
HYDRODYNAMICS
CORRECTION WEEK 11

Exercise 1

Part 1

1. In the absence of volumic forces, the equations of motion of a perfect, incompressible fluid
are the Euler equations. It is not a potential flow since the flow field is not rotation free.

∂u⃗/∂t+ (u⃗ · ∇)u⃗+∇p/ρ = 0 and ∇ · u⃗ = 0.

2. The flow is stationary, the acceleration of the fluid is (u⃗ · ∇)u⃗, being:

(u⃗ · ∇)u⃗ = rot(u⃗)× u⃗+∇(
1

2
||u⃗||2) = ωe⃗z × u⃗+∇(

1

2
||u⃗||2).

Or, the flow field being two dimensional and incompressible, there exists a function ψ(x, y)
such as: u⃗ = (∂ψ/∂y)e⃗x − (∂ψ/∂x)e⃗y. Consequently:

e⃗z × u⃗ = (∂ψ/∂x)e⃗x + (∂ψ/∂y)e⃗y = ∇ψ.

Then assuming ω being constant, one deduces that:

rotu⃗× u⃗ = ω∇ψ = ∇(ωψ),

and the acceleration becomes the derivative of a potential:

(u⃗ · ∇)u⃗ = ∇(ωψ +
1

2
||u⃗||2).

Since the pressure appears also as a gradient, we transformed the Euler equations into the
gradient of a scalar potential.

3. Since the Euler equation appears as a scalar potential, we have independence of the inte-
gration path and the integral for any scalar potential becomes:∫

P
∇ϕ · dr = ϕ(B)− ϕ(A),

for an arbitrary integration path P between position A and B. In our case this gives:

ρωψ +
1

2
ρ||u⃗||2 + p = C,

where C is a constant.

4. The force exerted by a fluid on an obstacle is: F⃗ = −
∫ ∫

Σ pn⃗dS. Or, using preceding
results,

F⃗ = ρω

∫ ∫
Σ
ψn⃗dS +

ρ

2

∫ ∫
Σ
||u⃗||2n⃗dS − C

∫ ∫
Σ
n⃗dS.

The integral of the normal around a closed interface is zero. Since the streamline ψ is
constant on the obstacle, not only the last integral but also the first are zero.
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Part 2

1. rot U⃗ = −Se⃗z .

2. rot u⃗ = rot (U⃗ +∇ϕ) = −Se⃗z because rot∇ϕ = 0. Applying the incompressibility condi-
tion, we find ∆ϕ = 0.

3. On Σ, the slip condition u⃗|Σ · n⃗ = 0 becomes:

0 = (U⃗ +∇ϕ)|Σ · e⃗r = (V + SR sin(θ)) cos(θ) + (∂ϕ/∂r)|Σ.

4. The Laplacian in polar coordinates is given as:

∆ϕ =
1

r

∂

∂r

(
r
∂ϕ

∂r

)
+

1

r2
∂2ϕ

∂θ2
,

the two functions ϕ = Γθ/2π and ϕ = A ln(r) are harmonics, they verify ∆ϕ = 0.

5. Since ∆ln(r) = 0, also ∇∆ln(r) = 0 = ∆∇ ln(r), by linear combination ∆(B⃗ · ∇ ln(r)) = 0

for all vectors B⃗ being constant. By iteration this is the same for ¯̄C.

6. In matching all the boundary conditions of Part 2.3 and identifying coefficients, one ob-
tains:

A = 0, B1 = −V R2, B2 = 0, C11 = C22, C12 =
1

8
SR4.

7. The velocity components are:

ur = V
(
1− R2

r2

)
cos(θ) +

Sr

2

(
1− R4

r4

)
sin(2θ)

uθ =
Γ

2πr
− V

(
1 +

R2

r2

)
sin(θ)− Sr

2

(
1−

(
1 +

R4

r4

)
cos(2θ)

)
.

Without shear (S=0), one recovers the potential flow with circulation Γ around a cylinder of
radius R.

Part 3

3. At r = R one verifies ur = 0, because the fluid streams around the cylinder. For uθ, still
on the boundary Σ, one obtains:

(u2θ)|Σ = C2 − 4KV sin(θ) + 4(V 2 − CSR) sin2(θ) + 8SV R sin3(θ) + 4S2R2 sin4(θ),

where C = Γ/(2πR) + SR/2.

2. From part 1.4, the force is expressed as

F⃗ =
ρ

2

∫ ∫
Σ
||u⃗||2n⃗dS =

ρ

2

∫ L

z=0

∫ 2π

θ=0
u2θ e⃗rRdθdz,

projected on the Y and X axis:

Fx =
ρ

2
LR

∫ 2π

0
u2θ cos(θ)dθ, Fy =

ρ

2
LR

∫ 2π

0
u2θ sin(θ)dθ.

The calculation gives Fx = 0, there is no drag.
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3. After the calculation the exerted force on the cylinder is:

F⃗ = ρV L(2πSR2 − Γ)e⃗y.

The force is directed perpendicular to the flow (lift). The first term comes from shear and the
second from Joukowski.
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