HYDRODYNAMICS
CORRECTION WEEK 1

Exercise 1

1. The flow direction should be downward because of the gravity. The fluid cannot slip
over the solid surface, and since the shear of the ambient air is negligible, the velocity gradient
should vanish on the fluid-air interface. Hence, the profile u, represents the flow.

2. Using the assumptions, the governing equations reduce to

dv
— =0 1
a0 ; (1a)
. d?u
0 = pgsina+ Mﬁ , (1b)
dp d?
0 = —pgcosa — dy +u dyv . (10)

At the wall, we must enforce that the fluid does not slip:
u(0) =v(0) =0. (2)

At the interface, we must enforce that no fluid crosses the interface, and that the constraint
(tangential and normal to the interface) is continuous:

v(h) =0,  p——(h)=0,  p(h)=p,. (3)

dy (
This yields v = 0 in the entire liquid layer. The pressure p is obtained by integration of (1c) as

p(y) =p, — pgcosaly — h), 4)
and the velocity u is ultimately determined by integration of (1b). We obtain the parabolic

distribution )
pg sin

= 2h —y).
uly) = =5 —y2h—y) )
3. The volumetric flow rate is defined by
sin cvh‘3
Q= / _ pgsinah® : ©)
L

Exercise 2

1. The flow being parallel to the (Oz) axis, we have V' = We, only with W (r, z) and
P(r, z) in the most general case. The continuity equation reduces to

ow

0z
meaning that the velocity depends on the cross-stream position only. The momentum equa-
tions can now be rewritten as

=0, (7)

oP
- E ) (8&)

0 = 0, (8b)
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From (8a), one sees that the pressure depends on z only. Since W depends on r only, (8¢) can
be satisfied only if both terms are constant. It is therefore possible to introduce the constant 3

such that
o°P

L ©)
2. The velocity W is such that
1o [ oW
o () = (10
It is straightforward to carry out the integration:
W:£r2+Alnr+B, (11)
Ap

where A and B are constants to be determined. Since the solution must remain finite on the
revolution axis, we have A = 0. B is determined from the no-slip boundary condition at the
pipe wall, namely W (R) = 0. We obtain finally:

= ﬁ(ﬂ — R?). (12)

Since r < R, W is positive only for 5 < 0, i.e. the fluid flows in the direction opposite to that
of the pressure gradient. For a small volume of fluid, this means that the pressure on the left
must be larger than the pressure on the right, i.e. the pressure has to “push” the fluid. This is
not surprising since the flow is caused here by the existence of the pressure gradient (W = 0
if 5 =0).

3. We integrate the force along a portion of the pipe surface.
dL  p27m
F = /EﬁdA = F, = / / M%VTVRdedz = 18R?dL.
0

4. It can be seen from (&) that momentum is obviously conserved, since all inertial terms
are zero. For the present flow configuration, it turns out that the pressure force exactly
counterbalances the viscous friction force at the pipe wall, so that the pressure is allowed to
vary whereas the velocity remains constant.

5. Here we investigate the effect of the viscous dissipation on the temperature of the fluid.
Assuming the flow to be fully developed, the energy equation reduces to

OWN? | 10 (9T
0=4u (a) e (a) | 13)
The integration yields
_ [ a—
T(r)="T, oapm (r* —R%). (14)

The centerline temperature is therefore

52

6im R, (15)

T(0) =T, +

i.e. the temperature is larger at the center of the pipe than at the wall. Such a result may
seem rather counterintuitive, as one may have thought that the temperature would have been
larger at the wall where the viscous friction occurs. The higher temperature at the centerline
is due to the heat diffusion in the fluid.
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6. The pressure drop is simply AP = L. The volumetric flow rate reads

R R4
Q =2r W(r)rdr = _m5 , (16)
r=0 81
so that the AP can be recast in terms of () according to
SuQL
AP = — . 17
i (17)

7. For the proposed conditions, we obtain AP ~ 259Pa.

8. The pressure gradient in each small pipe is noted 3/, so that the corresponding volumet-
ric flow rate )’ is simply

/4
g - - (18)
8p
The total flow rate must be such that nQ’ = Q, i.e.
nfBla* = BR*. (19)

Finally, since the cross-sections are identical in both configurations, one has also na? = R2.
We obtain finally

2
g =p (20)

If the radius is divided by a factor ), the pressure drop is therefore multiplied by a factor A\?,
which is highly detrimental to the application.

9. The reasoning used in question 1. holds for each fluid. The pressure is therefore such
that

%: i/a %: ga (21)
the velocity reads
1 1
W, = @ﬁ + Ay Inr + By (out), W, = fﬂﬂ + Ay Inr + B, (in). (22)
Because the normal constraint is to be continuous at the interface, we must have p, (h) = p,(h),
which can be satisfied only if 8{ = 85 = 5”. Since the solution must remain finite on the

revolution axis, A, = 0. To determine the remaining constants, we recall that the tangential
constraint and the velocity must be continuous at the interface, and that a no-slip condition
applies at the pipe wall:

ow ow.
Wi(h) = Wy(h), py—=(h) =py——=(h), W;(R)=0. (23)
or or
This yields
B// 9 9
Wi(r) = ™ (r*—R%), (24a)
5// 9 9 /8// < 1 1 > 9 9
Wy(r) = —@*—-R)+—|——-—)(h"—R"). (24b)
) = B () 02 )
The flow rate for the inner and outer fluid can now be computed, which yields
7T6// 9 9.2
_ _ 2
Q= 5 - (252)
7_‘_B// 4 B// 9 9 9
= ——h +7—(h"—R°)h", (25b)
Q, G T ()
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with @, = a@Q,. We assume that (), is identical to the flow rate of the fluid 2 alone, flowing
through the whole pipe, so that

gy = _ P, (26)

This allows to express the new pressure gradient as

g =gl

o ma . (27)

Substitution in (25b) now yields a formal relation between h and the problem parameters:

1
Fips © p2(R2 — p2) = Z(R2 — h2)°. (28)
) «

10. The viscous force is now simply
F" = 78"R?L. (29)

Its magnitude compared to that of the only inner fluid therefore depends on the choice of the
viscosities but also on the choice of the relative flow rates through the new pressure gradient

/3//.

Exercise 3

Look at matlab code: exol Fulld.m



