Drainage in a cylinder

We consider a thin liquid film coating the interior of a cylindrical cavity of radius R. The liquid has
density p, dynamic viscosity g and surface tension . The gravity acceleration on earth is denoted by
g. Initially, at time ¢ = 0, the film has an homogeneous thickness Jp < R (fig. 1la). At time progresses,
gravity is going to pull the liquid down tangentially (fig. 1b) in a so-called drainage flow to eventually
form a liquid pool. Actually, this is only true if the so called Bond number (Bo = pgdoRy~!) is sufficiently
small (fig. 1c), but this is another story. We introduce the polar angle € defined from the north pole and
call §(6,t) the film thickness. We want to exploit the aspect ratio §/R = € < 1 to obtain a lubrication
equation. We denote by u and v the tangential (azimuthal) and radial velocities, which both depend on
time, as well as polar coordinates r and 6.
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Figure 1: (a) Initial condition for the cylinder coating considered in this exercise and notations. (b) Evolution
of the thickness distribution along the azimut. (c) For sufficiently large Bond numbers, a zoom of the upper right
quadrant shows a cascade plot of the thickness and the dripping phenomenon.

1. Check that the Bond number is indeed a dimensionless number!

2. Write the continuity equation (use internet or a formulary to see that in radial coordinates there
are 3 terms!) to show that the gauge of tangential (and radial) velocities U (and V') must follow
the scaling relation
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What is the principle that was used to obtain this relation?

: 0
Why could the term 7 be neglected? compare its gauge to that of 5.
The azimuthal momentum equation writes
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We introduce the variable y = R — r, which spans the interval [0;0] in the liquid film and has
a typical scale dg, determine the appropriate pressure gauge P enabling the simplification of this
equation into
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Show that the application of the dominant balance principle yields for the radial momentum equation
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Introducing the curvature of the interface x, one can obtain the following expression for the pressure.

P(Y) = Patm — V& + pg cos(0)(y — 0) (5)

From which interface condition was this relation deduced? Which famous law taking into account
surface tension was used?

Turning back into the azimuthal momentum equation, show that at leading order
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where the index 6 designates derivative with respect to . Which term has been neglected to arrive
to this equation?

The velocity field can be integrated into
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What are the boundary conditions for the velocity field which enabled to obtain this expression?

Using the kinematic boundary condition at the interface, one obtains the following lubrication
equation
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Show that since § < R and assuming Bo = O(1) that this equation simplifies into
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11. What is the characteristic time-scale 7 of drainage?

12. We make the problem dimensionless with § = 806 and t= 7t and now focus on the north pole region
6 < 1. We look for a solution of separate variables §(6,%) = f(#)(1 + af?). By remembering the

Taylor expansion of sin(f) ~ 6 — % show that a = 1—16 and write the ordinary differential equation

governing f(t).
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Figure 2: (a) Azimutal thickness distribution at a given time-instant given by experimental measurements, the
solution found in question 12 and a refined 4-th order expansion. (b)Approximate non dimensional evolution of the
thickness at the pole f(t) and its value from the numerical resolution of eq. @)

13. The solution ~
- 2t
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is shown in figure 2b together with the solution at the north pole from the full differential equation

. What do you think of the comparison?
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14. The second order approximation f(#)(1 4 af?) is compared at a specific time to experiments and to
a refined approximation at fourth order in # in figure 2a. What do you think about the comparison?



