
HYDRODYNAMICS
CORRECTION EXAM 2018

Exercise 1

Drag of rising bubbles

1. Fb=(ρbubble − ρ)V g = −ρ4
3πa

3g, where g is the gravitational acceleration.

2. Drag force for law Reynolds number limit: Fd = 6πρνaU , then

Fb = Fd, (1)

6πρνaU = ρ
4

3
πa3g, (2)

U =
2

9

a2g

ν
. (3)

3. Viscous drag forces vs. surface tension forces.

Dimensional analysis, f(U, a, ν, γ, ρ, g) = 0.

U [LT−1], a[L], ν[L2T−1], γ[MT−2], ρ[ML−3], g[LT−2] (4)

where L, T,M are dimensions of length, time and mass, respectively.
Then one can form,

f

(
Uν

a2g
,Re, Ca

)
= 0 (5)

Uν

a2g
= f(Re,Ca). (6)

Since Ca ≪ 1,
Uν

a2g
= f(Re). (7)

The definition of Reynolds number is Re = Ua
ν , then with U = a2g

ν , Re = a2g
ν

a
ν = a3g

ν2

4. Fd = 1
2ρU

2cd(4πa
2).

Again, balance with the buoyancy Fb one finds

U2 =
ag

cd

2

3

ρ∗ − ρ

ρ
∝ ag, (8)

Now, taking eq.(1),

U2 ∝ ag =
a4g2

ν2
(f(Re))2, (9)

so
f(Re) ∝ Re−1/2. (10)

5. Yes. it is surprising. For Re → ∞, f(Re) → 0 for a hard sphere settling case. The sphere
case does not take into account the flow separation which breaks the pressure symmetry.
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Figure 1. f(Re) = Re−1/2

6. The drag force is

F = 4πµUa
3λ+ 2

2(λ+ 1)
(11)

where λ = µint/µext is the viscosity ratio. For inviscid drop, where λ ≈ 0, F = 4πµUa.

The spherical shape satisfies the local normal stress balance on the interface, and it is the
solution.

7. For Φ, the flow is irrotational (such that ∇ × ω = 0) and the flow is assumed inviscid
(such that Du/Dt = g −∇p/ρ ). For Ψ incompressibility such that ∇ · u = 0, 2D, steady.

8. The potential velocity Φ satisfies u = ∇Φ. From the continuity equation, ∇ · u = 0, the
equation to be solved is ∇2Φ = 0.

The boundary conditions are

ur =
∂Φ

∂r
= uθ =

1

r

∂Φ

∂θ
= 0 at r = ∞, (12)

ur =
∂Φ

∂r
= U cos θ, uθ =

1

r

∂Φ

∂θ
= −U sin θ at r = a. (13)

Thus, we search

Φ = f(r) cos θ =

(
Ar +

B

r2

)
cos θ. (14)

From the first boundary condition A = 0, and from the second one (∂Φ/∂r|r=a =

U cos θ), B = −Ua3

2 . Therefore,

Φ = −Ua3

2r2
cos θ. (15)

9. Since u = ∇Φ and Φ = −Ua3

2r2
cos(θ), ur = ∂Φ

∂r = Ua3

r3
cos(θ) and uθ =

1
r
∂Φ
∂θ = Ua3

2r3
sin(θ).

10. For liquid-gas interface,
u · n = Usurface: no penetration (free slip)
σ · n = 0 : Continuity of stress
The last condition can rewrite

(σ · n) · n = 0 (16)

(σ · n) · t = 0 (17)

where n = [1 0 0]T , t = [0 1 0]T . The stress balance in tangential component satisfies if

µ

(
1

r

∂ur
∂θ

+
∂uθ
∂r

)
= 0 (18)

2
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However, if we insert ur and ut obtained previous point 9, the condition (σ · n) · t = 0 is
not hold.

11. Let us locate a new coordinate on the bubble interface which is adjusted for the boundary
layer, r = a+δy where δ ≪ 1. Since the boundary layer thickness is negligible compared
to the bubble radius, this coordinate system is analogous to the Cartesian coordinates.
In such analogy (ur, uθ) ∼ (uy, ux) and (ex, ey) = (eθ, er). Consider the two velocity
scales V for ur and U (as before) for uθ, and two length scales a for x and δ for y. The
dominant balance of the continuity equation results in

U

a
=

V

δ
.

Similarly, the dominant balance of the momentum equations results in

ρV

a
u · ∇ui = −∇p+

µ

a2
(
∂2ui
∂x2

+ a2δ−2∂
2ui
∂y2

) → δ

a
∼ (

ρUa

µ
)−1/2 = Re−1/2.

Shear free interface results that as y → ∞, ∂ux
∂y = 0. This assumption forces the interface

shear to be zero. As separation requires a change in the sign of the shear, our boundary
layer prevents the flow separation.

12. For steady, inviscid, incompressible flow, from the Bernoulli’s law,

p ∼ ρU2

2
(19)

From the drag-buoyancy balance, U ∼ a2g
ν . Therefore,

p ∼ ρ

(
a2g

ν

)2

. (20)

13. Bubble stays spherical if the surface tension, γ/a, dominates over the normal stress, p.
Hence

ρ

(
a2g

ν

)2

≪ γ

a
,

which demonstrates Ca ≪ Re−1.

