
HYDRODYNAMICS
CORRECTION-EXAM 2019

Exercise 1

Waves in shallow pool

1. Under the inviscid approximation, capillary–gravity waves in a horizontally infinite do-
main (since L ≫ H , the presence of sidewalls is neglected) are governed by the Laplace
equation subjected to the kinematic and dynamic boundary conditions at the free surface
and the non–penetration condition at the solid bottom:

∆Φ =
∂2Φ

∂x2
+

∂2Φ

∂y2
= 0,

∂Φ

∂y

∣∣∣∣
y=0

= 0, (1)

∂η

∂t
− ∂Φ

∂y

∣∣∣∣
y=H

= 0, (2)

∂Φ

∂t

∣∣∣∣
y=H

+ gη − γ

ρ

∂2η

∂x2
= 0, (3)

where η is the free surface and Φ is the potential velocity field (u = ∇Φ). We consider a
solution having the following form:

Φ = Φ̂ (y) ei(kx−ωt), η = Cei(kx−ωt), (4)

Substituting (4) in (1):

∂2Φ̂

∂y2
− k2Φ̂ = 0, (5)

whose general solution reads

Φ̂ (y) = A cosh ky +B sinh ky. (6)

Imposing the non–penetration condition at the solid bottom, y = 0, and the kinematic
boundary condition at the free surface, y = H , we get,

∂Φ̂

∂y

∣∣∣∣∣
y=0

= 0 = kB −→ B = 0, (7)

∂Φ̂

∂y

∣∣∣∣∣
y=H

=
∂η

∂t
= −iωC = kA sinh kH −→ A = −iC

ω

k sinh kH
. (8)

Solving for A and B,

Φ̂ (y) = −iωC
cosh ky

k sinh kH
. (9)

Using (9) and (4) in (3) evaluated at y = H we end up with the following dispersion
relation for capillary–gravity waves:
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ω =
√
(gk + (γ/ρ) k3) tanh kH =

√(
1 +

γ

gρ
k2
)
gk tanh kH. (10)

2. The wavenumber k is defined as 2π/L where L is the reference wavelength. If L ≫ H ,
then kH ≪ 1 and tanh kH ≈ kH . If L ≫ lc =

√
γ
gρ , then

(
1 + γ

gρk
2
)
≈ 1. Consequently,

ω ≈
√
gHk2 = k

√
gH = 2π

√
gH/L ∝

√
gH/L. (11)

and the time scale is τ ∼ 1/ω ∝ L
√
gH .

In the (k, ω)–plane, the dispersion relation above is given by a linear variation of the
oscillation frequency ω with the wavenumber k. The slope of the linear law is

√
gH .

3. The eigenvalue ω is a real quantities, meaning that in our conventional normal mode
form, e−iωt, it represents a purely oscillatory motion (undamped), as depicted in figure
3-(a).

4. The wavemotion associated to the dispersion relation expressed in (11), as well as the
classic capillary–gravity wavemotion (10), is neutrally or marginally stable. Indeed, un-
der the fundamental assumption of an inviscid fluid, there is no dissipation (and thus
no damping) in the present model.

5. Using the expansions h = H + ϵh′ and p = P + ϵp′ and recalling that the base–flow
or nominal pressure is hydrostatic, P = −ρgy, for which P |y=H = −ρgH , with H =

constant (∂
nP

∂xn = −ρg ∂nH
∂xn = 0), we obtain the following ϵ–order linear problem:

∂h′

∂t
=

H3

3µ

∂2p′

∂x2
. (12)

From the normal component of the linearized dynamic boundary condition at the free
surface (applying the flattening procedure) we have:

p′ = ρgh′ − γ
∂2h′

∂x2
(13)

Note that the term 2µ∂v
∂y which usually appears in the normal component of the lin-

earized dynamic boundary condition has been neglected by virtue of the lubrication
approximation (such a term is negligible when compared with the other terms during
the classic dimensional analysis). Thus we obtain

∂h′

∂t
=

ρgH2

3µ

(
∂2h′

∂x2
− γ

ρg

∂4h′

∂x4

)
. (14)

6. Assuming a linear solution having the form h′ ∝ ei(kx−ωt) (classic wave expansion), we
end up with the following dispersion relation:

ω = −i
ρgH3

3µ

(
k2 + l2ck

4
)
, (15)

Note that the eigenvalue ω is now purely imaginary and thus it represent a pure damp-
ing coefficient.

