Stokes flow/ Creeping flow
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Newtonian incompressible fluid
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Stokes flow/ Creeping flow < Re=0
nAu = Vp
divu = 0

Linear equations
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Stokes flow/ Creeping flow

nAu = Vp
divua = 0
Linear equations

Unicity of solution £ Navier-Stokes

Superposition principle



Reversiblility
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Birthday candle paradox




Reversibility of Stokes equations

Re=0 Re=50
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Re=0 Re=50

Simulations Marc Fermigier



Different formulations

0
ox, 0 0, oy = —pd; + 2uey,
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Vorticity

w=rot(u)



Don’t mix up curved streamlines and vorticity!

Plane Couette flow
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Don’t mix up curved streamlines and vorticity!

Point vortex




Solid body rotation

Uy(r)=2ar
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Vorticity equation on plane
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Vorticity equation on plane
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Advection-diffusion equation




Vorticity equation: axisymmetric case
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Vorticity equation: axisymmetric case
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Different formulations
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Incompressible flow

and streamfunction



Streamfunction

Continuity
equation
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Cylindrical coordinate system

In cylindrical coordinates (r, g,z ) with o0lo06=0
-axisymmetric case



Streamfunction
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Vorticity
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Streamfunction formulation

Aw =10

w=—-V4k

V4= VAVi) =0

Biharmonic equation



Minimal dissipation

The unique solution of the Stokes equations
(with suitable boundary conditions) Is the
divergence free flow field that minimizes the
viscous dissipation

® = 2u J; ee;dV,



Flow along a sphere

A

FiG. 6.9 — écoulement a petit Re autour d'une sphere. Lignes de courant dans le repere ou la
sphere est immobile.
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Flow along a sphere
Stokes Formula

Stokes streamfunction in spherical coordinates

1 ay 1 A
r’sin 0 90 ' Us (x,8) = rsin 6 or

U,(r,0) =

What should we check?



Flow along a sphere
Stokes Formula

Stokes streamfunction in spherical coordinates
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Flow along a sphere
Stokes Formula

Rotational in spherical coordinates yields
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Flow along a sphere
Stokes Formula

T r sin 6 r 90*
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Applying the Laplacian of a vector

Aw=0

One Is left with
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This looks like a Bilaplacian, but be careful...
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Boundary conditions (in the frame of sphere)

u,(a,8)=ug(a,0)=0
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d
¢(a,9)=a—f(a,6)=0, 0 <0 <7 #




Boundary conditions (in the frame of sphere)

u,(a,8)=ug(a,0)=0
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U~U,cos® , U~-U,sin® , r—ow




Boundary conditions (in the frame of sphere)
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Separation of variables

&2
(dr‘ r=) £(r) =

f(r)=Ar‘+Br‘+Cr+g
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Separation of variables
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Streamfunction field




Retrieve pressure...
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Retrieve pressure...

p U

cos 0

p(a,0)=p. -
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Retrieve stress
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Retrieve stress

1=2pd
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Retrieve stress

1=2pd
AU, _1(14U, U, T,
d"—ar ’ d”—i(;69+ar r
5 U B (1 U, , U, U,
Bor 7 T Bl 50 | or r




Retrieve stress
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Retrieve stress

AL
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Retrieve stress
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Retrieve stress

= J:ﬂ,,(a,H)ZwazsinEdH
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Drag of drop

Rybzinski 1911
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Drag of drop

3A+2
2(A+1)

Hadamard 1911, Rybzinski 1911

D = 4muVa A= Uiy /Moy VISCOSItY ratio

D = 6ﬂaua V for a very viscous drop (almost solid)

D = 4]‘[WV for an inviscid drop

Drag does not depend a lot on exact shape of object
when Re<<1



Flow along sphere
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Flow along a sphere

F1G. 6.8 — écoulement a petit Re autour d'une sphere. Lignes de courant dans le repere ou le
fluide est immobile & I'infini. Les valeurs de ¢ sont normalisées par Ua®.



CHUTE DE BILLES

Re << 1
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Flow along sphere

IFI 6 3 9 5
CD— ; (1+8R+40R log R + (R))

Developement asymptotique en Reynolds

R=pUa/u



Flow along a stab
AT«»(\




Flow along a stab




Flow along a disk

No solution of the 2D Stokes equations satisfying
the far field conditions and the boundary conditions

on the disk

=(0Oseen’s paradox! Inertial effects have to be
taken into account

F 16
Co =g ~ g L+ @€ +0(E)),

where

€ = fog 8/R1+ — p = 0-58 (Euler’s constant), a, = —0-37.




A strange potential limit of the Stokes equations
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ECOULEMENT DANS UNE CELLULE DE HELE-SHAW
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(Film A. Garcia)



62



ECOULEMENT DANS UNE CELLULE DE HELE-SHAW
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ECOULEMEN'[ DANS UNE CELLULE DE HELE-SHAW
Equations fondamentales
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ECOULEMENT DANS UNE CELLULE DE HELE-SHAW

1 dp
X,Y, =" h_
u(x,y,z) 2Maxz( Z)
v(x,y,z)=—La—pZ(h—Z)
2udy
w(x,y,z) =01

— Jv _ du =0 Ecoulement potentiel

., = .
Z —y!
0x 07)7 dans le plan x-y!




Towards Navier-Stokes equations

In strictly parallel flows, the inertial terms disappear
as the consequence of geometry
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Flow In a rectangular duct

h
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) v (y,h/2)
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Flow In a rectangular duct
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Flow In a rectangular duct

hPwAp {

h
1 —0.630 —}, for h < w.
12nL

w

13% error for square, 0.2% for aspect ratio 2



ECOULEMENT DANS UNE CELLULE DE HELE-SHAW

1 dp
u(x,y,z)=——-—"—z(h-z
(on2) 2u dx ( )
1 ¢
v(x,y,2) = ———pz(h _7)
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07)6 07y ' dans le plan x-y!
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Flow In a triangular duct
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Flow in an ellintic duct
(a) .
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