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Notations

Nomenclature

Latin characters

a Wave speed a =
√
E/ρ (for infinite fluid) [m/s]

dx Spatial discretization step [m]

dt Temporal discretization step [s]

f Frequency f = 1/T [Hz]

g Terrestrial acceleration g ' 9.81 m/s2 [m/s2]

h Piezometric head h = z + p/(ρg) [m/s2]

lc Characteristic length [m]

n Polytropic coefficient [-]

n Rotational frequency [Hz]

p Static pressure [Pa]

p̃ Fluctuating pressure [Pa]

t Time [s]

x Abscissa [m]

y Guide vane opening (GVO) [-]

z Elevation [m]

A Pipe area [m2]

C Absolute flow velocity [m/s]

D Diameter [m]

E Massic energy E = gH = p/ρ+ gz + C2/2 [J/Kg]

E Bulk modulus [Pa]

Ec Young modulus [Pa]

Er Massic energy loss [J/kg]

H Head [m]

K Local loss coefficient [-]

N Rotational speed [rpm]

R Radius R = D/2 [m]

T Torque [Nm]
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vi NOTATIONS

T Period [s]

U Peripheral velocity [m/s]

V Volume [m3]

Z Complex acoustic impedance Z = h/Q [m/s2]

Z Acoustic impedance [m/s2]

Greek symbols

α Flow angle [rad]

β Blade angle [rad]

γ Wave number γ = 2π/λ = ω/a [1/m]

γ Complex wave number [1/m]

θ Polar abscissa of turbine characteristic θ = (Q/QBEP )/(N/NBEP ) [-]

κ Adiabatic coefficient [-]

λ Wave length λ = a/f [m]

λ Local loss coefficient [-]

µ Fluid dynamic viscosity [Pa s]

ν Fluid kinematic viscosity ν = µ/ρ [m2/s]

ρ Density [kg/m3]

σ Stress [Pa]

τ Shear stress [Pa]

φ Phase [rad]

χ Mass flow gain factor χ = −∂V/∂Q [s]

ω Pulsation ω = 2πf [rad/s]

Non-dimensional values in turbomachinery

Fr Froude number Fr = C∞/
√
glc [-]

Re Reynolds number Re = C∞lc/ν [-]

St Strouhal number St = C∞/flc [-]

η Efficiency η = Tω/(ρQE) [-]

ν Specific speed ν = ϕ1/2/ψ3/4 [-]

σ Thoma number σ = (p∞ − pv)/(
1
2
ρC2

∞) [-]

ϕ Flow coefficient ϕ = Q/(πωR3) [-]

ψ Energy coefficient ψ = 2E/(ω2R2) [-]

NPSE Net Positive Suction Energy NPSE = σE [J/Kg]
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NOTATIONS vii

Hydroacoustic equivalent scheme

R Hydraulic resistance R = λdx|Q|/(2gDA2) [s/m2]

Rd Diaphragm hydraulic resistance R = K|Q|/(2gA2) [s/m2]

Rve Viscoelastic resistance Rve = µ/(ρgAdx) [s/m2]

L Hydraulic inductance L = dx/(gA) [s2/m2]

L General hydraulic inductance L =
∫
dx/(gA(x)) [s2/m2]

C Hydraulic capacitance C = dxgA/a2 [m2]

C Cavitation capacitance C = −∂V/∂h = V/(nh) [m2]

Turbine location and section definition

I Reference section high pressure side; inlet spiral casing

3 Stay vanes

2 Guide vanes

1 Runner blade high pressure side edge

i Runner blade interior streamline (shroud)

e Runner blade exterior streamline (hub)

1 Runner blade low pressure side edge

2 Draft tube inlet

I Reference section low pressure side; outlet draft tube

 I

 I

 2

 1e
 1i

 1e  1i  2
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viii NOTATIONS

Subscript

BEP Best efficiency point

n Nominal operating point

i Incident

r Reflected

t Transmitted
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Chapter 1

Introduction

1.1 Hydropower: Facts and Issues

The demand for electricity is constantly increasing because of the demographic growth
and social level increase of developing countries. Worldwide projections for the period
2003 2030 predict that the electricity consumption will more than double from 14’781
TWh/year to 30’116 TWh/year [30]. Figure 1.1 shows the evolution of the sources of
electricity generation from 2003 until 2030. To cope with this need, a gain in efficiency in
all domains, i.e. production, transport, consumption, but also an increase of renewable
energies capacity are required in order to refrain the development of solutions generat-
ing greenhouse gases. The development of the related infrastructure and technologies
minimizing social and environmental impacts represents a huge challenge for mankind.

1990 2000 2010 2020 2030 2040
Year

0

100

200

300

400

Bt
u

Coal
Natural gas
Renewable
Nuclear
Oil

Figure 1.1: Projection of the electricity generation by fuel type for 2003, 2015 and 2030
in Btu (British thermal units) [30].

The contribution of renewable energy in the future is expected to grow mainly due to
the increase of large hydropower capability. In 1999, the hydropower production covered

EPFL - Laboratoire de Machines Hydrauliques



2 CHAPTER 1. INTRODUCTION

19% of the world electricity needs with a total installed capacity estimated around 692
GW [22], [73], [49]. The geographical distribution of the total production capacity is
illustrated in figure 1.2 with about 31% of the installed capacity in Europe, 25% in Asia,
23% in North America, 15% in South America and the remaining 6% are shared between
Africa, Oceania and the Middle East. However, the 2’633 TWh of hydroelectricity pro-
duced in 1999 represents only 33.2% of the economically exploitable resources and 18.3%
of the technically exploitable capability. Therefore, hydropower has still a high potential
for growth in the 21st century. As illustrated in figure 1.3, the regions with the highest
potential are Asia, Africa, South America but also in Europe. In addition, hydropower
presents the advantage of avoiding emissions of gases in spite of others environmental
impacts on the fauna, flora and sediments. The social impact are on the one hand detri-
mental because of the population displacements and land transformation but on the other
hand positive as hydropower offers the possibility to mitigate flood, enabling better fluvial
navigation and irrigation and providing employment. Moreover, the drawbacks related to
hydropower production can be mitigated by taking appropriate counter measures at the
early stages of the projects.

Africa
2.913

North America
23.12

South America
15.35

Asia
25.14

Europe
30.96

Middle East
0.6044

Oceania
1.911

Figure 1.2: Distribution of hydropower capacity (for the year 1999); 100% being 692 GW
[73].

1.2 The Increase of Hydropower Production

1.2.1 Increase of the Capacity

As illustrated in figure 1.1, the contribution of hydropower is expected to grow consider-
ably in the next 30 years, and 553 GW of renewable production capability increase are
predicted, corresponding to an annual rate of 1.9% [22]. Regarding the development of
the hydroelectric production, it can be decomposed in 4 main areas:
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1.2. THE INCREASE OF HYDROPOWER PRODUCTION 3
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Figure 1.3: Distribution of the hydropower technically and economically exploitable ca-
pability and generation (for the year 1999) [73].

• exploitation of new hydropower resources: the main contribution is expected
to come from the completion of hydro facilities in Asia and particularly in China;

• refurbishment of existing power plants: a gain of efficiency on old electro-
mechanical equipment can represent a significant increase of the production capac-
ity. It is mainly the case in Europe and North America for 50 years old facilities;

• rehabilitation of old power plants: older facilities in Europe and North America
are subject to full re-equipments considering also new civil work in order to increase
drastically the capacity of a power plant;

• small hydro: is related to developing countries where electrification of rural area
can be achieved through small-hydro with reduced environmental impacts.