7. In this case the eigenvalue is an imaginary quantity, which leads to an exponentially
decaying wavemotion (with no oscillations), as depicted in figure 3-(c).
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8. Denoting the damping by σ, if L ≫ lc (klc ≪ 1), we have σ = ρgH34π2

3µL2 (k = 2π/L). The

time scale of the damping is τ = 1/σ ∝ 3µL2

ρgH3 .

9. The dimensional analysis at the heart of the lubrication approximation is based on the
following scaling for the various physical quantities:

x ∼ L, y ∼ H, t ∼ τ, u ∼ U, v ∼ V, p ∼ P, (16)

With the scaling above, the x–momentum equation reads:

ρ
U

τ

∂ū

∂t̄
+ ρ

(
U2

L
ū
∂ū

∂x̄
+

V U

H
v̄
∂ū

∂ȳ

)
= −P

L

∂p̄

∂x̄
+ µU

(
1

L2

∂2ū

∂x̄2
+

1

H2

∂2ū

∂ȳ2

)
(17)

where the bar denotes the dimensionless variable. As we can see from (17), the various
terms scale like: ρU/τ , ρU2/L, ρV U/H , P/L, µU/L2, µU/H2.
The continuity equation reads:

U

L

∂ū

∂x̄
+

V

H

∂v̄

∂ȳ
= 0, (18)

From the so–called dominant balance of (18), U
L ∼ V

H . It follows that V ∼ U H
L . The

fundamental idea of the lubrication approximation is that H/L = ϵ ≪ 1 (the fluid layer
is thin if compared with the wavelength). With this assumption, the viscous term in (17):

µU

(
1

L2

∂2ū

∂x̄2
+

1

H2

∂2ū

∂ȳ2

)
=

µU

L2

�
�
�∂2ū

∂x̄2
+

L2

H2︸︷︷︸
1/ϵ2≫1

∂2ū

∂ȳ2

 ≈ µU

H2

∂2ū

∂ȳ2
. (19)

Consequently, from the dominant balance of the right hand side of equation (17), we can
set the pressure gauge to:

P

L
∼ µU

H2
, −→ P ∼ µUL

H2
. (20)

Dividing then each term in equation (17) by µU
H2 we obtain:

1

τ

H2

ν

∂ū

∂t̄
+

������������ρUL

µ

H2

L2︸ ︷︷ ︸
Re ϵ2≪1

(
ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ

)
= −∂p̄

∂x̄
+

∂2ū

∂ȳ2
(21)

where Re is the Reynolds number and if Re ≪ 1/ϵ2, then the inertial term is negligible.

10. The order of magnitude of the first term in the left hand side of equation (21) depends
on the time scale τ . In example, if τ ∼ H2/ν then H2/τν ∼ 1 and

∂ū

∂t̄
= −∂p̄

∂x̄
+

∂2ū

∂ȳ2
(22)

11. Dimensional form of equation (22), whose derivation has been demonstrated above.
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12. Using previous arguments, V = U H
L and P = µUL

H2 , τ = H2/ν and dividing by µ
ρ

V
H2 :

�
��
∂v̄

∂t̄
+
�����������
Re ϵ2

(
ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ

)
= − 1

ϵ2︸︷︷︸
≫1

∂p̄

∂ȳ
+

�
�
�∂2v̄

∂ȳ2
− ρLHg

µU︸ ︷︷ ︸
not negligible

(23)

In dimensional terms we have:

1

ρ

∂p

∂y
+ g = 0. (24)

13. At leading order the free surface obeys the kinematic boundary conditions (no flux
through the surface), dh

dt = v|y=H . The other boundary conditions comes from the di-
mensional analysis of the x–component of the dynamic boundary condition:

2µ

(
∂u

∂y
+

∂v

∂x

)∣∣∣∣
y=H

= 0, −→ U

H

∂ū

∂ȳ

∣∣∣∣
y=1

+
V

L

∂v̄

∂x̄

∣∣∣∣
y=1

= 0 (25)

U

H

∂ū

∂ȳ

∣∣∣∣
y=1

+
UH

L2

∂v̄

∂x̄

∣∣∣∣
y=1

= 0, −→ ∂ū

∂ȳ

∣∣∣∣
y=1

+

�
�
�

�
�
�

H2

L2︸︷︷︸
ϵ2≪1

∂v̄

∂x̄

∣∣∣∣∣∣∣∣
y=1

= 0. (26)

The second free surface boundary conditions is thus ∂u
∂y

∣∣∣
y=H

= 0 (dimensional b.c.).

