

Flow on a facing plate, boundary layer solution and more.

We consider the potential flow in the $(x - y)$ plane of a liquid (density ρ) on a infinitely thin plate \mathcal{P} located between $x = -2a$ and $x = 2a$ on the axis $y = 0$. The velocity field is classically denoted by $\mathbf{u} = (u, v)$. A uniform flow impinges on the plate with a far field velocity $\lim_{(x,y) \rightarrow \infty} (u, v) = (0, V_\infty)$.

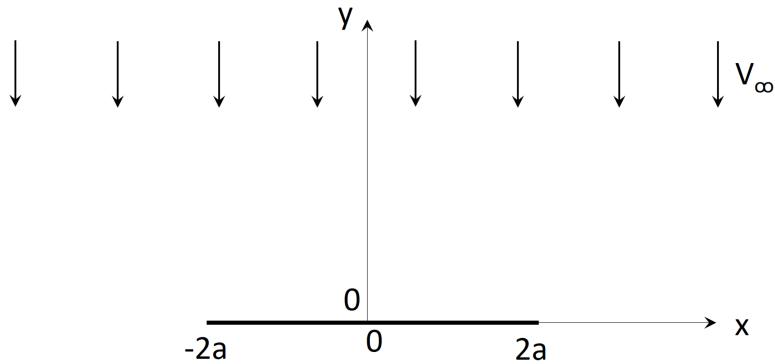


Figure 1: Schematics of the flow on a facing plate.

Part I, boundary layer

We consider the quadrant $x > 0, y > 0$ of the exterior flow, chosen to be $u_e = Ax, v_e = -Ay$ (remember the exercise of week 1), prevailing in the far field. It is representative of the flow impinging a facing plate of length $4a$ located in $y = 0$. The flow is assumed incompressible and to be a viscous Newtonian fluid of kinematic viscosity ν . The Reynolds number is assumed very large $Re = Aa^2/\nu \ll 1$.

1. What characteristic velocity and length scales have been used to build this Reynolds number?
2. Explain why a boundary layer must be introduced in the vicinity of the wall $y = 0$. By a scaling analysis, determine its characteristic gauge of y in the boundary layer as well as that of the pressure and fill in the table.

quantity	dimensionless variable	expression
horizontal length	\bar{x}	$\frac{x}{a}$
vertical length	\bar{y}	
horizontal velocity	\bar{u}	$\frac{u}{V_\infty^{1/2}}$
vertical velocity	\bar{v}	$\frac{v}{\nu Re^{1/2}}$
pressure	\bar{p}	

Table 1: Boundary layer scales. The vertical length and pressure gauges have to be determined.

3. [3 pts] Using the aforementioned scales, show that the $\frac{\partial \bar{p}}{\partial \bar{y}} = 0$ in the boundary layer such that $\bar{p}(\bar{y}, \bar{x}) = \bar{p}_e = -\bar{x}^2/2$. Demonstrate that the Prandtl equations write

$$\frac{\partial \bar{u}}{\partial \bar{x}} + \frac{\partial \bar{v}}{\partial \bar{y}} = 0 \quad (1)$$

$$\bar{u} \frac{\partial \bar{u}}{\partial \bar{x}} + \bar{v} \frac{\partial \bar{u}}{\partial \bar{y}} = \bar{x} + \frac{\partial^2 \bar{u}}{\partial \bar{y}^2} \quad (2)$$

$$\bar{u}(\bar{x} > 0, 0) = 0 \quad \bar{v}(\bar{x} > 0, 0) = 0 \quad (3)$$

$$\bar{u}(\bar{x}, \bar{y} \rightarrow \infty) = \bar{x} \quad (4)$$

4. Why does the vertical momentum balance seem to have disappeared from this set of boundary layer equations?

5. [3 pts] We now look for self similar solutions, using expansion coefficients denoted by $*$ and rescaled variables denoted by $\tilde{\cdot}$, i.e $\bar{u} = u^* \tilde{u}$, $\bar{v} = v^* \tilde{v}$, $\bar{x} = x^* \tilde{x}$, $\bar{y} = y^* \tilde{y}$. Show that the following conditions must hold

$$\frac{u^*}{x^*} = \frac{v^*}{y^*} \quad (5)$$

$$\frac{(u^*)^2}{x^*} = x^* \quad (6)$$

$$u^* = \frac{x^*}{(y^*)^2} \quad (7)$$

and deduce the following self-similar ansatz

$$\bar{u} = \bar{x}g(\bar{y}); \bar{v} = -f(\bar{y}), \quad (8)$$

where a minus sign has been introduced for later convenience.

