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Stokes flow/ Creeping flow
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Newtonian incompressible fluid
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Stokes flow/ Creeping flow  Re=0

Linear equations



5

Stokes flow/ Creeping flow

Linear equations

Unicity of solution = Navier-Stokes
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Stokes flow/ Creeping flow

Linear equations

Unicity of solution = Navier-Stokes

Superposition principle
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Reversibility



Birthday candle paradox
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Re=0.01

Re=100

Re=0.01

Re=100

-U

U

U
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Reversibility of Stokes equations

Re=0

Re=0

Re=50

Re=50

Simulations Marc Fermigier
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Different formulations
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Different formulations

vorticity
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Vorticity

ω=rot(u)



Vorticity

ω=rot(u)

Plane Couette flow

Don’t mix up curved streamlines and vorticity!
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Vorticity

ω=rot(u)

Don’t mix up curved streamlines and vorticity!

Point vortex
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Vorticity

ω=rot(u)

Solid body rotation



Vorticity equation on plane
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Vorticity equation on plane
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Advection-diffusion equation
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Vorticity equation: axisymmetric case 
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Vorticity equation: axisymmetric case
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Advection-diffusion equation



20

Different formulations

vorticity
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Incompressible flow 

and streamfunction



Streamfunction
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Cylindrical coordinate system

In cylindrical coordinates (r , q ,z ) with 0 /

-axisymmetric case



Streamfunction
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Vorticity

ω-
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Streamfunction formulation

Biharmonic equation
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Minimal dissipation

The unique solution  of the Stokes equations 

(with suitable boundary conditions)  is the  

divergence free flow field  that minimizes the 

viscous dissipation
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Flow along a sphere

z

θ
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Flow along a sphere

Stokes Formula

Stokes streamfunction in spherical coordinates

What should we check?
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Flow along a sphere

Stokes Formula

Stokes streamfunction in spherical coordinates

What should we check?
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Flow along a sphere

Stokes Formula

Rotational in spherical coordinates yields

Therefore
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Flow along a sphere

Stokes Formula

Applying the Laplacian of a vector 

One is left with
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This looks like a Bilaplacian, but be careful…
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Boundary conditions (in the frame of sphere)

ur(a,θ)=uθ(a,θ)=0
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Boundary conditions (in the frame of sphere)

ur(a,θ)=uθ(a,θ)=0
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Boundary conditions (in the frame of sphere)

ur(a,θ)=uθ(a,θ)=0
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Boundary conditions (in the frame of sphere)

ur(a,θ)=uθ(a,θ)=0
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Separation of variables

….

….
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Separation of variables
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Streamfunction field
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Retrieve pressure…

….
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Retrieve pressure…

=π-θ
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Retrieve stress
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Retrieve stress
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Retrieve stress
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Retrieve stress
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Retrieve stress
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Retrieve stress
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Retrieve stress
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Drag of drop

Rybzinski 1911
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Drag of drop

Hadamard 1911, Rybzinski 1911

for a very viscous drop (almost solid)

for an inviscid drop4

Drag does not depend a lot on exact shape of object 

when Re<<1

λ= μint /μext  viscosity ratio
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Flow along sphere

=
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Flow along a sphere
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Flow along sphere
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Flow along sphere

Developement asymptotique en Reynolds

R=ρUa/
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Fn= 2 Ft

Flow along a stab



Flow along a stab
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Flow along a disk

No solution of the 2D Stokes equations satisfying 

the far field conditions and the boundary conditions 

on the disk

Oseen’s paradox! Inertial effects have to be 

taken into account
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A strange potential limit of the Stokes equations
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(Film A. Garcia)
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Continuité:

Navier-Stokes:
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!
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Towards Navier-Stokes equations

In strictly parallel flows, the inertial terms disappear 

as the consequence of geometry

-w/2 w/2
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Flow in a rectangular duct
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Flow in a rectangular duct



69

Flow in a rectangular duct

13% error for square, 0.2% for aspect ratio 2
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!
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Flow in a triangular duct

13% error for square, 0.2% for aspect ratio 2
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Flow in an elliptic duct


