HYDRODYNAMICS
CORRECTION WEEK 14

Exercise 1

Tsunami correction

1. The flow is described by the 2D instationary Euler equations because the flow is inviscid.

In the (x,z)-plane these are:
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2. The fluid is inviscid and the ground is fixed and impermeable. The boundary condition

is therefore the impermeability condition (with slip) being # - 7 = 0 at z = f(z). The
normal 7 is collinear to the vector — f’e, + €, and perpendicular to the tangent of the
ground é, + f’(z)é,. One deduces:

w=uf at z= f(x).

. The atmospheric pressure is py and the atmosphere is supposed to be at rest. The kinetic
boundary condition comes from impermeability of the water-air interface is given as
@ -7 = Oh/Ot at z = h(z). In contrast to the ground the the water-air interface is a free
surface. One deduces:

h
w= gt—i-uh’ at z = h(x,t).

. The non-dimensionalized equations (we omit the tilde and write in small letters directly
the non-dimensional variables) are:
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One wishes to find relations for W, T' and P such that the non-dimensional variables
have comparable size. These gauges might then indicate which terms are to be neglected
because of H/L < 1. From logical reason one might think that the horizontal velocity
is much larger then the vertical velocity. Looking at the continuity equation reveals that
only a scaling of W = UH/L leads to a scaling where the two scaled velocity compo-
nents are of equal weight (otherwise one might be lead to discard the u component if
W =U0).

This simply leads to the same continuity equation as before but this time non-
dimensional.
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Turning our attention the the momentum equation in the x-direction (which is judged
to be more important), we replace W. We then chose 7" and P such that all terms are of
equal weight. The derivative du/0z drops because u is supposed to be a function of x
and ¢ only.

The gauges are all determined now:
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W—Uf, T_ﬁ and P =pU-.

Inserting these gauges into the momentum equation in the z-direction one is left with
terms of H?/L? which are much smaller then the rest and are therefore neglected. Finally
one rewrites U/+/g H = Fr as the Froude number.

. Rescaling the boundary conditions gives the same expressions as in problem 2 and 3 but
this time non-dimensional. It should be mentioned that a different scaling would have
lead to a negligible small terms in the boundary conditions.

. Integration of equation (3) of the exercise sheet gives:
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With the dynamic boundary condition at the sea surface

h
h = = C — =5,
p(h) =po=C1 2

one fixes C and finally obtains

p(h) = Fhr2 (1 — %) + po,

. Integration of equation (4) of the exercise sheet gives:

ou
w—l—z% = (h.

Using the kinematic boundary condition on the sea ground and substituting w:

—fgz +Cs = Ugia
which fixes O(u )
=0
finally obtaining
M Juny = Zup) at == hiah),

. Proceeding with the momentum equation in x-direction, where we replace the pressure
p, the z term drops as differentiation of z by z is zero.

. Linearization of the two equations (6) and (7) of the exercise sheet leaves:
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Differentiating the first equation by ¢ and substituting du /0t with the second equation
leads to the desired expression with ¢y = 1/Fr

Inserting h'(x,t) = cos(kz — wt) solves the equation and gives w = +¢pk. This is called
a dispersion relation and describes the relation between the pulsation w and the wave
number k. ¢y is the celerity, which is the propagation speed of the waves. Since all waves
are transported at the same velocity the equation is non-dispersive.

A tsunami is generated with H = 4000m, g = 10m/s* and U = 1m/s. ¢y = 1/Fr =
200m/s or 720km/h! This is the wave speed, not the fluid velocity. The tsunami arrives
at the coast in 5h 33min.

In setting U = 1m/s we simply choose a velocity scale, we could have injected 1km/h
as well. At this point however I want to make a comment. It might have seemed odd
that we established the dominant balance under question 4 with an arbitrary velocity
scale U. An alternative, and in my point of view nicer approach would have been to
built a pressure based on P = pgH and a velocity on U = /g H. This way a velocity
scale appears naturally with Froude number Fr = 1 and inserting H = 4000m and
g = 10m/s? results in the same wave speed. This approach might seem more coherent
to you with respect to the other exercises.

In the presence of slope of the sea ground, the wave equation becomes:
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Inserting h' = exp(i(kx—wt)) with w real and k = k, +ik;. First one simplifies 1 —ax ~ 1,
inserting i’ and gathering all terms with imaginary i results in k; = -3 Solving for the

real part and substituting k; gives k, = £,/Fr w? — %. Hence the sea surface becomes:

h(z,t) =1+ ee Fimeilkra=wt — 1 | ¢00/2% cog(k,z — wt)  (omitting the imaginary part).

Hence the wave growth exponentially, however this is only for a short period as the
relation is only valid in the linear case.



