
Hydrodynamics
Blasius solution

The Prandtl equation for the boundary layer on a flat plate (no outer pres-
sure gradient) in streamfunction formulation writes
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The self-similar variable is η = y√
x
. My ”mistake” was to look for a solution

of the form ψ(x, y) = yg(η) instead of a solution in the form ψ(x, y) =
√
xf(η).

I put ”mistake” in quotes, because there is no mistake, since both forms are
self-similar and f = ηg, but the Blasius way ψ(x, y) =

√
xf(η) gives a far more

handy final ODE. We will use the derivative of a product and the composed
derivative repeatedly. We note derivatives of f by f ′, f ′′ and f ′′′. We will need
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Let us now express the x and y derivatives
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as well as the cross derivative
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We can check our calculations by taking the y derivative of the x derivative
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We also have
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Prandtl equations (1) therefore become
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which simplifies into Blasius’ equation

ηff ′′ + 2f ′′′ = 0. (13)

The boundary conditions on ψ(x, y) =
√
xf(η) in y = 0 and y → ∞ trans-

late into boundary conditions for f(η). From this point of view, this choice is
much better than the one I did in class.

f(0) = f ′(0) = 0; f(η →∞)→ η. (14)

This ODE (third order, 3 boundary conditions, OK!) has to be solved numeri-
cally.
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