1.2.2 Over-Equipment for Improving Network Stability

Another aspect of development of the hydroelectric market is the increasing need for power
plants able to stabilize the global power network by allowing quick set point changes in
terms of both active and reactive power in generating and in motor mode. Indeed, the
increase of renewable energy source contribution such as wind power, whose availability
cannot be ensured, will represent a source of disturbances for power networks that are
nowadays considered to be stable. For example in Europe, where thermal power plants
still represent the major contribution, the impact of sudden changes of wind production
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4 CHAPTER 1. INTRODUCTION

cannot be counter-balanced by thermal power plants but goes to hydropower. Therefore,
there is a need for the development of pump-storage capability in order to be able not
only to change the set point, but also to store exceeding produced energy. Actually,
pump-storage power plants are the only high capacity solution for storing energy and
balancing with nuclear broad band production at various time scales, i.e. daily as well
as seasonally. Another side effect of deregulated energy market is the gain of interest for
peak production requiring availability of high production capability.

New technologies like variable speed solutions also provide an additional degree of
freedom for reducing time response of power plants and offering flexibility to the power
management. Variable speed solutions enable taking advantage of flywheel effects of
hydrogenerators for fast loading or unloading of units and spinning reserve [60].

1.2.3 The Hydropower Challenge

Modern hydropower has to face new challenges related to completely different exploitation
strategies leading to an increase of the solicitation of the entire machine. Thus, hydraulic
machines are increasingly subject to off-design operation, startup and shutdown sequences,
quick set point changes, etc. To be competitive on the energy market, the specific power
and efficiency of hydro units, which are already high, are constantly increased in order to
meet economical issues but lead to higher loading of the structure of the turbines.

Consequently, manufacturers, consultants and utilities of hydro power plants need
integrating new technologies and methodologies for improving dynamic performances,
ensuring the safety and increasing the competitiveness of hydroelectric power plants.
This requires developing appropriate experimental and numerical tools and methods for
a better understanding and thus a wiser prediction of the micro and macro-scale behavior
of hydroelectric power plants.

1.3 Francis Turbine in the Context of Hydropower

The hydraulic power Ph results from the product of the mass flow Ṁ = ρ ·Q and of the
specific energy E = g ·H and is therefore given by:

Ph = ρ ·Q · E (1.1)

The role of a hydraulic turbine is to convert the hydraulic power into mechanical power
Pm = T · ω with the highest hydraulic efficiency ηh which is given for a turbine by:

ηh =
Pm

Ph

=
T · ω

ρ ·Q · E
(1.2)

According to the hydrology and the exploitation strategy of a given hydraulic project,
a goal discharge Qplant and a goal specific energy Eplant are determined for the site. Then,
depending on the number of machines and the selection of the synchronous rotational
speed N = (fnetwork · 60)/(pairepoles), the type of turbine can be chosen between the
”standard” hydraulic turbines which are: (i) Pelton turbines, (ii) Francis turbines, (iii)
Kaplan turbines, (iv) bulbe turbine, (v) or propellers.

Figure 1.4 shows the domain of application of the different types of turbines as function
of the nominal net head Hn and the nominal discharge Q of the machine. Typically,
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1.3. FRANCIS TURBINE IN THE CONTEXT OF HYDROPOWER 5

for high head, medium head and low head, Pelton, Francis and Kaplan turbines are
respectively chosen. However, for the intermediate range of head, 2 types of turbines are
in competitions. Then, the final selection of a type of turbine results from an iteration
process aiming the maximization of the produced energy on a standard year of exploitation
taking into account maintenance, civil work and flexibility of operation issues. Because of
its high application range, the Francis turbine is often selected. Table 1.1 summarizes the
worldwide percentage sales of turbines of each type for the period 1997 2001. It appears
that 56% of the turbines are of the Francis type with an additional 5% of pump-turbines.

Figure 1.4: Turbine application range [33].

Table 1.1: Distribution of sales of the different types of turbines during the period 1997
to 2001 [79].

Francis Pelton Kaplan Bulbes Pump-turbines
% % % % %

56 15 15 9 5

Once the nominal discharge Qn, specific energy En and rotational pulsation ωn are
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6 CHAPTER 1. INTRODUCTION

known, the specific speed of the machine can be determined as follow:

ν = ω · (Qn/π)1/2

(2 · En)3/4
(1.3)

All turbines having the same specific speed are geometrically similar.

1.3.1 The Francis Turbine

General

The francis turbine is made of 5 main components as illustrated by figure 1.5:

• the spiral case: converts axial momentum into angular momentum and distributes
uniformly the flow into the stay vanes;

• the stay vanes: are fixed blades having the structural role to close the force loop
of the pressurized spiral case ;

• the guide vanes: are mobile blades allowing controlling the flow through the
turbine;

• the runner: converts the angular momentum of the flow into mechanical momen-
tum by deviating the flow from the inlet to the outlet so that the flow has no more
angular momentum at the outlet, the reaction force acting on the blade inducing
the mechanical torque;

• the diffuser or draft tube: has the role to convert the kinetic energy of the flow
into potential energy and therefore enables increasing the efficiency of the turbine
by reducing the pressure level at the runner outlet.

 I

 I

Guide vanes

Stay vanes

Runner

Diffuser

Spiral case

Figure 1.5: Components of a Francis turbine.

Figure 1.6 shows an example of turbine prototype and figure 1.7 shows typical geome-
tries of Francis turbine runner for different specific speed ν.
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1.3. FRANCIS TURBINE IN THE CONTEXT OF HYDROPOWER 7

Figure 1.6: Example of prototype turbine; Three Gorges (Sanxia) 26×700 MW (Courtesy
of Voith-Siemens Hydro).

Velocity Triangles

The absolute velocity
−→
C at any point of the turbine can be decomposed as the sum of

the peripheral velocity of the turbine
−→
U and of the relative velocity

−→
W and is therefore

given by:

−→
C =

−→
U +

−→
W (1.4)

The velocity triangle at the inlet and outlet of a Francis turbine runner for the optimum

operating conditions is illustrated in figure 1.8. The relative velocity
−→
W is perfectly

adapted at both leading edge and trailing edge of the blade profile while the absolute

velocity at the outlet
−→
C 1, is usually almost axial. The influence of the discharge on the

velocity triangle at the runner outlet is illustrated in figure 1.9. It can be seen that for
discharge below the optimum discharge, the flow at the runner outlet is animated with
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8 CHAPTER 1. INTRODUCTION

70,0
61,0

23,0 53,0

43, 0 63,0

02 ,0

42 ,0

92 ,0

90 ,0

11 ,0

31 ,0

0,56 0,62 0,69 0,75

1,00

1,09

1,00

1,00

1,00

1,00

0,83 0,91

1,00 1,00 1,00 1,00

1,151,151,151,15

1,00 1,00 1,00 1,00

ν = 0.146 ν = 0.165 ν = 0.184 ν = 0.209

ν = 0.235 ν = 0.273 ν = 0.323 ν = 0.380

ν = 0.444 ν = 0.533 ν = 0.634 ν = 0.792

Figure 1.7: Francis turbine runner geometry as function of the specific speed ν [6].

a positive absolute circumferential velocity
−→
C u1, while it is negative for discharge above

optimum discharge.
The energy of the flow is converted into mechanical torque along the runner blade. This

transformation can be expressed by the momentum of angular momentum conservation
equation:

d

dt
(−→r ×m ·

−→
C ) =

−→
T (1.5)

Where m is the mass of the fluid particle, −→r is the radius and
−→
T is the mechanical

torque. The balance of the momentum of angular momentum between runner inlet (1)
and the runner outlet (1) leads to the well known Euler’s equation. The transformed
energy, Et, is given by:

−→
E t =

−→
U 1 ·

−→
C 1 −

−→
U 1 ·

−→
C 1 (1.6)

The scalar value of the transformed energy is given by:

Et = U1 · Cu1 − U1 · Cu1 (1.7)

The transformed energy, is by definition given by:

Et =
T · ω
ρ ·Q

(1.8)
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Figure 1.8: Velocity triangles at inlet and outlet of the runner blade.
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Figure 1.9: Influence of the discharge on the circumferential component of the absolute
velocity.

