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Dimensional analysis in fluid 
mechanics 



2 

All fluid problems have many influential parameters   

• fluid properties (m, K, r…) 

• upstream fluid conditions (U∞, p∞…) 

• geometry and scales of the obstacle 

• oscillation frequency of moving walls 

• … 

 

Why dimensional analysis? 
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1 – In principle, to study all possible regimes one 
should investigate each parameter individually  

 

→ Impossible ! 

Why dimensional analysis? 
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2 – It is often very useful to use reduced models to 
study flow around wings, boats 

 
It is important to know a priori if it will be possible 
to translate the results obtained on the model to 
the real flow. 

→ The « similarity» of the model parameters is 
crucial. 

 

 

Why dimensional analysis? 
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Some examples 
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Other examples 

U 
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What is the «scaling» of the force acting on a flat 

plate by an incoming flow? 

U 

L 

W 

1. μU2L 

2. ρUWL 

3. W(μρLU3)1/2 

 

W : m → [L] 

L : m → [L] 

U : m/s → [L]/[T] 

r : kg/m3 → [M]/[L]3  

m : kg/m/s → [M]/[L] /[T] 
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More examples 
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Use of pressure sensitive paint 
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Pressure sensitive paint 
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Objective : reduce the number of parameters to 
be varied by identifying key nondimensional 
parameters allowing to regroup experiments that 
are « similar ». 

Why dimensional analysis? 
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Experimental similarity 

Similarity 

Geometric 

Dynamic 



13 

Geometric similarity 

Flow around an obstacle: 

Two obstacles are geometrically similiar if the shape 
of one can deduced from the other by a uniform 
dilation. 

 → they are at scale 

L 

D 

L/2 

D/2 
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Geomtric similarity 

The geometric similarity should also include the 
domain boundaries 

L D 

H 

H/2 

D/2 L/2 
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Dynamic similarity 

Incompressible flow around obstacle, without 
volumetric force 

 

 

 

 

 

Let us try to « calculate » the drag of the flow 
acting on the body. 

U∞, p∞ 

m, r∞ 

L 

D 
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Dynamics similarity 

 

 

 

1 - One should first identify the relevant 
parameters  of the problem 

Incompressible flow around obstacle, without 
volumetric force 
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F=f(D, L, U∞, p∞, r∞, m ) 

Dynamic similarity 

Incompressible flow around obstacle, without 
volumetric force 
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In the case of incompressible flow, the absolute 
pressure is not a relevant parameter 
 

 

 

 

 

Only the pressure gradient enters the equations 
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Dynamics similarity 
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In the case of incompressible flow, the absolute 
pressure is not a relevant parameter 
 

 

 

 

 

Only the pressure gradient enters the equations: if 
(U,p) is solution of the Navier-Stokes equations, 
than (U,p+p∞) is also solution : the pressure is 
defined up to a constant. 
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F=f(D, L, U∞, p∞, r∞, m ) 

Dynamic similarity 

Incompressible flow around obstacle, without 
volumetric force 
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2 – List the elementary units influencial in the 
relevant parameters of the problem : [M],[L],[T],[Q] 

Dynamic similarity 

Incompressible flow around obstacle, without 
volumetric force 
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D :  

L : 

U∞ : 

r∞ : 

m : 

F :  
 

Dynamic similarity 

Incompressible flow around obstacle, without 
volumetric force 
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D : m → [L] 

L : m → [L] 

U∞ :  

r∞ : 

m : 

F : 
 

Dynamic similarity 

Incompressible flow around obstacle, without 
volumetric force 
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D : m → [L] 

L : m → [L] 

U∞ : m/s → [L]/[T] 

r∞ : 

m : 

F : 
 

Dynamic similarity 

Incompressible flow around obstacle, without 
volumetric force 
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D : m → [L] 

L : m → [L] 

U∞ : m/s → [L]/[T] 

r∞ : kg/m3 → [M]/[L]3  

m : 

