Hydrodynamics

potential flow
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8. Vorticity conservation and diffusion
9. Boundary layer

10. Invisicd fluid- Bernoulli-potential
flow

11. Potential flow, lift
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Holomorphic functions

Z = P(x,y)+iQ(x,y)




Holomorphic functions
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Holomorphic functions

Cauchy-Riemann conditions
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Conjugate Holomorphic functions

AP=0 , AQ=0

Orthogonal lattice

P = const

0 = const



2D potential flow

Z=X+1Yy

f2)=glxy)+ilx.y)

wfi) - =uln)-i(a)



Complex Potential

f(z) = ¢(x,y) + w(x,y)

. O dop  OY
ox or Oy
Complex velocity

df (z)

dz

= w(z) = u—1iv



Uniform flow
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d(X,y) = X

Equipotentielle

y=cte

Y(X,Y)

Ligne de courant



SOURCE D>0 or SINK D<0O

D

f(z) = —Ln(2)

D
H(X,y) = 2—Lnr:cte
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sxy) = 22— cte
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VORTEX




SUPERPOSITION, SOURCE and SINK
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DOUBLET
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f(z) =Ue ™"

f(2)= 2log(z—zo)
2T

f(2) = —%log(z ~2)
f(@)=- pe”
Z—-2,
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Acyclic flow around cylinder
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Acyclic flow around cylinder
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Acyclic flow around cylinder
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Bernoulli

a’ az\ .
Ur(r,B)=Ux(1——2)cosE} , Uﬂ(r,8)=—U,¢(1+—2)sm8
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1
pla,) = 2,0U§o(1 — 4sin 0%)
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pla,l) = ipU;(l — 4sin 6%)
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pla,l) = ipU;(l — 4sin 6%)
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1
pla,l) = ipUgo(l — 4sin 6%)
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Trainee : F,=0 Portance: F =0




Achtung! Connectivity?

The solution to Laplace equation Is unique
only in simply connected domains
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Unique solution In
simply connected e
domains

| &=

Multiple solutions In
multiply connected
domains L
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Cyclic flow around cylinder
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f(z)=Umz+E—£log E)
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f(z)=Um(z+a
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Cyclic flow around cylinder
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26



Effet Magnus et portance
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Distribution de pression

180
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Cyclic flow around cylinder

Drag coefficient
C.=0
Lift
F,=-pU,I

Lift coefficient

Cy;tO



Floating ball
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Tangente fluide
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Garcia & Chomaz
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Le Baden Baden

L’Alcyone -



Rotating wings!
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Parabolic trajectory

Trajectories with initial veloctiylOm/s;
the shooting angle varies



Reentrant cornerkick
Brushed kick with vertical rotation of the ball
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Free kick

Air flux







Free kick

Air flux




Lift

*L'Aspirisouffle, Jean-Pierre Petit









Lifted trajectory

*L'Aspirisouffle, Jean-Pierre Petit



With lift

: without lift

lift

0 2 4 G 3 0 12 14 16 1 0 72
X

Lift at tennis tennis Vo=30m/s angle18°



Slice

slice

without slice

0.6+
0.4+

0.2+

U7 415 12 125 13 135

Slice at tennis Vo=5m/s angle 60°



Conformal maps

Z=h(z)
| > Z
S z = H(Z) @
< |
X 0
f(z) F(Z)

f(2) = F[h(2)]



Conformal maps
Preservation of angles

plan z plan Z

fiz “ F(Z)
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Conformal maps
Preservation of angles

(except at critical points h’(z)=0)

=The image of an holomorphic function is holomorphic

Link between z and Z planes

F(Z)=f[H(Z)] Equality of complex
potentials

W(Z)=w[H(Z)]H' (7) Transformation
of velocities

=>Conservation of streamlines, flow rate, circulation
but not stagnation points



Joukowski’s transform
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Joukowski’s transform
Flow around ellipse
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Joukowski's transform
Flow around ellipse

2

F(Z)=UOo Ze‘fa+a_€ra
Z
Z°-7Z+c" =0

2
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Joukowski s transform
t|p||C|ty of solutions




Flow around foll
Startup vortex and circulation selection




Flow around foll
Startup vortex and circulation selection
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Flow around foll
Startup vortex and circulation selection
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Real situation
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STREAMLINES, PSI

ALPHA=15;