And consequently it yields to:

ηh =
Et

E
(1.9)

The analysis of equation 1.7 shows that the energy transferred from the fluid to the
runner depends on the change of circumferential velocity Cu through the runner, i.e. the
deviation of the flow induced by the blades. It points out that it is interesting to minimize
the outlet Cu in order to reduces losses by residual kinetic energy.

Turbine Performances

The evaluation of the performances of a turbine on its whole operating range requires, ac-
cording to equation 1.2, measuring the discharge Q, the specific energy E, the rotational
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speed N and the mechanical torque T for different guide vanes openings. The represen-
tation of the efficiency as function of the operating conditions [Q,E,N, T ] requires to
suppress one operating parameter to enable a 3 dimensional representation. For perfor-
mances purposes, it is convenient to use dimensionless coefficient where the rotational
speed N is eliminated, leading to the expression of 2 coefficients:

• the discharge coefficient: ϕ = Q
π·ω·R3

1e

;

• the energy coefficient: ψ = 2·E
ω2·R2

1e

According to these definitions, the specific speed becomes:

ν =
ϕ1/2

ψ3/4
(1.10)

Then, for a given turbine, the hydraulic efficiency ηh can be evaluated on the complete
operating range of the turbine and represented as a function of the discharge and energy
coefficients: ηh = ηh(ϕ, ψ), providing the efficiency hill chart of the machine. However, it
is convenient to rate the 2 coefficients by their values at the Best Efficiency Point of the
machine (BEP), i.e. ηh = ηh(ϕ/ϕBEP , ψ/ψBEP ) as illustrated in figure 1.10.
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0,995
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Figure 1.10: Efficiency hill diagram of a Francis turbine [33].

Cavitation

The velocity magnitude in a turbine are very high and can easily reach 40 m/s. According
to Bernoulli’s law, low pressure arise in areas of high velocities. Then, depending on the
local mean static pressure, the water can vaporize if the pressure drops below the vapor-
ization pressure pv. This phenomenon, referred as cavitation, corresponds to vaporization
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at constant temperature due to pressure decrease. Consequently, the cavitation is most
likely to appear in the low pressure sides of a hydraulic machine. To qualify the pressure
level inside the turbine, the Net Positive Suction Energy (NPSE) is introduced and refers
to the downstream conditions of the turbine (I) as follows:

NPSE =
pI

ρ
+ g · (ZI − Zref ) +

1

2
· C2

I
− pv

ρ
(1.11)

Where pv is the vaporization pressure and Zref is a reference elevation, for example the
center line of the guide vanes.

The dimensionless cavitation number also known as the Thoma number is then intro-
duced:

σ =
NPSE

E
(1.12)

Low cavitation numbers indicate high risks of cavitation. The undesirable effects of the
cavitation are the risk of erosion, noise and mechanical vibrations but also flow distortions
and efficiency drop [33].

At off design operating conditions, the outlet velocity triangles features circumferential
velocity component. At part load operation, the swirl flow induced in the draft tube may
lead to flow instabilities resulting in the apparition of a helicoidal vortex precessing in
the draft tube with a frequency of about 0.2 to 0.4 times the rotational frequency n
[69], [50]. This vortex, called the ”vortex rope”, is visible if the tailrace water level is
sufficiently low, i.e. for low cavitation number. Depending on the cavitation number and
the rotational speed, a pressure surge may occurs, resulting into unacceptable pressure
amplitudes due to resonance between pressure excitation induced by the vortex rope and
the natural frequency of the hydraulic circuit [70].

1.3.2 Operating Stability of Francis Turbine Units

Scale Model Testing

Scale model testing offers the opportunity to evaluate the performances of a hydraulic
turbine in the phase of the design of a project. Homologous reduced-scale model of the
hydraulic turbine comprising the spiral case, distributor, runner and draft tube are tested
on test rig [14]. The flow similitude is ensured by having the model geometry similar to
that of the prototype. The similitude of the velocity triangles at the runner inlet and
outlet is ensured by the identical ϕ and ψ conditions [46]. From the scale model tests,
the following investigations can be undertaken: (i) efficiency hill chart measurement, (ii)
cavitation inception/influence, (iii) pressure fluctuations measurement, (iv) axial thrust
measurements, (v) test of mitigating counter-measures, and so on.

Typical observations of cavitation on a reduced-scale model are presented in figure
1.11 for the whole operating range of a Francis turbine. The following types of cavitation
and related influences are identified:

• (1) and (2) inlet edge cavitation types that occurs at low and large energy coefficient
ψ: may present a risk of erosion [57];

• (3) interblade cavitation vortices: can induce high cycle fatigue breaks [28], [64];
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• (5) part load vortex rope: can be associated with pressure source excitation that
may lead to resonance with the hydraulic system [25];

• (6) full load vortex rope: can lead to self-excited pressure fluctuations [53], [62];

• (7) outlet edge bubble cavitation: can lead to erosion of cavitation [47].

Regarding the operating stability of Francis turbine prototype, the pressure fluctua-
tions measurements are of major concerns. The pressure fluctuations measured at different
draft tube wall locations during the model tests can be presented in a waterfall diagram
as a function of the rated frequency and of the rated discharge as illustrated in figure
1.12. This diagram evidences high pressure amplitudes of 3 different types:

• (2) part load pressure fluctuations;

• (3) upper part pressure fluctuations;

• (5) full load pressure fluctuations.

While no pressure pulsation are measured close to the best efficiency operating point
(4) in figure 1.11 where the velocity triangle at the outlet leads to almost purely axial
flow.

Part Load Draft Tube Vortex Rope

Francis turbine power plants operating at part load may present instabilities in terms of
pressure, discharge, rotational speed and torque. These phenomena are strongly linked
to the swirl flow structure at the runner outlet inducing a vortex core precession in the
draft tube [69]. This leads to hydrodynamic instabilities [50]. The decrease of the tailrace
pressure level makes the vortex core visible as a gaseous vortex rope. The volume of the
gaseous vortex rope is dependent on the cavitation number σ and affects the parameters
characterizing the hydroacoustic behavior of the entire power plant. As a result, eigen
frequencies of the hydraulic system decrease with the cavitation number. Interaction
between excitation sources like vortex rope precession and eigen frequencies may result
in resonance effect and induce a so called draft tube surge and electrical power swing
[35]. Consequences on pressure fluctuations and power oscillations were observed in the
framework of many prototypes projects [80], [16], [31], [90], [35], [52] and [61].

Full Load Draft Tube Vortex Rope

Full load operation of Francis turbine creates a circumferential component of the outflow
velocity inducing a swirl flow rotating in the opposite direction of the runner. For some
operating points, the resulting axisymmetric vortex rope developing in the draft tube is
known to start breathing [51]. These specific operating conditions may lead on prototype
to severe self excited pressure fluctuations [53], [62], [61].

Rotor-Stator Interactions

Interactions between rotating parts and stationary parts of Francis turbine result in pres-
sure fluctuations that propagate in the entire machine [21]. The combination of these
pressure waves may result in resonance effects and induces unacceptable pressure fluctu-
ations jeopardizing the safety of the whole power plant [45], [72], [34] and [26].
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Figure 1.11: Typical cavitation regimes in the Francis turbine [33].
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Figure 1.12: Waterfall diagram of pressure pulsations at the turbine draft tube cone at
constant ψ [51].

