Hydrodynamics
Blasius solution, Drag force on a plate and boundary layer thickness

1. Blasius solution

The Prandtl equation for the boundary layer on a flat plate (no outer pressure
gradient) in streamfunction formulation writes
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Possible self-similar variables are n = % and Y(z,y) = Vof(n). We will

use the derivative of a product and the composed derivative repeatedly. We
note derivatives of f by f/, f” and f”/. We will need
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Let us now express the x and y derivatives
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as well as the cross derivative
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We can check our calculations by taking the y derivative of the x derivative
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Prandtl equations (1) therefore become
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which simplifies into Blasius’ equation
fr'+2f"=0. (13)

The boundary conditions on ¢ (x,y) = /zf(n) in y = 0 and y — oo trans-
late into boundary conditions for f(7). From this point of view, this choice is
much better than the one I did in class.

f(0) = f(0) = 0; f(n = o0) — 1. (14)

This ODE (third order, 3 boundary conditions, OK!) has to be solved numeri-
cally. The solution for u = f’ is depicted in figure 1.

e

.
Vv

05+ 05

e

1

I

J Il
5 6 7 0 3 6

0 o N 5099 ]

L
o n=

=
vx

Figure 1: Self-similar solution v = f’ and /zv = 3(f — nf’) of the Blasius
equation.

2. Drag on a plate

We next calculate the shear force applied on a plate of length L and width
W. This will be the drag exerted on the flat, perfectly streamlined, plate. The
viscous force is actually not only the shear force, but can be more generally

written 5 5
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where all quantities are dimensional. However, it is clear that the first term
(the shear force) is €2 times larger than the second. Moving to dimensionless
quantities, the total force (per unit length) on the plate therefore writes
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where 9 is the characteristic boundary layer thickness § = \/II;TL = %. Since

U= g—g’ = f, ?TZ —= 7~1/2f". Given that § = 0 corresponds to 7 = 0 (the wall
is also in 0 in terms fo sefl-similar variable n) and that the numerical solution
shows f”(0) = 0.332, the force (per unit length) on the plate writes

1 1
f= \/upUgoLO.SSQ/ i Y24z = \/upU3,L0.664 331/2)0. (17)
0
The total force on the plate is therefore

F = 0.664W+/upU3 L. (18)

It is common to recast the expression for the viscous shear stress 7, by
making it dimensionless with the typical pressure gauge %pUOQO, such that

ppU3, 2 ~—1/2 H ~—1/2 —-1/2
v = —0.332 =,/———132 = 0.664 1
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This shows that the dimensional and nondimensional shear stress diminishes
along the plate as the boundary layer thickens.

One can also show that F' = 1.328Re_1/2%pU§OLW such that the dimen-
sionless drag CF, = 1.328Re1/2.

3. Boundary layer thickness

We have found the scaling of the boundary layer at any station x, § = \/}gTL =

7= However this is only a scaling, not a definition of the thickness. There

are actually at least three commonly used definitions:

e The 0.99 thickness, dg.99, which is the distance from the wall at which the
velocity in the boundary layer reaches 99% of its far-field value. Using

the numerically found solution of the Blasius equation, one finds that
50'99 ~ 5(5

e The displacement thickness, 6*, which is the distance above the plate at
which a fictitious slippery wall should be placed for the same flux to flow
uniformly above this plate than the flux flowing about the real no-slip
wall. It is therefore given by the following integral relation

/ udy = / Usedy, (20)
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therefore, adding fO‘S* dy on both sides, one finds

5t = /OOO <1 - Uf;) dy. (21)

With the Blasius solution, one finds 6* =~ 1.73J.



e The momentum thickness, ©*, which is the distance above the plate at
which a fictitious slippery wall should be placed for the same momentum
to flow uniformly above this plate than the mometum flowing about the
real no-slip wall. Following a similar reasoning, one finds

0= / <1 - OO) dy (22)

and © ~ 0.660.