F : 

Dynamic similarity 

Incompressible flow around obstacle, without 
volumetric force 
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D : m → [L] 

L : m → [L] 

U∞ : m/s → [L]/[T] 

r∞ : kg/m3 → [M]/[L]3  

m : kg/m/s → [M]/[L] /[T] 

F : 
 

Dynamic similarity 

Incompressible flow around obstacle, without 
volumetric force 
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D : m → [L] 

L : m → [L] 

U∞ : m/s → [L]/[T] 

r∞ : kg/m3 → [M]/[L]3  

m : kg/m/s → [M]/[L] /[T] 

F : kg.m/s² → [M] [L] /[T]² 
 

Dynamic similarity 

Incompressible flow around obstacle, without 
volumetric force 
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D : m → [L] 

L : m → [L] 

U∞ : m/s → [L]/[T] 

r∞ : kg/m3 → [M]/[L]3  

m : kg/m/s → [M]/[L] /[T] 

F : kg.m/s² → [M] [L] /[T]² 
 

→ 3 fondamental units 

Dynamic similarity 

Incompressible flow around obstacle, without 
volumetric force 
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What is the «scaling» of the force exerted on a 

plate by an incoming flow? 

U 

L 

W 

1. μU2L 

2. ρUWL 

3. W(μρLU3)1/2 

 

W : m → [L] 

L : m → [L] 

U : m/s → [L]/[T] 

r : kg/m3 → [M]/[L]3  

m : kg/m/s → [M]/[L] /[T] 
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3 – For each fundamental unit, one  choses a 
reference scale with use of the relevant parameters 

 

There are often several choices! 

Dynamic similarity 

Incompressible flow around obstacle, without 
volumetric force 
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[L] → D 

[T] → D/U∞ 

[M] →r∞D3 

Dynamic similarity 

Incompressible flow around obstacle, without 
volumetric force 
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4 – For each relevant parameters of the problem, a 
nondimensional parameter is constructed using the 
previously defined reference scales 

Dynamic similarity 

Incompressible flow around obstacle, without 
volumetric force 
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D : m → [L] → 
 

 

1
D

D

Dynamic similarity 

Incompressible flow around obstacle, without 
volumetric force 
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L : m → [L] → 
 

 
D

L

Dynamic similarity 

Incompressible flow around obstacle, without 
volumetric force 
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U∞ : m/s → [L]/[T] → 
 

 

1
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Dynamic similarity 

Incompressible flow around obstacle, without 
volumetric force 
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r∞ : m/s → [M]/[L]3 → 
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Dynamic similarity 

Incompressible flow around obstacle, without 
volumetric force 
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m : m/s → [M]/[L] /[T] → 
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Dynamic similarity 

Incompressible flow around obstacle, without 
volumetric force 
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F : kg.m/s² → [M][L]/[T]² → 
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Dynamic similarity 

Incompressible flow around obstacle, without 
volumetric force 
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Dynamic similarity 

The non-dimensional relation becomes (with this 
particular choice of scales!) 
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Finally, the non dimensional problem depends only on 
two non dimensional parameters 
 

 

 

Dynamic similarity 
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1/Re  
(Reynolds number) 

Aspect ratio of  
the obstacle 
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Finally, the non dimensional problem depends only on 
two non dimensional parameters 
 

 

 

Dynamic similarity 
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Cylinder wake 
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Sphere wake 

Oseen 

Stokes Drag crisis 

From Acheson 1990 
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Cylinder wake 

 

 

 
 

 
 

Re=1.5 

Re=26 

Re=100 

Re=10000 

Attached flow 

detached 

Periodic flow 

Turbulent 

chaos 

Re=0 

Symmetric 

Turbulent boundary layer 

Detached turb. B.L. 

Von Karman vortex street 
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Von Karman vortex street 

D’après Acheson 1990 
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Influence of rugosity on drag 

Acheson 1990 
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Balles de Golf 

•330 alvéoles, fossettes, 

ou dimples 

•336 (balle US) 

•75m/s  

•3500tr/mn de backspin 

Sac de cuir bourré de plumes. 