Mitigation Measures

The mitigation of resonance problems requires acting either on the excitation source or on
the system parameters in order to detune the excitation from the system eigen frequencies.
The main solutions to achieve the mitigation are:

• draft tube fins, used in order to induce swirl flow distortions and then modify
pressure source frequencies or amplitudes [39], [8];

• cylinder in the draft tube or extensions of the runner cone, also used to
induce swirl flow distortions and then modify the pressure source frequencies or
amplitudes [39];

• the air injection, to modify the hydroacoustic parameters of the turbine in order
to detune the system eigen frequencies from the excitation sources[39], [77], [76];

• mechanical dampers act like Frahm dampers in order to absorb energy of reso-
nance [4], [75];

• active control of the pressure fluctuations, using complex control strategy
based on rotating valve or mechanical piston in order to inject pressure fluctuations
in the draft tube with the same amplitude as the source but opposition of the phase
[12], [10];

• water jet control located in the center of the runner cone to modify the swirl
momentum ratio and eliminate pressure source [87].

However, the success of the use of one of the above mitigating solutions is never ensured
and often has detrimental effect on the turbine efficiency. In addition, some of them are
technically complex solutions and difficult to setup.
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Regarding the full load surge, injection of air appeared to be successful in some cases
[62], [5]. Use of fins is also sometimes beneficial.

The resonances resulting from rotor-stator problems can usually be solved by mod-
ifying the rotor-stator arrangement, i.e. the number of guide vanes or runner blades.
It is also possible to mitigate pressure excitations by changing the rotor-stator interface
geometry by increasing the guide vane-runner blade gap, or using blades with skew angle.
If resonance occurs with specific mechanical parts of the turbine, their structural charac-
teristics can be modified in order to change their eigen frequencies, and again detune the
resonance.

1.3.3 Transient Behavior of Francis Turbine Units

General

In the deregulated electricity market, hydropower plants are more and more solicited in
order to adapt the production to the demand in energy. Consequently, the power plants
are victim of their availability and are then subject to an increasing number of startup
and shutdown sequences. During operation, short-circuits resulting from the failure of
power lines may trigger emergency shutdown of the power plant. In addition, hydropower
plant are constantly modernized to increase their flexibility by taking advantage of new
control strategies or installing new technologies such as variable speed solutions. Such
events are parts of the today’s normal operation of hydropower plants whose solicitations
changes according to technologies and energy market issues.

Transients: the Safety Issues

Transient phenomena result from a change in the operating conditions of a system. In
the case of hydroelectric power plants, transient phenomena can be caused by: (i) unit
shutdown or startup, (ii) change in operating set point, (iii) load rejection or acceptance,
(iv) emergency shutdown and (v) electrical faults such as earth fault, short-circuit, out of
phase synchronization, and so on.

All the above listed events induce changes of discharge, pressure, rotational speed,
voltage, current and so on in the entire power plant. The impacts of these changes on
the safety of the power plants should be assessed at the early stage of any hydroelectric
project in order to be able to select the critical dimensions of the system with appropri-
ate margins. Therefore transient analysis should be performed accounting for the entire
system; i.e. the whole adduction system, the hydraulic machines, the mechanical iner-
tias, the electrical machines, the controllers, the emergency systems, etc, as illustrated in
figure 1.13. The transient analysis aims to determine: the pipe wall thickness, the surge
tank diameters, the coupling shaft diameters, appropriate emergency procedure, control
parameters, conductors diameters, etc.

Improving the Stability of Power Network

Due to their flexibility of exploitation, hydroelectric power plant have an important role
to play in stabilizing electrical power networks. This is the case not only in Europe,
because of the decentralization of the production and the use of renewable energies whose
availability cannot be influenced, but also in emerging countries where the network are
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Figure 1.13: Layout of Francis power plant.

poorly interconnected and distances between electricity producers and consumers are
large.

Thus, the controllers and governors parameters should be optimized according to op-
erating conditions that the power plants will face. Typically, 3 production modes are
distinguished:

• interconnected production: the power plant is connected to very large power grid;

• islanded production: the power plant is connected to weak power grid typically
smaller than 10 GW;

• isolated production: the power plant is producing energy only for the subsidiaries
and local loads.

The regulation of a hydropower plant is achieved using at least 2 and sometimes 3
regulators:

• the turbine speed governor: has usually both speed and power set points and acts
on the guide vane opening of the Francis turbine;

• the generator voltage regulator has a line voltage set point and acts on the excitation
voltage of the rotor;

• the Power System Stabilizer (PSS) acts also on the excitation voltage but has the
rotational speed and power as set points.
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In addition, for variable speed solutions, a supervisor governor is necessary to select
appropriate rotational speed set points and enabling rotational speed changes. The de-
termination of the parameters sets of these regulators represents a challenging task that
should account for the system layout and exploitation conditions.

In the control strategy of power networks, 3 different levels are distinguished: the
primary, secondary and tertiary levels. The related regulation times and devices are
summarized in table 1.2.

Table 1.2: Regulation levels [29].

Level Governors Regulation time

Primary - turbine speed governor 10 - 20 sec.
- generator voltage regulator

Secondary - frequency/power regulation 20 - 120 sec.
- energy transfer regulation

Tertiary - power production dispatching 1 - 15 min.

1.4 The Role of Numerical Simulation in Improving

Hydropower Operation

As illustrated in the previous sections, the design, operation and regulation of hydroelec-
tric power plant require the ability to predict the dynamic behavior of the power plant
taking into account various aspects of the exploitation of the installation. Therefore,
mathematical models able to represent the dynamic behavior of hydropower plants with
high fidelity are necessary. The complexity of the model used for the simulation should
be adapted according to the issues.

Since most of the issues aforementioned regard optimization or parametrization, small
computation times are required. In addition, many of the investigations require a multi-
physics model of the power plant, comprising: (i) the entire hydraulic circuit, (ii) the
mechanical inertias, (iii) the electrical installation, and (iv) the regulation systems.

For these applications, one-dimensional models offer the best compromise in terms of
computational feasibility and accuracy. As propagation phenomena globally dominate in
the dynamic behavior of the entire hydraulic circuit, hydroacoustic models are the most
appropriate.
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Chapter 2

Fundamental Equations

2.1 General

Mathematical model based on mass and momentum conservation can describe properly
the dynamic behavior of a pipe filled with water. Hydraulic installations feature longitu-
dinal dimensions greater than transversal dimensions, thus justifying a one-dimensional
approach based on the following assumption:

• the flow is normal to the cross-sections A;

• the pressure p, the flow velocity C and the density ρ are uniform in a cross-section
A.

2.2 Momentum Equation

The momentum equation is applied the volume of control, dashed line, of the pipe of
length dx, figure 2.1. The momentum equation expresses the balance of the forces acting
on this fluid volume, the momentum flux through the surfaces and the rate of change of
the momentum in the volume itself. The integral form of the momentum equation applied
to a volume of fluid is given by:∫

V

∂

∂t

(
ρ ·
−→
C · −→n

)
dV +

∫
∂V

ρ
−→
C ·

(−→
C −−→u

)
· −→n dA = Σ

−→
F (2.1)

The momentum equation along the x-axis neglecting axial displacement of the pipe u,
and considering gravity, pressure and friction forces is expressed as:

ρAdx
DC

Dt
= pA− [pA+

∂(pA)

∂x
dx]+ (p+

∂p

∂x

dx

2
)
∂A

∂x
dx− τoπDdx−ρgAdx sin(α) (2.2)

With:
A : pipe cross-section [m2];
ρ : density [Kg/m3];
C : flow velocity [m/s];
τ : shear stress [N/m2];
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α

pA

x
dx

τoπDdx

ρgAdx

Datum

Piezometric line

h

Z

h-Z = p/(ρg)

u

control volume

 ∂ ∂
pA + (pA)/ x

dx

 ∂ ∂
∂ ∂

(p+ p/ xdx/
2) A/ x

dx

Figure 2.1: Momentum equation applied to the volume of control of length dx.

