HYDRODYNAMICS
CORRECTION WEEK 8

Exercise 1

1. We assume the flow to be
e unidirectional
e Newtonian, the viscosity is constant in space and time
e incompressible
e not influenced by gravity
than the Navier Stokes equations write simply

du_ P Ldp 0
o oy pdx
with boundary conditions u(—h/2) = u(h/2) = 0. In order to introduce non dimensional
variables we select the following gauges

o u=ulU
o x =2h
e y=17yh
ot=iT="1

inserting them in the Navier-Stokes equation we obtain

ou  Adp  vUOdu
-— = —*7{) + 72 A2 (2)
ot p 0T  h* 0y

Depending on the ratio between the characteristic time of fluctuation of the pressure gradient
1/w and the viscous time scale h? /v some term can be neglected;

e high frequency regime w > %, than the natural velocity scale to choose is U ~ —,
pw
omitting the tildes equation becomes
ou 10p
=L Q)
ot p Ox
: v _ _ Ah*
e low frequency regime w < 727 than the natural velocity scale to choose is U ~ —,
j0%
omitting the tildes equation becomes
10p 0%u
0= ———+v—. 4
p Oz + V8y2 @

2. For a pulsating pressure gradient, it is natural to look for an oscillating solution, we
write this in dimensional form as

u(x,t) = % [u(y) expiwt + c.c.] = R{u(y) exp(iwt)} )
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so that )
, o’y A
Wy =v_— — —. (6)
9y p
or in dimensional form using U = p% (note that the choice of the gauge in now arbitrary
because we are not doing any assumption)

9
= hgwgyg Y 7)
whose solution is:
iA VT | =4/ Ty
uly) = pw (1 H)EE e—(1+z')\/f’5> ’ ®)
u(y,t) = R{u(y) exp(iwt)}, )
A+)§ 1 —(1+)F
wg) =1 <1 - :(1+i)% iZ(lﬂ);) ’ (10)

This solution is valid in for every frequency because we didn’t simplify any term.

3. Now we solve in the assumption of low frequency w < ;5 — \/g > h, the dominate

term is the one in middle, this select the velocity scale as U = Ap—}f, thus the non dimensional
equation writes
wh? 0% 10— %4
T T TV T o
which is a regular asymptotic expansion since the higher order derivatives remains on the
simplified equation. Applying the no-slip boundary condition we obtain the following solu-
tion

—1, (11)

2
u(y,t) = A4 (h - yQ) cos(wt). (12)

This is a quasi-static poiseuille flow which oscillates in opposite phase with the pressure gra-
dient, figure 1.

4. Now we solve in the assumption of high frequency w > #% — /Z < h, then the
equation simplify in

it =—1— u(y,t) = R{u(y) exp(iwt)} = _pilu sin(wt). (13)

This is a uniform flow pulsating in quadrature of phase with the pressure gradient. We clearly
see that this flow cannot satisfies the no slip boundary conditions. We will thus define a
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Figure 1. Quasi-statically regime at low frequency. Poiseuille flow.
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region close to wall where the viscous effects (previously neglected) becomes important. For
this purpose we introduce the change of variable y = —% + 0y where the tilde indicates the
variable in the boundary layer, then

v oK
wh2 02 52

=

(14)

in order to keep the viscous we set 5z = 1 which set the thickness of the boundary layer as
6 = /Z. The solution to the equation is

i = Aexp(Vijj) + B exp(—Vif) + C (15)

with boundary conditions @(0) = 0 and @(j — oo) = i = @(0), considering that /i = g + z?
the condition at infinity gives A = 0 and C' = ¢, while the condition at the wall gives C = —B,
the solution for the boundary layer gives thus writes

@ =1i(1 — exp(—Vi7)). (16)

Note that this last solution is a solution to the same equation we solved for the general so-
lution, it looks different because of the different boundary conditions. Finally the velocity
profile looks like the one in figure 2.

5. It is interesting to check if the general solution that we found in question 2 becomes

equal to the solutions for low and high frequency when we take the limit for % — 0 and

B oo respectively. In the first case one has to consider that

- ~ AN 2
H03) —1 4 (1 +i)% 1O ((g) > : 17)

)
X0)
—i ((’;)2 " @2> (20)

which is a Poiseuille profile. In the second case the boundary layer is thinner 2 — oo, we

notice that in the general solution the exponentials with negative exponent tends to zero while
the one with positive exponent goes to infinity, the one at the numerator slower because has
smaller exponent and thus tends finally to zero. This gives the desired uniform profiles far

from the wall ) )
(1+4)2 —(1+4)Z

ﬂ(g):limi<1—e Tt i):z 1)
E T

h
g—)OO

and the velocity becomes

Exercise 2

A thermal boundary layer: Solution
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Figure 2. Regime at high frequency. Stokes layer near the wall y = —h /2 and uniform flow at the center of
the pipe.