Les pièces de cuir sont cousues, 

trempées, puis bourrées de 

plumes d'oie mouillées. Après 

séchage, les plumes prennent de 

l'expansion alors que le cuir se 

rétracte résultant en une masse 

extrêmement dure et dottée de 

beaucoup de ressort.  

Plus économique, plus durable et 

plus esthétique. En revanche, 

elle  virevolte de façon 

imprévisible, volant beaucoup 

moins loin que le vieux sac de 

plumes. Mais les tricheurs 

découvrent rapidement que plus 

ils `cicatrisent' la balle, plus elle 

vole droit et loin. Ainsi naît la 

Gutta martelé-main.  
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•Increase in drag diue to a temperature decrase.  

 

 

 

 

      ρ(10°C )= ρ(30°C) +10 %  

   FD(10°C )=FD(10°C )+10% 
 

 

•Records can be officially registered only if the wind is less than 2m/s.  

 

 

 

 

 

100 m in 10s u=100 m/ 10 s = 10 m/s 

relative velocity = 8,10 ou 12 m/s.  

FD(+2 m/s)=FD(0m/s)-36% 

FD(-2 m/s)=FD(0m/s)+44% 

 

Drag and athletics 



50 One should have the intuition not to take into account the thickness l! 

              Celerity of domino waves       
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Power of car as a function of velocity 

P=ρU
3 
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Predicted bird velocity  

Predicted velocity/measured velocity 

Lift=ρU
2
S=Weight=mg 

U=(mg/ρS)1/2 

Rayner, J. Exp. Biol. 202, 3449–3461 (1999) 
measured velocity 
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G.I. Taylor’s nuclear explosion  
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R=f(E, ρ,t) 

G.I. Taylor’s nuclear explosion  

density 
Shock wave 
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Dynamic similarity 

 

R : m → [L] 

t : s → [T] 

E : kg.m2/s2 → [M] [L]2 /[T]² 

r : kg/m3 → [M]/[L]3  
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Dynamic similarity 

 

R : m → [L] 

t : s → [T] 

E : kg.m2/s2 → [M] [L]2 /[T]² 

r : kg/m3 → [M]/[L]3  
 

For every fundamental unit, one picks up a 
reference scale à using the relevant parameters 
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Dynamic similarity 

Exponent equation 
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Dynamic similarity 

Exponent equation 
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Dynamic similarity 

Exponent equation 
 

 

constant 
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G.I. Taylor’s analysis of a nuclear explosion 
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Rowing 
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Aviron 
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Dynamic similarity 

Non dimensional Navier-Stokes equations 

reference scales are used to write non-dimensional 
equations 
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Non dimensional Navier-Stokes 
equations 
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reference scales are used to write non-dimensional 
equations 
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• Continuity equation/ mass conservation 
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•Momentum equation 
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Non dimensional Navier-Stokes 
equations 
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Non dimensional Navier-Stokes 
equations 
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Theses equations have only 1 nondimensional 
parameter: 1/Re 

 

 

Non dimensional Navier-Stokes 
equations 
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Reynolds number 

Re
ULr

m


Reynolds = inertial forces / viscous forces 

Re>>1     inertia dominates(inviscid fluid limit) 
Re<<1     viscosity dominates 
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Mach number 

U
M

a


Mach = measure of the compressibility of a flow 

Sound velocity 
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Froude number 

U
Fr

gL


Froude = inertia/ gravity 
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Many more non dimensional 
numbers 

More non dimensional numbers characterizing heat 
transfer  (Péclet, Eckhert, Prandtl…), or surface 
tension effets (Capillary, Weber, Ohnesorge,…)  
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Reversibility of the Stokes equations 

Re=0 

Re=0 

Re=50 

Re=50 

Simulations Marc Fermigier 