Exercise 2

Temperature profile in a heated channel

1. Recalling the second first exercise series of the course, the velocity profile, so called as
Poiseuille velocity profile, writes

ũ =
G

4µ
(R2 − r̃2), (21)

and Umax = GR2

4µ .

Ũ =
2

R2

∫ R

0
ũr̃dr̃ =

2

R2

∫ R

0

G

4µ

(
R2 − r̃2

)
r̃dr̃ =

2G

4R2µ
(
R4

2
− R4

4
) =

G

2µ

R2

4
(22)

Thus, Umax = 2Ũ .
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2. Inserting the the Poiseuille velocity profile

ũ(z) =
G

4µ

(
r̃2 −R2

)
= 2Ũ

(
1− r̃2

R2

)
(23)

in the energy equation and neglecting the viscous dissipation,

∂T

∂t
+ u · ∇T = κ∇2T, (24)

one deduces

2Ũ

(
1− r̃2

R2

)
∂T̃

∂z̃
= κ

(
1

r̃

∂

∂r̃

(
r̃
∂T̃

∂r̃

)
+

∂2T̃

∂z̃2

)
, (25)

where κ = k
ρCp

. The continuity of temperature sets T̃ (r̃, z̃ < 0) = T̃0, and the heat

conduction flux at the wall sets k ∂T̃
∂r̃ (R, z̃ > 0) = q.

3. Conservation of energy implies that the net input heat of the system,
∫
2qπRdz̃, equates

the change in the internal energy of the fluid,
∫
2ρCp∆T ũπr̃dr̃.

4.
r̃ = Rr, z̃ = Rz, T̃ =

qR

k
T + T̃0 (26)

And insert into the equation gives

2Ũ

(
1− (rR)2

R2

)
∂( qRk T − T̃0)

∂Rz
= κ

(
1

Rr

∂

∂Rr

(
Rr

∂( qRk T − T̃0)

∂Rr

)
+

∂2( qRk T − T̃0)

∂(Rz)2

)
(27)

2Ũ
q

k

(
1− r2

) ∂T
∂z

=
κ

R2

qR

k

(
1

r

∂

∂r

(
r
∂T

∂r

)
+

∂2T

∂z2

)
(28)

This yields

2Pe
(
1− r2

) ∂T
∂z

=

(
1

r

∂

∂r

(
r
∂T

∂r

)
+

∂2T

∂z2

)
, (29)

where Pe = ŨR
κ . It is a dimensionless number which compares the strength of

advection-to-conduction heat transfer.

5. Under the assumption of high Pe, the rule of dominant balance implies that ∂T/∂z = 0
which results in T = 0. The flux boundary condition cannot be satisfied under such
assumption.

6. Recalling the exercise of the thermal boundary layer, the boundary layer thickness scales
as Pe−1/3.

7. Rewrting the equation 10 (of the question sheet) in terms of z = ẑ/ϵ writes

2Peϵ
(
1− r2

) ∂T
∂ẑ

=
1

r

∂

∂r

(
r
∂T

∂r

)
+ ϵ2

∂2T

∂ẑ2
. (30)

If ϵ ∼ Pe−1, we find the balance in the equation. So L ∼ Pe R.
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8. Using the above-obtained scale for L, one can neglect the ϵ2 term. Since our assumption
scales the z̃ to a large value, we are far from the physical inlet and T (r, ẑ = 0) = 0 is no
more valid.

9. From eq(9) and point 3, we know that

2πqRZ̃ = 4πρCpŨ

∫ R

0
(T̃ (r̃, Z̃)− T̃0)(1−

r̃2

R2
)r̃dr̃,

Using the non-dimensionalization,

2πqR2ẑ/ϵ = 4πρCpŨ

∫ 1

0
(qR/k)T (1− r2)Rrd(Rr), (31)

ẑ/ϵ = 2Pe

∫ 1

0
T (1− r2)rdr, (32)

Since ϵ ∼ Pe−1,

ẑ = 2

∫ 1

0
T (1− r2)rdr, (33)

10. We can rewrite the equation 13 (question sheet) as

2
(
1− r2

) ∂T1

∂ẑ
− ẑ

(
1

r

∂

∂r
(r
∂T1

∂r
)

)
=

1

r

∂

∂r
(r
∂T2

∂r
). (34)

By comparison of the two sides one can conclude that 1
r

∂
∂r (r

∂T1
∂r ) = 0, which results in

T1 = C0 ln(r) + C1. As T1 should be a finite value at r = 0, C0 = 0. Now we can
solve equation 34 for T2. The general solution is a polynomial of order 4. Applying
∂T
∂r (ẑ > 0) = 1 results in C1 = 2 and T2 = a0 + r2 − r4/4. The constant a0 = −7/24 is
obtained by applying the integral form of energy conservation.

11. Look at the figure 2.

Figure 2. Temperature contour.
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