
ME-444 Hydrodynamics- exercise22 avril 2024

Flow on a facing plate, boundary layer solution and more.

We consider the potential flow in the (x − y) plane of a liquid (density ρ) on a infinitely thin plate P
located between x = −2a and x = 2a on the axis y = 0. The velocity field is classically denoted by
u = (u, v). A uniform flow impinges on the plate with a far field velocity lim(x,y)→∞(u, v) = (0, V∞).

Figure 1: Schematics of the flow on a facing plate.

Part I, boundary layer

We consider the quadrant x > 0, y > 0 of the exterior flow, chosen to be ue = Ax, ve = −Ay (remember
the exercise of week 1), prevailing in the far field. It is representative of the flow impinging a facing plate
of length 4a located in y = 0. The flow is assumed incompressible and to be a viscous Newtonian fluid of
kinematic viscosity ν. The Reynolds number is assumed very large Re = Aa2/ν ≪ 1.

1. What characteristic velocity and length scales have been used to build this Reynolds number?

2. Explain why a boundary layer must be introduced in the vicinity of the wall y = 0. By a scaling
analysis, determine its characteristic gauge of y in the boundary layer as well as that of the pressure
and fill in the table.

quantity dimensionless variable expression

horizontal length x̄ x
a

vertical length ȳ
horizontal velocity ū u

V∞

vertical velocity v̄ vRe1/2

V∞
pressure p̄

Table 1: Boundary layer scales. The vertical length and pressure gauges have to be determined.
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3. [3 pts] Using the aforementioned scales, show that the ∂p̄
∂ȳ = 0 in the boundary layer such that

p̄(ȳ, x̄) = p̄e = −x̄2/2. Demonstrate that the Prandtl equations write

∂ū

∂x̄
+

∂v̄

∂ȳ
= 0 (1)

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= x̄+

∂2ū

∂ȳ2
(2)

ū(x̄ > 0, 0) = 0 v̄(x̄ > 0, 0) = 0 (3)

ū(x̄, ȳ → ∞) = x̄ (4)

4. Why does the vertical momentum balance seem to have disappeared from this set of boundary layer
equations?

5. [3 pts] We now look for self similar solutions, using expansion coefficients denoted by ∗ and rescaled
variables denoted by ,̃ i.e ū = u∗ũ, v̄ = v∗ṽ, x̄ = x∗x̃, ȳ = y∗ỹ. Show that the following conditions
must hold

u∗

x∗
=

v∗

y∗
(5)

(u∗)2

x∗
= x∗ (6)

u∗ =
x∗

(y∗)2
(7)

and deduce the following self-similar ansatz

ū = x̄g(ȳ); v̄ = −f(ȳ), (8)

where a minus sign has been introduced for later convenience.

6. Is this ansatz compatible with the matching condition at ȳ → ∞?

7. [2 pts] Show that g = f ′ and find the missing term [. . . ] in the following ordinary differential equation

f ′′′ + [. . . ] + 1− f ′2 = 0 (9)

8. What are the boundary conditions for f? The solution can only be obtained numerically and is
reported in figure 2, together with its approximation by a third order polynomial

9. [2 pts] Show that the displacement thickness δ1(x̄) =
∫∞
0 (1− ūV∞/ue)dȳ does actually not depend

on x̄. Contrast this result with the boundary layer on a flat plate. Which of these two boundary
layers is the thinnest? Does the momentum thickness depend on x̄?

10. [2 pts] Assuming that this solution hold on the entire plate and coming back to expressions with
dimensions, determine the shear force (per unit length) acting on the semi-plate x ∈ [0; 2a].

2



Figure 2: Solution f and its derivatives f ′ and f ′′ of the differential equation (9) with suitable boundary conditions

Part II, a solution of the Navier-Stokes equations

11. Remarkably, it turns out the boundary layer approximation obtained before is an exact solution
of the Navier-Stokes equations, as surprising as it may sound. Show that the full incompressible
Navier-Stokes equations in the ¯ gauge system write

∂ū

∂x̄
+

∂v̄

∂ȳ
= 0 (10)

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= −∂p̄

∂x̄
+

1

Re

∂2ū

∂x̄2
+

∂2ū

∂ȳ2
(11)

ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
= −Re

∂p̄

∂ȳ
+

1

Re

∂2v̄

∂x̄2
+

∂2v̄

∂ȳ2
(12)

ū(x̄, 0) = v̄(x̄, 0) = 0 (13)

12. Suppose now that ū = x̄f ′(ȳ), v̄ = −f(ȳ) and in addition that p̄ = − x̄2

2 + C(ȳ). Show that the
continuity equation is fulfilled as well as the horizontal momentum balance

13. Show that the vertical momentum balance hold if and only if: C(ȳ) = −Re−1f ′(ȳ)−Re−1f2(ȳ)/2+
cst..

14. What boundary conditions are fulfilled?

We have now a rare exact solution of the Navier-Stokes equations!

15. Express the pressure field where x̄ → ∞ but ȳ remains fixed and finite. Is it compatible with the
expression valid in the boundary layer p̄e = −x̄2/2 + cst.?

16. Express the pressure field in the limit x̄ → ∞ and ȳ → ∞. Is it consistent with the pressure
prevailing in the potential exterior region writing dimensionally pe = −A2(x2 + y2)/2 + cst.?
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