D : pipe diameter [m].

Rearranging equation 2.2 and neglecting the second order terms dx2, yields to :

A
∂p

∂x
+ τoπD + ρgA sin(α) + ρA

DC

Dt
= 0 (2.3)

Let introduce the friction coefficient according to Darcy-Weisbach [86]:

τo =
ρλC2

8
(2.4)

The particular derivative is given by:

DC

Dt
=
∂C

∂t
+ C

∂C

∂x
(2.5)

Combining equations 2.3, 2.4 and 2.5, gives:

1

ρ

∂p

∂x
+
∂C

∂t
+ C

∂C

∂x
+ g sin(α) +

λC|C|
2D

= 0 (2.6)

The absolute value of the velocity ensure always dissipative term.
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2.3 Continuity Equation

The mass balance in volume of control of length dx figure 2.2 can be expressed as follow:

dM

dt
=

∂

∂t

∫
V

ρdV +

∫
∂V

ρ ·
(−→
C −−→u

)
· −→n · dA = 0 (2.7)

Developing all the terms and neglecting the axial displacement of the pipe u, yields
to:

∂(ρAdx)

∂t
= ρAC −

[
ρAC +

∂(ρAC)

∂x
dx

]
(2.8)

Then:

∂(ρA)

∂t
= −∂(ρAC)

∂x
(2.9)

x
dx

Datum

Z

h-Z 

u

control volume

α

Piezometric line

ρA(C-u)

∂
∂

ρA(C -u
)+ (ρA(C -

u))/ xdx

Figure 2.2: Continuity equation applied to pipe control volume of length dx.

Expressing the partial derivative gives:

1

ρ

∂ρ

∂x
+

1

A

∂A

∂x
+

1

C

∂C

∂x
+

1

ρC

∂ρ

∂t
+

1

AC

∂A

∂t
= 0 (2.10)

Introducing:

Dρ

Dt
=
∂ρ

∂t
+ C

∂ρ

∂x
and

DA

Dt
=
∂A

∂t
+ C

∂A

∂x
(2.11)

Equation 2.10 becomes:

1

ρ

Dρ

Dt
+

1

A

DA

Dt
+
∂C

∂x
= 0 (2.12)
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Assuming barotropic behavior of the fluid, i.e. ρ = ρ(p), and introducing the fluid
bulk modulus Ewater yields to:

dp = Ewater
dρ

ρ
(2.13)

Then:

1

ρ

dρ

dt
=

1

Ewater

dp

dt
(2.14)

The traction strain of the pipe wall can be expressed as follows:

σ = Ec
dR

R
(2.15)

With the change of pipe cross section:

dA

dt
= 2πR

dR

dt
=

2πR2

Ec

dσ

dt
(2.16)

The strain in the pipe wall is deduced from figure 2.3:

σ =
pD

2e
gives

dσ

dt
=
D

2e

dp

dt
(2.17)

With:
e = pipe wall thickness [m]

σ

D

e

Figure 2.3: Traction stress in pipe wall due to pressure.

Finally :

1

A

dA

dt
=

D

eEc

dp

dt
(2.18)

Combining equations 2.13 and 2.18 with equation 2.11 yields to :

ρa2∂C

∂x
+
dp

dt
= 0 (2.19)

Where the wave speed is given by :

a2 =
1

ρ
(

1
Ewater

+ D
eEc

) (2.20)

Knowing p = p(x, t) gives:

ρa2∂C

∂x
+
∂p

∂t
+ C

∂p

∂x
= 0 (2.21)
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2.4 Simplified Equations

The mathematical model of the dynamic behavior of an elementary pipe of length dx
consists of 2 equations: the conservation of both mass and momentum.

1

ρ

∂p

∂x
+
∂C

∂t
+ C

∂C

∂x
+ g sin(α) +

λC |C|
2D

= 0

ρa2∂C

∂x
+
∂p

∂t
+ C

∂p

∂x
= 0

(2.22)

In hydraulics, it is useful to use the discharge Q and the piezometric head h as state
variables in stead of the flow velocity C and pressure p. The discharge and the piezometric
head are defined as:

h = Z +
p

ρg
(2.23)

Q = C · A (2.24)

With Z the elevation [m]. The piezometric head is the pressure given in meters
of water column, mWC, above a given datum. Injecting equations 2.23 and 2.24 in
equation 2.22, assuming no vertical displacements of the pipe ∂z/∂t ∼= 0 and noticing
that ∂z/∂x = sin(α), gives:

∂h

∂x
+

1

gA

[
∂Q

∂t
+ C

∂Q

∂x

]
+
λQ |Q|
2gDA2

= 0[
∂h

∂t
+ C

∂h

∂x

]
+
a2

gA

∂Q

∂x
= 0

(2.25)

Hydroacoustic phenomena are characterized by a high wave speed a(a = 1430m/s at
20̊ C) and low flow velocities (C = 10m/s), thus the convective terms C∂/∂x related to
the transport phenomena can be neglected with respect to the propagative terms ∂/∂t.
This simplification leads to the following set of of partial derivative equations:

∂h

∂x
+

1

gA

∂Q

∂t
+
λQ |Q|
2gDA2

= 0

∂h

∂t
+
a2

gA

∂Q

∂x
= 0

(2.26)

2.5 Resolution Methods

The system of equations 2.26 can be rewritten in matrix form:[
∂Q
∂t
∂h
∂t

]
+

[
0 gA
a2

gA
0

]
︸ ︷︷ ︸

[A]

·
[

∂Q
∂x
∂h
∂x

]
=

[
−λQ|Q|

2DA

0

]
(2.27)
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The eigen values of this set of equations are the roots of the following characteristic
equation:

det ([A]− δ[I]) = 0 (2.28)

The equation system 2.27 has the 2 following distinct roots:

δ = ±a (2.29)

Since the eigen values of the equation system 2.27 are real, it corresponds to a system
of hyperbolic partial differential equations. This type of equation is related to propagative
problems that can be solved with various methods:

• arithmetic method of Allievi (1925) [2];

• graphical method of Schnyder-Bergeron (1950) [7];

• method of characteristics (MOC) [86], [88], [20];

• transfer matrix method [86], [32];

• impedance method [86].

All these methods enable analyzing of the dynamic behavior of hydraulic system.
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Resolution Method of Partial
Differential Equations

3.1 Electrical Analogy

The solution of a system of hyperbolic partial differential equations such as the set of
equation 2.26, was at first inspired by the methods developed in the field of telecommu-
nication [74], [55]. The resolution of the propagation of electrical waves in conductors is
based on equivalent scheme representation providing a high level of abstraction and hav-
ing a rigorous formalism. The study of electrical wave propagation in conductors leads to
the establishment of the set of equations expressed as follow, referred as the telegraphist’s
equation:

∂U

∂x
+ L′e

∂i

∂t
+R′

ei = 0

∂U

∂t
+

1

C ′
e

∂i

∂x
= 0

(3.1)

Where:
i: electrical current [A]
U : electrical potential [V ]
Re′ : lineic electrical resistance [Ω/m]
Le′ : lineic electrical inductance [H/m]
Ce′ : lineic electrical capacitance [F/m]

The analogy between equation set 2.26 modelling the propagation of pressure waves in
hydraulic systems and the equation set 3.1 modelling the propagation of voltage waves in
conductors allows identifying a lineic hydraulic resistance R′, a lineic hydraulic inductance
L′ and a lineic hydraulic inductance C ′. Thus, equation set 2.26 can be rewritten as:

∂h

∂x
+ L′

∂Q

∂t
+R′(Q)Q = 0

∂h

∂t
+

1

C ′
∂Q

∂x
= 0

(3.2)

Where the lineic hydroacoustic parameters are defined as:
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• lineic hydroacoustic capacitance C ′ = g·A
a2 [m];

• lineic hydroacoustic inductance L′ = 1
g·A [s2/m3];

• lineic hydroacoustic resistance R′ = λ·|Q̄|
2·g·D·A2 [s/m

3].