6. Is this ansatz compatible with the matching condition at $\bar{y} \rightarrow \infty$?

7. [2 pts] Show that $g = f'$ and find the missing term $[\dots]$ in the following ordinary differential equation

$$f''' + [\dots] + 1 - f'^2 = 0 \quad (9)$$

8. What are the boundary conditions for f ? The solution can only be obtained numerically and is reported in figure 2, together with its approximation by a third order polynomial

9. [2 pts] Show that the displacement thickness $\delta_1(\bar{x}) = \int_0^\infty (1 - \bar{u}V_\infty/u_e) d\bar{y}$ does actually not depend on \bar{x} . Contrast this result with the boundary layer on a flat plate. Which of these two boundary layers is the thinnest? Does the momentum thickness depend on \bar{x} ?

10. [2 pts] Assuming that this solution hold on the entire plate and coming back to expressions with dimensions, determine the shear force (per unit length) acting on the semi-plate $x \in [0; 2a]$.

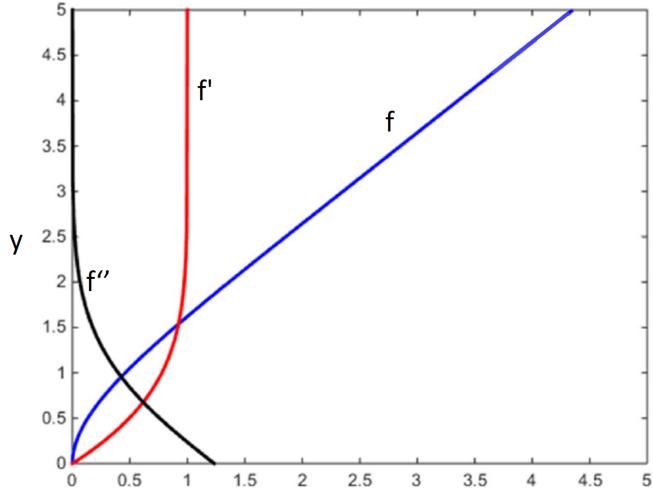


Figure 2: Solution f and its derivatives f' and f'' of the differential equation (9) with suitable boundary conditions

Part II, a solution of the Navier-Stokes equations

11. Remarkably, it turns out the boundary layer approximation obtained before is an exact solution of the Navier-Stokes equations, as surprising as it may sound. Show that the full incompressible Navier-Stokes equations in the \bar{x} gauge system write

$$\frac{\partial \bar{u}}{\partial \bar{x}} + \frac{\partial \bar{v}}{\partial \bar{y}} = 0 \quad (10)$$

$$\bar{u} \frac{\partial \bar{u}}{\partial \bar{x}} + \bar{v} \frac{\partial \bar{u}}{\partial \bar{y}} = - \frac{\partial \bar{p}}{\partial \bar{x}} + \frac{1}{Re} \frac{\partial^2 \bar{u}}{\partial \bar{x}^2} + \frac{\partial^2 \bar{u}}{\partial \bar{y}^2} \quad (11)$$

$$\bar{u} \frac{\partial \bar{v}}{\partial \bar{x}} + \bar{v} \frac{\partial \bar{v}}{\partial \bar{y}} = -Re \frac{\partial \bar{p}}{\partial \bar{y}} + \frac{1}{Re} \frac{\partial^2 \bar{v}}{\partial \bar{x}^2} + \frac{\partial^2 \bar{v}}{\partial \bar{y}^2} \quad (12)$$

$$\bar{u}(\bar{x}, 0) = \bar{v}(\bar{x}, 0) = 0 \quad (13)$$

12. Suppose now that $\bar{u} = \bar{x}f'(\bar{y})$, $\bar{v} = -f(\bar{y})$ and in addition that $\bar{p} = -\frac{\bar{x}^2}{2} + C(\bar{y})$. Show that the continuity equation is fulfilled as well as the horizontal momentum balance

13. Show that the vertical momentum balance hold if and only if: $C(\bar{y}) = -Re^{-1}f'(\bar{y}) - Re^{-1}f^2(\bar{y})/2 + cst..$

14. What boundary conditions are fulfilled?

We have now a rare exact solution of the Navier-Stokes equations!

15. Express the pressure field where $\bar{x} \rightarrow \infty$ but \bar{y} remains fixed and finite. Is it compatible with the expression valid in the boundary layer $\bar{p}_e = -\bar{x}^2/2 + cst.?$

16. Express the pressure field in the limit $\bar{x} \rightarrow \infty$ and $\bar{y} \rightarrow \infty$. Is it consistent with the pressure prevailing in the potential exterior region writing dimensionally $p_e = -A^2(x^2 + y^2)/2 + cst.?$