

HYDRODYNAMICS

EXERCISE WEEK 11

Exercise 1

Shear flow around a cylinder.

In this problem you will study the flow around a fixed cylinder, whose axis is perpendicular to a shear flow (see picture below). The objective will be to determine the forces exerted by the fluid on the cylinder.

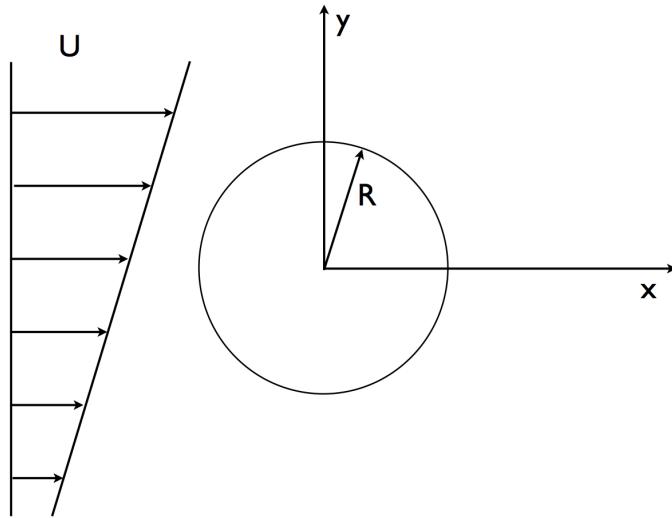


Figure 1

One supposes that the fluid is perfect, incompressible and stationary. It will also be planar in the x , y -plane. Gravitational force shall be neglected.

By definition (\vec{e}_x, \vec{e}_y) are a pair of cartesian base vectors and $(\vec{e}_r, \vec{e}_\theta)$ polar base vectors. The position of a point in the plane shall be defined by $\vec{x} = x\vec{e}_x + y\vec{e}_y = r\vec{e}_r$. One denotes

$$\vec{u}(\vec{x}) = u_x(x, y)\vec{e}_x + u_y(x, y)\vec{e}_y = u_r(r, \theta)\vec{e}_r + u_\theta(r, \theta)\vec{e}_\theta,$$

the velocity vector, $p(\vec{x})$ the pressure and ρ the density of the fluid.

Part 1. General considerations

1. Recall the equations of fluid motion, that apply here.
2. It is supposed that the vorticity $\text{rot } \vec{u} = \omega \vec{e}_z$ is constant everywhere in the flow. Then $\psi(x, y)$ being a stream function, defined in cartesian coordinates by the relations:

$$u_x = \partial\psi/\partial y, \quad u_y = -\partial\psi/\partial x.$$

Show that the acceleration term can be written as the derivative of a potential (the potential here is not the potential ϕ in potential flow theory). One shall recall that:

$$(\vec{u} \cdot \nabla) \vec{u} = (\text{rot } \vec{u}) \times \vec{u} + \nabla \left(\frac{1}{2} \|\vec{u}\|^2 \right).$$

3. Deduce that $\rho\omega\psi + \frac{1}{2}\rho||\vec{u}||^2 + p$ is constant in the flow.
4. Supposing that an obstacle described by its surface Σ and normal \vec{n} is in the flow described above. Show that the force on the object is given by:

$$\vec{F} = \frac{\rho}{2} \int \int_{\Sigma} ||\vec{u}||^2 \vec{n} dS.$$

Part 2. Description of the flow

1. The velocity field is given by

$$\vec{U}(y) = (V + S y) \vec{e}_x,$$

With V and S constant. Calculate its vorticity.

2. One places in this flow a cylinder with its axis oriented along the z -coordinate, the length L and the radius R . One is looking for the modification due to the presence of the cylinder. The velocity is supposed to take the form:

$$\vec{u} = \vec{U} + \nabla\phi,$$

where $\phi(\vec{x})$ is the potential of the velocity field and such that $||\nabla\phi|| \rightarrow 0$ when $||\vec{x}|| \rightarrow \infty$. It is a priori not given that a potential solves this problem.

Calculate the vorticity and show that $\Delta\phi = 0$.

3. Show that the boundary conditions on the surface Σ of the cylinder are written as:

$$\partial\phi/\partial r|_{\Sigma} = -V \cos(\theta) - \frac{1}{2}S R \sin(2\theta).$$

4. Calculate the laplacian of $\phi = \Gamma\theta/2\pi$ and $\phi = A \ln(r)$, where Γ and A are constants.

5. Show without calculation that the following function satisfies $\Delta\phi = 0$:

$$\phi = \frac{\Gamma\theta}{2\pi} + A \ln(r) + B_i \frac{\partial}{\partial x_i} \ln(r) + C_{ij} \frac{\partial^2}{\partial x_i \partial x_j} \ln(r).$$

Here, B_i ($i=1,2$) are constants of a vector \vec{B} in (\vec{e}_x, \vec{e}_y) and C_{ij} ($i,j=1,2$) those of a constant tensor \bar{C} .

6. In polar coordinates one can show that the function ϕ obtained in the previous section is expressed as:

$$\phi = \frac{\Gamma\theta}{2\pi} + A \ln(r) + \frac{1}{r}(B_1 \cos(\theta) + B_2 \sin(\theta)) - \frac{1}{r^2}((C_{11} - C_{22}) \cos(2\theta) + 2C_{12} \sin(2\theta)).$$

Show that $C_{11} = C_{22}$ and determine A, B_1, B_2 and C_{12} .

7. Determine the components u_r and u_{θ} of the complete velocity field around the cylinder (one recalls that $\vec{u} = \vec{U} + \nabla\phi$).

Part 3. Force exerted on the cylinder

1. Show, and give explicitly the constants K_n , that:

$$(u_{\theta}^2)|_{\Sigma} = \sum_{n=0}^4 K_n \sin^n(\theta).$$

2. By use of the result of 1.4, show that the component F_x of the force exerted by the fluid on the cylinder is zero.

3. Determine the component F_y . Discuss this result. One shall recall that:

$$\int_0^{2\pi} \sin^n(\theta) d\theta = 0 \text{ (n odd)}, \quad \int_0^{2\pi} \sin^2(\theta) d\theta = \pi, \quad \int_0^{2\pi} \sin^4(\theta) d\theta = \frac{3\pi}{4}.$$