1. The solution was derived in a previous exercise.

II r2 2
r= =4u, = —— ]_—7 frd 1_7
S R

2. We use the solution of the velocity field in the heat equation and non-dimensionalise:

0c,Uo T OT  pU3 (aa>2 KT (1 o <_aT> 82T>

R "oz R "R \ForUor ) T oz

or
We divide by x T and multiply by R%:
elokie, ;0T _ pls (0u o L0 (9L 0T
K 0z Tk \OF FOF \ OrF 072

Using the non-dimensional numbers

_oT ou\* (10 ( 0T\ K T
Repra=ree (o) o (G (7 )+ 52
where boundary conditions read
_ _ T
Tir=1,2<0)=0, T(r=1,2>0)=1, (67_) =0
I ) =g

The Prantl number (Pr) compares viscous diffusion to thermal diffusion. The Eckert
number (E) compares thermal energy to kinetic energy of the moving liquid. We can
interprete the equation as follows, the term to the left represents advection of the thermal
field. The term in the middle represents thermal energy created by viscous dissipation
and the right term represents thermal diffusion.

In the next steps we omit the overbar for the non-dimensional quantities.

3. For elevated Reynolds numbers the first term, the thermal advection becomes dominant.
Simplifying the equation for (Pr Re — 00):

(1—7»2)2320 = T=0

We see for pure advection the boundary condition T'(r = 1,z > 0) = 1 is not verified.

4
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4. We now consider a boundary layer region near the wall. We see that close to the wall the
scaling between the heat convection and heat diffusion is different. We apply the inner
variable » = 1 — er. Just recall that derivatives in r change in 7.

OF 9FdF 9Fd(1-r)  OF

or  OFor  OF edr  €OF

Be reminded that the viscous dissipation source term (with Eckert number) is still small.
Again we omit the tildes in the equations below.

or 1 o) or\ o°T
Re Pr (1 — (1 —2re+ 7”262))5 = m% ((1 _ ET)(%) + -7

5. We sum up and take only leading order terms on each side.

or 10T
2Re Pr ET& = ?W

We try now to solve the problem of balanced advection-diffusion in the boundary layer.

We chose the scaling factor of the boundary layer ¢ = (2Re Pr)~'/3 and end up with the
equation:
or _ ot
"o: T o2

6. We look for a self-similar solution and therefore search for scale invariance for certain
dilatation groups, R, Z and 6:

RO 0
We see that on a trajectory R?/Z = constant, the temperature T remains 1.

The functional

F(r,z,T) :F(r,r?’/z,T) =0 = T= f(rz_1/3) = f(n).

Again, the way the self-similar variable is defined is not unique one could have chosen
73/2,2/r3,..., here the motivation is that a term in r vanishes after derivation and does
not create additional terms' after the second derivative.

We know that:
oF 0Fdn OF 1

or = onor g

and

OF OF&y  10F r

5_077702_ 3317%’

We substitute with the self-similar variable:

17"2/ n 1 15, "
sl =lam v =T

'You can try the other two alternatives and see that you get always more then two terms in the end, which
makes it quite hard to figure out an analytical solution
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7. This is a non-linear ODE, a standard Ansatz like ' = C exp(a n) will not work. However
we get an idea that a different kind of Ansatz could work, f' = Aexp(a n?).

Pasting this into the equation gives:

2 /
n f
—7:ab7’]b 1?

3 = b=3,a=-1/9.

So we get
T = Aexp(—1°/9).

This equation needs to be integrated with the boundary conditions applied. The bound-
ary conditions are:

T(r#0,z=0=T(n=00)=0 and T(r=0,2>0)=T(n=0)=1.
Thus the constant A is obtained by integration from 0 to n
T =o00) = T(n = 0) = | Aexp(=¢"/9)ds.
and using the other boundary conditions we find

Sy exp(—€7/9)d¢
5% exp(—€3/9)de”

T(n) =1
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Figure 3. Inner solution of the temperature near the wall.

This can be done numerically or with the help of a book of integral identities or simply
with a computer algebra software like maxima. The result is expressed in forms of the
"incomplete generalised Gamma function" and the Gamma function.

T(1/3.%/9)
=T
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It remains to combine both solution into a composite form for inner and outer solution.
The outer solution is Tj everywhere, non-dimensional T'(R,z > 0) = 0. The inner
solution is T'(r — o0,z > 0) = 0. So the composite form is easily obtained as the inner
solution in terms of the initial variables.

We recall that the inner radial variable was defined as 7 = (1 — r/R)e ™.

9Re Pr r(1/3, 1 - r/R)3R/z>
I'(1/3)

T:T()-I-(Tw—T[))
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Figure 4. Composite solution of the temperature for a pipe of radius radius R = 1, at = = 1 at RePr =
1000.

Figure 5. Numerical solution of the temperature for a pipe of radius R = 1 at RePr = 1000.