12% THICKNESS
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Figure 52 The symmetric Joukowski airfoil, streamlines, alpha = 15°,
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Flow around foll
Circulation selection
By Kutta condition at trailing edge

U=0 U continu

/ /

N

Point anguleux Point de rebroussement



ALPHA=0; 12% THICKNESS, 5% CAMBER
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Figure 54 The cambered Joukowski airfoil, streamlines, alpha =
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ALPHA=15; 12% THICKNESS, SZ CAMBER

STREAMLINES, PSI

x/c

Figure 55 The cambered Joukowski airfoil, streamlines, alpha = 15°.
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Two Dimensional Flows

STREAMLINES, PSI

C=.6110
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Figure 60 Efflux from an orifice.
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Joukowski’'s transform
Multiplicity of solutions




Flow around foll
Thickness effect
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Flow around foll
Camber effect

V4
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Blasius Formula







T A

THEOREME DES RESIDUS

fcf(z)dz = ZJriiRes (f,zk)
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Kutta-Joukowski theorem
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Lift of a plate under incidence in incoming flow
at angle

C,=2n(a-aq,)
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Flow around foll
Thickness effect

Y V4

c X
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Flow around foll
Camber effect

V4

vV

—

2¢

2c

2cC

77



Uo

Linearized profile theory

y =ef" (x)

y = ef (x)




Linearized profile theory

Ap =0

impermeability grad¢.n =10

C‘L.- 5 df {:]L-
—_— P — F — — — 5 E
(J‘le e i ) © iPd){ UX[X e 7 (x) ; b] 0 ,0sxs<lL

far-field e(x,y;8) U, x ,|x| >



Linearized profile theory

0, Y58 ~ U x+ e (x,y) + o (x,y)

At order ¢

Ae, =0,

de, .. df” - -
a_y(x’o)-U‘dx(x)' 0=sx<L ,

d, ., dfr -
—(x,O)—dex(x), O0sx<L ,

dy

‘PI(XrY)ND(lﬁl)r |?£|_J'°° .




Linearized profile theory

LP(X,y;E)NUIX‘f‘E{.P](X,y)'FEzip2<X,Y)'
p(x,y;e)~p.+ep (X,y) +tep,(X,y)+

Ux,y;e)~U.e +egrad e, + ..

1 1
+ = =p, +=p U2
prspU=p.+5pUL
og
pi=-pU.u=-pU -5
I i i
C Ie U R VA
2 o=




Linearized profile theory

wing= incidence+ camber+ thickness

Camber }--:sfk(x):s[f_(}(}gf' (X)~01(L—x}] .

Thickness y=c¢f, (x) = —— "

ef* (x)=¢e|a(l—-x)+f () +£fXx)]
ef- (X)=¢lal —x)+f & —f(x)]



Linearized profile theory

LP'; (XJY):(.:;(X!F)+¢:C(X1Y)+Qe (fo)

. EF%N__P_%.\ +/—'—\+@_

P (X ’ }7) T Pe (X ’ }r)

No lift by symmetry



Incidence

Find vorticity distribution y(X)

f(z)= ¢ (x,v)+iU x, )—m—i—Jle(x’)ng(z-—x’)dx‘

i

24T

such that impermeability

a(Pi =y - .
E(X’U) U.a , 0<xsL ,
df i [ty (X ,
w(z)——z=u(x JY) —ivi(x,y) = zwjgix)dx
v (X) 4
v, 0,07 = oo v p Jy 18 g

L ' x—8 ! L f
v.p. L :Exx), dx' = lim [ L :ixx), dx’ 4+ I ¥ X ), dx’ ]

&—0

84



Incidence

Kutta!

u (L, 0% =y (L,07)

[ux,y)Eo =~ v &) , 0<x <L

y (L) =0

On peut demontrer que

L —x

y(xX)=-2U,« »




Incidence

Distribution de Cp

C,(x,0%) = ¥ 2ea X

X

Théoreme de Kutta-Joukovski

L L — X
F},=—pUmF=-pU,=L*y(x)dx:2pUiaL . dx

F,=mapLU] .
F
C, = 7 Y =2wa .
+ 2
sz,;L




Skeleton (camber)

1 2U L df |
, {C—=Jv,p.f—f\/x'(L—-—x*)

¢ dx

o

y(L)=0

dx’

X =X

to be integrated numerically

C

v

= — 2m o

Linear superposition

<

“2m(@-a) ,

f
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