
Hydrodynamics
Blasius solution, Drag force on a plate and boundary layer thickness

1. Blasius solution

The Prandtl equation for the boundary layer on a flat plate (no outer pressure
gradient) in streamfunction formulation writes
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Possible self-similar variables are η = y√
x

and ψ(x, y) =
√
xf(η). We will

use the derivative of a product and the composed derivative repeatedly. We
note derivatives of f by f ′, f ′′ and f ′′′. We will need
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Let us now express the x and y derivatives
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as well as the cross derivative
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We can check our calculations by taking the y derivative of the x derivative
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Prandtl equations (1) therefore become

− 1

2x
ηf ′′f ′ − 1

2x
ff ′′ +

1

2x
ηf ′′f ′ =

1

x
f ′′′ (12)

which simplifies into Blasius’ equation

ff ′′ + 2f ′′′ = 0. (13)

The boundary conditions on ψ(x, y) =
√
xf(η) in y = 0 and y → ∞ trans-

late into boundary conditions for f(η). From this point of view, this choice is
much better than the one I did in class.

f(0) = f ′(0) = 0; f(η →∞)→ η. (14)

This ODE (third order, 3 boundary conditions, OK!) has to be solved numeri-
cally. The solution for u = f ′ is depicted in figure 1.

Figure 1: Self-similar solution u = f ′ and
√
xv = 1

2(f − ηf ′) of the Blasius
equation.

2. Drag on a plate

We next calculate the shear force applied on a plate of length L and width
W . This will be the drag exerted on the flat, perfectly streamlined, plate. The
viscous force is actually not only the shear force, but can be more generally
written
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)
, (15)

where all quantities are dimensional. However, it is clear that the first term
(the shear force) is ε−2 times larger than the second. Moving to dimensionless
quantities, the total force (per unit length) on the plate therefore writes
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where δ is the characteristic boundary layer thickness δ = L√
ReL

=
√

ρµL
U∞

. Since
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∂ỹ = f ′, ∂ũ

∂ỹ = x̃−1/2f ′′. Given that ỹ = 0 corresponds to η = 0 (the wall
is also in 0 in terms fo sefl-similar variable η) and that the numerical solution
shows f ′′(0) = 0.332, the force (per unit length) on the plate writes
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The total force on the plate is therefore

F = 0.664W
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∞L. (18)

It is common to recast the expression for the viscous shear stress τx by
making it dimensionless with the typical pressure gauge 1
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2
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This shows that the dimensional and nondimensional shear stress diminishes
along the plate as the boundary layer thickens.

One can also show that F = 1.328Re−1/2 12ρU
2
∞LW such that the dimen-

sionless drag CFx = 1.328Re−1/2.

3. Boundary layer thickness

We have found the scaling of the boundary layer at any station x, δ = L√
ReL

=√
ρµL
U∞

. However this is only a scaling, not a definition of the thickness. There

are actually at least three commonly used definitions:

� The 0.99 thickness, δ0.99, which is the distance from the wall at which the
velocity in the boundary layer reaches 99% of its far-field value. Using
the numerically found solution of the Blasius equation, one finds that
δ0.99 ≈ 5δ.

� The displacement thickness, δ∗, which is the distance above the plate at
which a fictitious slippery wall should be placed for the same flux to flow
uniformly above this plate than the flux flowing about the real no-slip
wall. It is therefore given by the following integral relation∫ ∞

0
udy =
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U∞dy, (20)

therefore, adding
∫ δ∗
0 dy on both sides, one finds
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)
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With the Blasius solution, one finds δ∗ ≈ 1.73δ.
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� The momentum thickness, Θ∗, which is the distance above the plate at
which a fictitious slippery wall should be placed for the same momentum
to flow uniformly above this plate than the mometum flowing about the
real no-slip wall. Following a similar reasoning, one finds
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and Θ ≈ 0.66δ.
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