Hydraulic and electrical systems are both characterized by an extensive state variable,
i.e. discharge Q and current i, and by a potential state variable, i.e. piezometric head
h and voltage U . The electrical analogy permits to apply the mathematical formalism
developed initially for electrical purposes to hydroacoustic problems and to use powerful
concepts such as equivalent scheme, impedance or transfer matrix. Two types of system
are distinguished:

• systems with distributed parameters, or continuous systems;

• systems with lumped parameters, or discrete systems.

Continuous systems can be easily studied with analytical methods while discrete sys-
tem requires numerical methods. Analytical solutions require linearizing the dynamic
behavior of the studied system, restricting the analysis to small perturbations. However,
continuous systems can be modelled as a series of lumped elements with infinitesimal
length. Such approach allows taking into account system non-linearities by using nu-
merical methods for the analysis of its dynamic behavior. Nevertheless, this modelling
approach introduces approximation errors that have to be quantified.

3.2 Set of Hyperbolic Partial Differential Equation:

Continuous System

Pressure wave propagation in hydraulic systems can be modelled using continuity and
momentum equations. The resulting set of hyperbolic partial differential equations can
be written as:

∂h

∂x
+ L′ · ∂Q

∂t
+R′ ·Q = 0

∂h

∂t
+

1

C ′ ·
∂Q

∂x
= 0

(3.3)

The set of equations 3.3 can be rewritten using the separation of variables method
assuming a sinusoidal variation of the piezometric head h(x, t) and of the discharge Q(x, t)
defined as complex function:{

h(x, t) = h(x) · est

Q(x, t) = Q(x) · est (3.4)

Where the constant s is the complex frequency also referred as Laplace variable. The
complex frequency is composed of an imaginary part and of a real part:

s = σ + j · ω (3.5)
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The complex frequency s is written as s in the next section of this document. The set
of equations 3.3 is rewritten as follows:

∂2h

∂x2
= γ2 · h(x)

∂2Q

∂x2
= γ2 ·Q(x)

(3.6)

Where γ is the complex wave number:

γ2 = C ′ · s · (L′ · s+R′) (3.7)

3.2.1 Resolution of the Wave Equation: Exact Solution

Equation 3.3 admits as a particular solution for the piezometric head:

h(x, t) = est · (C1 · e−γ·x + C2 · eγ·x) (3.8)

The constants C1 and C2 are to be determined from the boundary conditions. Thus
equation 3.6 for the piezometric head admits as solution both a progressive wave hp(x)
and a retrograde wave hr(x), defined from the boundary condition at x = 0:

hp(x) = hp(0) · e−γ·x (3.9)

hr(x) = hr(0) · eγ·x (3.10)

Rewriting the equations set 3.3 assuming a sinusoidal evolution of the piezometric
head and of the discharge yields to:

−∂h
∂x

= (L′ · s+R′) ·Q (3.11)

−
∂Q

∂x
= C ′ · s · h (3.12)

Equations 3.11 and 3.12 provide the solution of the discharge equation of equation 3.3
admitting as solution a progressive discharge wave Q

p
(x) and a retrograde discharge wave

Q
r
(x) expressed as:

Q
p
(x) = − 1

(L′ · s+R′)
·
∂hp(x)

∂x
= −

(−γ)
(L′ · s+R′)

· hp(x) =
hp(x)

Zc

(3.13)

Q
r
(x) = − 1

(L′ · s+R′)
· ∂hr(x)

∂x
= −

γ

(L′ · s+R′)
· hr(x) = −hr(x)

Zc

(3.14)
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The ratio between the piezometric head and the discharge variations is the character-
istic impedance of the pipe Zc defined as:

Zc =

√
(L′ · s+R′)

C ′ · s
(3.15)

The solution to the equation system 3.6 is the sum of the progressive and the retrograde
waves yielding to:

h(x) = hp(x) + hr(x) (3.16)

h(x) =
hp(x) + hr(x)

Zc

(3.17)

Combining equations 3.9 and 3.10 with the equations 3.16 and 3.17 established for
x = 0, gives:

hp(x) =
h(0) + Zc ·Q(0)

2
· e−γ·x (3.18)

hr(x) =
h(0)− Zc ·Q(0)

2
· e−γ·x (3.19)

The constants C1 and C2 are derived from equation 3.8:

C1 =
h(0) + Zc ·Q(0)

2
(3.20)

C2 =
h(0)− Zc ·Q(0)

2
(3.21)

Reformulating the equations 3.16 and 3.17 with equations 3.18 and 3.19, gives:
h(x) = h(0) · cosh(γ · x)− Zc ·Q(0) · sinh(γ · x)

Q(x) = −h(0)

Zc

· sinh(γ · x) +Q(0) · cosh(γ · x)
(3.22)

For a pipe of length l in matrix notation:[
h(l)
Q(l)

]
=

[
cosh(γ · l) −Zc · sinh(γ · l)

− 1
Zc
· sinh(γ · l) cosh(γ · l)

]
·
[
h(0)
Q(0)

]
(3.23)

The transfer matrix offers the possibility to determine the fluctuations of piezometric
head and discharge at the end of a pipe resulting from the excitation at the other end.
For a system made of pipes in series, it is possible to compute the global transfer matrix
of the system by performing the matricial product of the transfer matrices of all the pipes
in series:

[M tot] =
∏

1≤k≤n

[M i] (3.24)
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3.2.2 Resolution of the Wave Equation: Conservative Form

Neglecting dissipation, (R′ = 0) the complex number of waves of equation 3.7 becomes:

γ = s ·
√
C ′ · L′ = s ·

√
g · A
a2

· 1

g · A
=
ω

a
(3.25)

Similarly, the characteristic complex impedance Zc of equation 3.15 becomes a scalar
value:

Zc =

√
L′

C ′ =
a

g · A
(3.26)

Without damping, the complex frequency s is simplified as s = jω. In addition,
noticing that cosh(α) = cos(j · α) and sinh(α) = −j · sin(j · α), the transfer matrix of
equation 3.23 for a frictionless pipe becomes:[

h(l)
Q(l)

]
=

[
cos(ω·l

a
) −j · Zc · sinh(ω·l

a
)

−j · 1
Zc
· sinh(ω·l

a
) cosh(ω·l

a
)

]
·
[
h(0)
Q(0)

]
(3.27)

3.2.3 Solution of d’Alembert of the Wave Equation

The spatial partial derivative of the piezometric head combined with the equation of
discharge of the equation system 3.3 gives:

∂2Q

∂x2
= C ′ · L′ · ∂

2Q

∂t2
+ C ′ ·R′ · ∂Q

∂t
(3.28)

The time partial derivative of the piezometric head combined with the equation of
discharge of the equation system 3.3 gives:

∂2h

∂x2
= C ′ · L′ · ∂

2h

∂t2
+ C ′ ·R′ · ∂h

∂t
(3.29)

The above system expressed for a frictionless system, i.e. R′ = 0, yields to the wave
equation:

∂2h

∂x2
= a2 · ∂

2h

∂t2

∂2h

∂x2
= a2 · ∂

2h

∂t2

(3.30)

D’Alembert has derived the general solution of this set of equations for the piezometric
head back in 1747:

h(x, t) = Fp(a · t− x) +Gr(a · t+ x) = Fp(t− x/a) +Gr(t+ x/a) (3.31)

The function Fp(t−x/a) is a progressive wave whose shape is fixed, and is propagating
at the wave speed a towards positive x values and Gr(t + x/a) is a retrograde wave
propagating at the same wave speed towards negative x values.
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Wave Reflection at an Open End

The open end of a pipe located at x = 0 implies no piezometric head fluctuations, thus:

h(x, t) = Fp(a · t− x) +Gr(a · t+ x)

0 = Fp(a · t− 0) +Gr(a · t+ 0)

⇒ Fp(a · t) = −Gr(a · t)
(3.32)

A progressive wave reflected at a pipe open end becomes a retrograde wave with the
same shape but opposite sign as presented in figure 3.1.

h = 0

h+

x+

Fp

Gr

Figure 3.1: Reflection of a progressive wave at an open end of a pipe.