14. The solution of equation (28)

∂u

∂t
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
, −→ ∂u

∂t
= K + ν

∂2u

∂y2
, (27)

is based on the following expansion: u = ϵu′ with u′ = û (y) ei(kx−ωt), for which

− iωû = K + ν
∂2û

∂y2
. (28)

It can be verified, substituting (34) in (36), that (34) solution.

15. Recalling the expansion for the free surface, h = H + ϵh′ with h′ = Cei(kx−ωt), equation
(36) is subjected to the no–slip b.c. at the bottom u|y=0 = 0 and ∂u

∂y

∣∣∣
y=H

= 0 at the free

surface.

û (0) = 0 =
iK

ω
+A, −→ A = − iK

ω
(29)

∂û

∂y
(H) = 0 = (1− i)

√
ω

2ν

[
A sinh

(
(1− i)

√
ω

2ν
H

)
+B cosh

(
(1− i)

√
ω

2ν
H

)]
(30)

From which,

B =
iK

ω
tanh

(
(1− i)

√
ω

2ν
H

)
(31)
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Hence the solution reads,

û (y) =
iK

ω

(
1− cosh

(
(1− i)

√
ω/2ν y

)
+ tanh

(
(1− i)

√
ω/2ν H

)
sinh

(
(1− i)

√
ω/2ν y

))
(32)

16. Integrating the continuity equation from y = 0 to y = H (unperturbed or nominal
height) one gets:

∫ H

0

∂û

∂x
dy +

∫ H

0

∂v̂

∂y
dy = 0, −→ v̂ (H)−���v̂ (0) = −

∫ H

0

∂û

∂x
dy, (33)

where v (0) = 0 because of the non–penetration b.c. Deriving with respect to x (K =
−1

ρ
∂p
∂x ) and then integrating in y solution (32), the expression for v̂ (H) is obtained.

From the ϵ–order kinematic boundary condition at the free surface, y = H ,

∂h′

∂t
= v̂ (H) (34)

Using the normal component of the linearized dynamic boundary condition to express
the ϵ–order pressure, we have ∂K

∂x = −1
ρ
∂2p′

∂x2 = −g
(
∂2h′

∂x2 − γ
ρg

∂4h′

∂x4

)
, which substituted in

the expression for v̂ (H) leads to the proposed expression of ∂h′

∂t .

Using then the normal form (wave expansion)

h′ = Cei(kx−ωt) (35)

the dispersion relation is easily found.

17. Derivation of the following limits:

• H/lvb ≪ 1 (purely damped)

If H/lvb ≪ 1, then tanh ((1− i)Hvb) ≈ (1− i)H/lvb. Hence,(
H − tanh (1− i)H/lvb

(1− i) /lvb

)
≈ 0, −→ ω2 ≈ 0. (36)

Indeed, one needs to consider the second term of the Taylor expansion, tanhx ≈
x− x3

3 + ...

(
H − tanh (1− i)H/lvb

(1− i) /lvb

)
≈

(
H −

(1− i)H/lvb − (1− i)3H3/3l3vb
(1− i) /lvb

)
= − i

3

H3

ν
ω

(37)
When H/lvb ≪ 1, the thickness of the viscous boundary layer, lvb, is much larger
than the actual fluid depth, H . It derives that in the present limit, the model lies in
the regime described by the lubrication approximation, for which the wavemotion
is purely damped, as previously commented.
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• H/lvb ≫ 1 (marginally stable)

If H/lvb ≫ 1, tanh ((1− i)H/lvb) ≈ 1, consequently

(
H − tanh (1− i)H/lvb

(1− i) /lvb

)
≈
(
H − lvb

(1− i)

)
= H

1−

�
�

�
�

��lvb
H︸︷︷︸
≪1

1

(1− i)

 ≈ H (38)

When H/lvb ≫ 1, the thickness of the viscous boundary layer, lvb, is negligible
when compared with the fluid depth, H . As a consequence, the viscous dissipation
is negligible and a pure oscillatory wevemotion, in analogy with the shallow water
approximation of inviscid capillary–gravity waves, is retrieved.

In the intermediate case, when H and lvb are comparable, the wavemotion appears as
an oscillatory motion damped by viscous effects. The strong nonlinear nature of the
complex dispersion relation leads to the existence of many different branches in the
(k, ω)–plane.
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