
Hydrodynamics / Exercises week 3, 2024

Exercise 1
A ships propeller of diameter D is moving along its axis in an incompressible fluid at rest. This

fluid is limited in its vertical by a free surface, above which exists the atmosphere at pressure pa. The 
under water depth of the propellers axis h is such as h > D/2. The ships velocity is V0 = V0ez , and 
its rotational velocity is defined by the vector Ω0 = Ω0ez , being colinear with V0. One designates G 
as the ensemble of non-dimensional parameters that characterise the propellers geometry.

Figure 2

1. Show that the driving force T (pousse) and the resistive moment Q (couple) of the propeller
can be writter as:
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where Re is the Reynolds number, Fr is the Froude number and λ is the driving parameter

λ =
V0

Ω0D
.

2. Give an expression for the degree of efficiency η of the propeller as a function of the dimen-
sionless parameter λ, KT et KQ, where

KT =
T

ρΩ2
0D

4
, KQ =

Q

ρΩ2
0D

5
.

One desires to know the advancing force of a propeller with a diameter of 4m, rotating at 180rpm,
for an advancing velocity of 10m/s and an immersion of 5m. Therefore one builds a geometrical
similar model of diameter 0.25m.

3. Show that, if the model and real propeller move in the same liquid, it is not possible to attain a
complete similarity. One is therefore pushed to neglect the influence of the viscosity, because a
big part of the drag is due to surface waves (formed by gravity). Determine the experimental
conditions for the model (advancing velocity, rotational velocity, immersion of the axis).

4. One measures then a propulsion force of the model of 8.6kg f for an applied couple of
0.39mkg f . Determine from these values the advancing force, couple and degree of efficiency
at real scale (1kg f = 9.8N ).

If a ships propeller rotates to fast, it could cause locally vaporisation of the liquid on the blades
(cavitation, see 3) that alter the performance of the propeller. In fact, the flow around the blade
becomes a two-phase flow and the advancing force becomes a function of additional parameters, the
margin of the static pressure pa + ρgh− pv between the pressure of the immersed propeller and the
vaporisation pressure of the fluid pv , supposing its constant.

Figure 3

5. Show that the relations tabulated in question 1 need to include a further parameter denoted:

σ =
pa + ρgh− pv

ρΩ2
0D

2
. (2)

6. The model propeller is tested in an installation that allows to regulate the value of the
atmospheric pressure pa. If it is supposed to be equal to 105Pa for a real propeller, determine
the pressure under which the model needs to be tested in order to get a reliable estimate for
the risk of cavitation (one uses pv = 1.8× 103Pa).
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Materials Young’s modulus [in GPa] Density [in g/cm3]
Steel 220 7.8
Inox 200 7.8
Copper 100 8.9
Cast iron 100 7.2
Titanium 100 4.5
Aluminium 70 2.8
Bronze 100 8.4
Concrete 20 1.9
Epoxy glue 5 1.15

Under the hydrodynamique forces acting on the blades only, the propeller is subject to elastic defor-
mations, resulting in a further modifications of its performance.

7. Show that measured force and couple are thus subject to a further non-dimensional parameter

β =
E

ρΩ2
0D

2
, (3)

where E is the Youngs modulus of the material, which is suppose to be sufficient to characterise
the deformations (real propeller being in bronze).

8. The experimental conditions as determined in the preceding part, chose the material that has
to be used for the model in order to account correctly for the deformations.
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Exercise 2: 2D Stokes flow around a circle

We consider the 2D Stokes flow around a circle (with far field velocity U in the θ = 0 direction and
we introduce a polar coordinate system (θ, r) and a Stokes streamfunction ψ such that

ur =
1

r

∂ψ

∂θ
;uθ = −∂ψ

∂r
. (1)

1. Check that with these expressions of the r and θ velocity components, the flow is indeed incom-
pressible

2. Denoting by ω the z-component of the vorticity, show that ∆ω = 0, where
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)
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is the Laplacian operator.

3. Show also that

ω = −∆ψ (3)

and deduce that
∆2ψ = 0 (4)

4. Write the boundary conditions in r = R and for r +∞

5. Using the Ansatz ψ = f(r) sin(θ) show that

d4f
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dr
− 3

r4
f = 0 (5)

6. Show that there are only 3 fundamental solutions for f with the form rn with n a signed integer.

7. Is the last fundamental solution ln(r) or r ln(r)?

8. Can the boundary conditions be satisfied?
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