Wave Reflection at a Dead End

The dead end of a pipe located at x = 0 implies no discharge fluctuations. Thus, express-
ing the piezometric head fluctuation for the same location using the equation 3.11, yield
to:

−∂h
∂x

= (L′ · s+R′) ·Q = (L′ · s+ 0) · 0 (3.33)

Considering purely real piezometric head gives:

h(x, t) = Fp(a · t− x) +Gr(a · t+ x)

−∂h
∂x

= −Fp(a · t) +Gr(a · t)

⇒ Fp(a · t) = Gr(a · t)

(3.34)

A progressive wave reflected at a pipe dead end becomes a retrograde wave with same
shape and same sign as presented in figure 3.2.

Wave Reflection at a Junction

A progressive wave propagating in a pipe with change of hydroacoustic parameters in
the longitudinal axis is subject to wave reflection. A change of hydroacoustic nature can

EPFL - Laboratoire de Machines Hydrauliques



3.2. SET OF HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION:
CONTINUOUS SYSTEM 31

Q = 0

h+

x+

Fp Gr

Figure 3.2: Reflection of a progressive wave at a dead end of a pipe.

be understood as a change of the complex characteristic impedance of the pipe Zc, see
equation 3.15. The characteristic impedance Zc depends mainly on 2 parameters: the
pipe diameter D and the pipe wave speed a. One considers a junction located at x = 0
between 2 pipes characterized by the complex characteristic impedances Zc1 and Zc2 as
illustrated by figure 3.3. The impedance at a location x defines the ratio between the
complex piezometric head h and the complex discharge Q and is therefore given by:

Z(x) =
h(x)

Q(x)
(3.35)

Expressing the impedance of the second pipe using the sum of incident and reflected
waves of pipe 1, and introducing equations 3.13 and 3.14 gives:

Zc2 =
ht

Q
t

=
hi + hr

Q
i
+Q

r

=
hi + hr

1
Zc1

· (hi − hr)
(3.36)

As the reflected wave is retrograde, its sign os negative, after rearranging it becomes:

Zc2 = Zc1 ·
hi + hr

hi − hr

(3.37)

From equation 3.37, one can express the ratio between the incident and the reflected
waves as:

hr

hi

=
Zc2 − Zc1

Zc2 + Zc1

(3.38)

In addition, the piezometric head at the junction is identical for both pipes, thus:

hi + hr = ht (3.39)

The ratio between the incident and transmitted waves for the piezometric head is
therefore given by:

ht

hi

=
2 · Zc2

Zc2 + Zc1

(3.40)

For the cases of open and dead end pipes, one get:
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x+

xo

 ih
 rh

 th

 c1Z  c2Z

Figure 3.3: Wave reflection of incident wave i at a junction of 2 pipes having different
characteristic impedance Zc1 amd Zc2.

• open end: h(xo) = 0 : Zc2 = 0 ⇒ hr

hi
=

0−Zc1

0+Zc1
= −1

• dead end: Q(xo) = 0 : Zc2 ≈ ∞⇒ hr

hi
=

∞−Zc1

∞+Zc1
≈ 1

Rearranging equation 3.36 with respect to the discharge gives:

Q
r

Q
i

=
Zc1 − Zc2

Zc1 + Zc2

(3.41)

In addition the discharge at the junction is identical for both pipes, thus:

Q
i
+Q

r
= Q

t
(3.42)

Then the ratio between the incident and the transmitted wave is given by:

Q
t

Q
i

=
2 · Zc1

Zc1 + Zc2

(3.43)

Thus, for a dead or open end pipe, one obtains:

• open end: h(xo) = 0 : Zc2 = 0 ⇒ Q
r

Q
i

=
Zc1−0

Zc1+0
= 1

• dead end: Q(xo) = 0 : Zc2 ≈ ∞⇒ Q
r

Q
i

=
Zc1−∞
Zc1+∞ ≈ −1

These results are in good accordance with the previous results obtained from d’Alembert
equation.

Paradox of the Wave Reflection Consecutive to a Waterhammer

The case of a pressure wave induced by the sudden closure of a valve downstream of a
pipe, as presented in figure 3.4, inducing a waterhammer in the pipe can be first analyzed
using the d’Alembert solution. It is important to notice that the solution of the pressure
wave given by equation 3.31 for a given time t and a given location x, is the sum of all
the incident, transmitted and reflected waves.

The pressure wave of amplitude ∆h generated by the downstream valve closure is
reflected by the upstream tank with a negative sign because of the open end boundary
condition. In turn the piezometric head in the pipe is the sum of the incident and the
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reflected waves as the amplitude of both waves is identical and therefore, their sum is
zero. As a result, when the reflected wave reaches the downstream valve, the piezometric
head in the pipe recovers its initial value, i.e. ho. At this moment, the reflected wave is
reflected again with the same sign, as the closed valve represents a dead end boundary
condition. The sum of the 3 waves propagating in the pipe, 1 incident wave with positive
amplitude ∆h and 2 reflected waves with negative amplitudes −∆h gives a piezometric
head below ho equal to h = ho −∆h.

The paradox lies to the fact that observing the time evolution of the piezometric head
in the pipe gives the impression that the incident wave is reflected at the upstream valve
with the same sign, which is not the case. If the piezometric head recovers the value ho,
this is because the sum of incident and reflected wave is zero. Similarly, the reflection
at the downstream valve gives the impression that the wave is reflected with opposite
sign which is again not the case. If the piezometric head reaches values below ho, this is
because the sum of the 3 waves is smaller than ho.

This example demonstrates that even for a simple case, made of one pipe, it is not
easy to predict the time evolution of the piezometric head h because it results from the
summation of all the wave propagating in the pipe. Therefore, it becomes very difficult to
predict accurately the piezometric head time evolution with d’Alembert solution in com-
plex cases made of several pipes, connections and junctions. Only numerical solution of
momentum and mass conservation equation can describe the phenomenon with sufficient
accuracy.

3.2.4 Hydroacoustic Impedance Method

The complex characteristic impedance of equation 3.15,characterizes the hydroacoustic
system in which the pressure/discharge waves are propagating. It is function of the local
parameters of the pipe such as (D, a and λ) which are constant along the x abscissa [86].

