Instant dt later
A P’
» X

AB is a line of fluid particles in a flow such that U, ,<U,. Since the
velocity is higher in B than in A, the segment AB will rotate. This
deformation is called shear. The relevant quantity is the derivative of
the velocity with respect to the direction normal to this velocity



Stresses : shear
oU
0x
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The equations of fluid
mechanics



Momentum conservation for
incompresible fluid

Nowton's v = [ s+ | pfav
second law d / pu (’3w ) + w()pf

g [ vav=[ oy
Dv
Green’s _
identity /w 0 [p Dt divo —pf } dvV =0
Dv
= div o +
o pf




Newtonian incompressible fluid

Dv

SR v/ A
P p+puAv+pf

dive =0




Navier-Stokes equations

ma = S Fe;

(dU, 1o 9, 9°U . ) 9°U . . 9°U .
dt Toox “ ox” 9y’ 0z*

acceleration
(total derivative)



Navier-Stokes equations

ma = S Fe;

dex _ Ly | o, 9°U . ) 9°U . . 9°U .
dt T oox “ ox” 9y’ 0z*

l

Volumnar forces




Navier-Stokes equations
ma = S FJe;

dU °U, 9°U, 9°U,
et “( ot oyt o

l

Pressure gradient




Navier-Stokes equations
ma = S Fe;

2 2 2
,4U. =pfx_ap+{J(a U, 39U, 0 Ux)]

dt 0x ox” 9y’ 0z*

l

Viscous stress




Navier-Stokes equations

2 2 2
aUquaUuU aUx+U28Ux =,0fx—a—p+//l 8(2x+aléx+al£x
ot 0x Y9y 0z 0x 0x dy 0z
U U U U *U, U, o°U

~+U, —+U —+U, — =,0fy—a—p+u =+t ——
ot 0x ady 0z 0y ox ady 0z
2 2 2
aUZ+UxaUZ+UyaUZ+UZaUZ =,0fz—a—p+ﬂ 8(§Z+GZ§Z+8(£Z
ot ox dy 0z 0z ox ady 0z



Newtonian incompressible fluid

Dv

SR v/ A
P p+puAv+pf

dive =0




1.

Boundary conditions

Liquid/solid interfaces
the solid is viewed as undeformable

NO SLIP BOUNDARY CONDITION
Uqu=UsoI

sometimes relaxed to
NON PENETRATION (FREE SLIP)
Ujig-n=Ug.N

. Liquid/liquid interfaces

U,=U, Continuity of velocity
U,.n=U,.n=V, ..+... Non penetration (free slip)
0,.Nn= 0,.Nn Continuity of stress



Boundary conditions

3. Free surface (liguid/gas interface)

U.n=Vtace Non penetration (free slip)
o.n=0 No stress
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Solid or fluid?

Pure shear
. . d& 2 d§;
O = — = C, ——
Elastic solid 12 = Uy av, e i,
: : dU
Newtonian fluid o, =u —
dXz
Coie u U U
Characteristic time U4, =— = T=—=—7
T ueo PC



Viscoelastic medium

do,, 1 U,
tToOp = T
o T ox,

« T'<< 1t  Elastic solid

0oy, U, oo 5
ot S ox, 12 S ox,

* T>>1 Newtonian fluid

| JU, JdU,
—O0,, ~ U — ——> O, ~ U
T S ox, 0X 5




The earth's mantel
p=5x10"kg/m* ¢, =5x10"m/s 1 =10"kg/(mxs)
T ~ 3000 ans

T << 3000ans solide (ondes sismiques)

T >>3000ans liquide (convection)

Mars01, Ra=7.0x1 DE Mars(04, RG::’J.TX'IOE, Step=23,500

Wanke Radioactivity, 90% in crust Wanke Radioactivity, 45% in crust

POTENTIAL TEMPERATURE (K) POTENTIAL TEMPERATURE (K)

200 600 1000 1400 1800 200 500 1000 1400 1800

Kieffer (2001)



La prophétesse Déborah par Chagall

Deborah number

De=Z

T
De <1 Fluide
De =1 Solide

« Les montagnes ruisselerent
devant le Seigneur »

La prophétesse Déborah dans le livre des Juges
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