HYDRODYNAMICS
CORRECTION WEEK 2

Exercise 1

1. Owing to the problem assumptions, the continuity equation reads
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which can be integrated into
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Since the fluid is viscous, we have no-slip conditions at the cylinder walls, namely U(R;) =
U(R,) = 0, which yields A = 0, and finally, U = 0.
The momentum equations now read
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From (26a) and (26c¢), it turns out that P and V" are functions of 7 only.

2. Integration of (26b) yields
A B
The no-slip conditions at the cylinder walls yield V(R;) = Q, R, and V(R,) = Q,R,, so that

we have
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Finally, the pressure field is obtained by integration of (26a):
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3. The velocity field is obtained by setting {22 = 0 in the preceding results.
4. The force on a ring shaped surface of length dL is calculated by integration of the viscous
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5. The torque on an cylinder portion of length dL is
C = R,F, )

whose integration yields
C =4ruBdL. (8)
6. If C can be determined experimentally, then the viscosity reads simply
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7.-8. In the limit R, — oo, the velocity field obtained from (27) reads

V() = 2 (10

which satisfies rotU = 0, i.e. the flow is irrotational.

9.-10. In the limit R, — 0, the velocity field obtained from (27) now reads
V(r) = Qyr, (11)

i.e. we have a solid rotation motion, for which rotU = 2Q,e, # 0, i.e. the flow is rotational.
It is thus possible to achieve a rotation motion that can be either irrotational (questions 7.-8.)
or rotational (present questions), as the rotational is connected to the local rotation of a fluid
particle (see figure 1).
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Figure 1. Rotation motion: irrotational flow (left) or rotational flow (right).

Exercise 2

A plate falling in a channel

1. We need information on the velocity field around the plate. We know that far from
the plate the flow will be at rest. Near the top and bottom region of the plate will be
transition regions where the flow adopts a constant profile.

A smart selection of reference frame would simplify the formulation of problem. Look-
ing from the frame of channel the flow is unsteady and as a consequence the time tran-
sient term of Navier-Stokes equations,% , could not be neglected. Now we consider a
reference frame installed on the falling plate. For such frame, the plate is stationary and
the walls moving at the speed of v,, = Uy in z direction, creating a steady flow field
with a uniform flow of the same velocity at the far field. Hence, we can eliminate time
transient term of equations. We continue the solution considering the frame of the plate.

Since the profile has a negligible thickness we infer that the streamlines remain parallel
to the walls and are not perturbed by the flow. That means the velocity U (in the x-
direction) is zero. From the continuity equation follows that V (in the z-direction) does
not depend on z.

From the momentum equation in x-direction remains:
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Integrating the momentum equation in z-direction:

0%v  dp B 1 dp
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The pressure gradient that we define contains also the hydrostatic pressure contribution
from the gravitational forces. This can be written explicitly but that won’t change the
final result. The problem is symmetric and only one half space is solved, i.e. z > 0. The
origin (z = 0) is located the plate and the outer wall at z = H. We see that the boundary
conditions are fulfilled v(0) = 0 and v(H) = Uy (for now we assume a positive velocity).

2. The velocity field equation contains two unknowns, the pressure gradient and the ter-
minal velocity Up. Since the channel is closed on the bottom we know that no flux is
passing through any cross section of the channel as a consequence of incompressibility.
In the frame of falling plate, the uniform inlet flux at far field should be preserved. That
puts a further restriction on the velocity field, its net flow rate needs to be HUj.
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What actually happens here is that you drag liquid down the channel, this results in a
pressure gradient which creates a recirculation near the outer walls. Therefore it would
have been a mistake to discard the pressure gradient right away. The pressure gradi-
ent could only have been dicraded if the channel was open on the other side, than the
pressure is equal on both sides and a net flux will be created.

3. The velocity is found by application of a force balance on the plate. There are two forces
the buoyancy and friction.

On a plate that moves downward (our arbitrary assumption, walls move upward) the
friction pulls the plate upwards. We get the friction force by integration of the stresses
along the interface.

F, = / ondA.

For the viscous drag only the z-component is important, the x-component contains only
the pressure and is balanced by symmetry.
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Here d is the depth of the plate. The weight force F;,, = mg. For consistency we take
M to be the mass difference between plate and displaced liquid unit per depth d, so
m = Md.

F, =—Mgd.

If the plate reaches its terminal velocity the forces are at equilibrium:
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4. If the thickness of the plate increases than the streamlines will be bend around the object
and the flow is no longer parallel and our model would no longer be valid.