The complex characteristic impedance defines the ratio between the piezometric head
phasor and the discharge phasor at a given location of the pipe for progressive or ret-
rograde waves only and only if this system is reflectionless. One can notice that if this
system is frictionless, then the discharge and piezometric head phasors are in phase. In
a system with reflections, the characteristic impedance does not define the ratio between
piezometric head and discharge anymore. It is then necessary to evaluate the specific
hydroacoustic impedance Za which is a function of the location x and of the boundary
conditions of the system. The specific hydroacoustic impedance can be defined from
equation 3.22 as follows:

Za(x) =
h(x)

Q(x)
=

cosh(γ · x) · h(0)− Zc · sinh(γ · x) ·Q(0)

− 1
Zc

sinh(γ · x) · h(0) + cosh(γ · x) ·Q(0)
(3.44)

Expressing the specific impedance Za(l) for x = l from the specific impedance Za(0)
at x = 0 provides:

Za(l) =
Za(0)− Zc · tanh(γ · l)
1− Za(0)

Zc
· tanh(γ · l)

(3.45)

Using known boundary conditions such as Za(0) = 0 (open end) or Za(0) = ∞ (dead
end) it is possible to determine the specific impedance for any location x. It is then
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D

L

Ho
a

Qo

-a
h=ho+Gri=ho+∆h

a

h=ho+Gri+Fpr

Fpr

Gri

-a

x+

x+

a

h=ho+Gri+Fpr+Jrr

Fpr

Gri

-a
x+

Jrr

-a

h+

h+

h+

0<t<L/a

L/a<t<2L/a

2L/a<t<3L/a

Figure 3.4: Time evolution of the piezometric head h resulting from the closure of the
downstream valve inducing waterhammer.

possible to determine the specific impedance of one end of a system, by combining the
impedance of all hydraulic components starting from the other end where the impedance
is known. It is also possible to determine the specific impedance at x = 0 from the specific
impedance at x = l giving:

Za(0) =
Za(l) + Zc · tanh(γ · l)
1 +

Za(l)

Zc
· tanh(γ · l)

(3.46)

For infinite pipe, one get:

• Za(0) = Zc

• Za(∞) = Zc

An ambiguity appears related to the fact that the specific impedance of a given system
can be determined either from x = 0 to x = l, or from x = l to x = 0, and these two
impedance are usually different. It means that the problem to be solved, is to find the
complex frequency s i.e. fulfilling both boundary conditions. This problem corresponds
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to the search of the natural frequencies of the system; i.e. the free oscillations analysis,
see the next section. For simplicity, the specific impedance will be denoted impedance in
the following sections of the document.

3.2.5 Free Oscillation Analysis: Continuous System

The study of the free oscillations regime of a hydraulic facility can be treated for a contin-
uous system through 2 methods: (i) the transfer matrix method and (ii) the impedance
method. These calculation methods are described below.

Free Oscillation Analysis: Transfer Matrix Method

Using the transfer matrix of each hydraulic component, it is possible to combine them to
set up the global matrix of the system including the boundary conditions leading to the
following equation:

[G] · −→x =
−→
0 (3.47)

Where the complex matrix [G] is the global matrix of the system, and −→x is the state
vector. Obtaining a non trivial solution of equation 3.47 requires the determinant of
matrix [G] to be equal to zero:

det([G]) = 0 (3.48)

Equation 3.48 is the characteristic equation of the system whose k complex roots
sk = σk +j ·ωk are the complex eigen values and −→x k the eigen vectors. The free oscillation
regime of the system is then given by:

−→x (t) = −→x 1 · es1·t +−→x 2 · es2·t +−→x 3 · es3·t + . . . (3.49)

Free Oscillation Analysis: Impedance Method

Combining the n impedances of each element constituting the system allows determining
the global impedance of the system at one end:

Zatot(xn) =
Za(xn−1)− Zcn · tanh(γ

n
· (xn − xn−1))

1− Za(xn1 )

Zcn
· tanh(γ · (xn − xn−1))

(3.50)

If the boundary condition at this end is known, the problem to be solved boils down
to find the k complex frequencies sk = σk + j · ωk satisfying the following equation :

Zatot(xend, sk) = Zend (3.51)

Once the complex frequencies, i.e. the eigen frequencies, are known, the corresponding
eigen modes can be determined using equations 3.22.
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3.3 Set of Hyperbolic Partial Differential Equation:

Discrete System

The hyperbolic partial differential equation set 3.3, can be solved numerically leading to
a discrete system. The state variables that are the piezometric head h and the discharge
Q cannot be determined for any x or t, but are known only for given locations and given
times according to the numerical scheme used to solve equation set 3.3.

3.3.1 Numerical Resolution of the Hyperbolic Partial Differen-
tial Equation set

The numerical integration in space and in time of equation set 3.3 requires appropriate
discretization. Regarding the spatial discretization, the centered scheme illustrated in
figure 3.5 can be used.

Control volume "i"

Node

i i+1

dx

x+

Figure 3.5: Control volume i having center node at i+1/2.

Using the scheme centered at location i + 1/2 of the figure 3.5, one get the following
expression for the piezometric head and discharge space partial derivatives:

∂h

∂x
|i+1/2 =

hi+1 − hi

dx
(3.52)

∂Q

∂x
|i+1/2 =

Qi+1 −Qi

dx
(3.53)

Considering the above numerical scheme and using the total differential in equation
set 3.3 expressed for a location i+ 1/2 gives:

dhi+1/2

dt
+

1

C ′ ·
Qi+1 −Qi

dx
= 0

hi+1 − hi

dx
+ L′ ·

dQi+1/2

dt
+R′ ·Qi+1/2 = 0

(3.54)

In order to ensure stability of the computation, a numerical scheme of Lax, based on
the mean value of the discharge, is used:

Qi+1/2 =
Qi+1 +Qi

2
(3.55)
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Equations set 3.54 becomes:
C ′ · dx

dhi+1/2

dt
= Qi −Qi+1

hi+1 +
L′ · dx

2
· dQi+1

dt
+
R′ · dx

2
·Qi+1︸ ︷︷ ︸

hi+1/2

= hi −
(
L′ · dx

2
· dQi

dt
+
R′ · dx

2
·Qi

)
︸ ︷︷ ︸

hi+1/2

(3.56)

Noticing that the second part of the equation corresponds to the piezometric head for
the location i+ 1/2, the system can be expressed under implicit matrix form:C 0 0

0 L/2 0
0 0 L/2

 · d
dt
·

hi+1/2

Qi

Qi+1

 +

0 1 −1
1 R/2 0
1 0 R/2

 ·
hi+1/2

Qi

Qi+1

 =

 0
hi

−hi+1

 (3.57)

Set of equations 3.57 is written using the hydroacoustic parameters obtained for a
length dx given by:

R = R′ · dx
L = L′ · dx
C = C ′ · dx

(3.58)

The compact expression of equation set 3.57 is given by:

[A] · d
−→x
dt

+ [B] · −→x =
−→
C (3.59)

Set of equations 3.57 can be integrated numerically using classical methods such as
Euler, Runge-Kutta, etc. Courant-Friederichs-Lewy have demonstrated that it exists
a numerical stability criteria known as the ”CFL” criteria linking the space and time
discretization, respectively dx and dt through the wave speed a [23]. This criteria ensures
the causality of the system because the information cannot transit faster than the wave
speed. The CLF criteria is given by:

dt <
dx

a
(3.60)

The equation set 3.57 features the following state variables:

• piezometric head in the middle of the element i: hi+1/2

• discharge at the inlet of the elements i: Qi

• discharge at the outlet of the elements i: Qi+1

The system has the following boundary conditions:

• piezometric head at the inlet of the elements i: hi

• piezometric head at the outlet of the elements i: hi+1
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Control volume "i"

Node
i i+1

dx

x+

dx dx/2

n+1n

Boundary condition:
h      = cste 

n+1

dxdx/2

1 2

Boundary condition:
h   = cste 1

Figure 3.6: Spatial discretization of a pipe of length l.

Equation set 3.57 corresponds to the equation describing the dynamic behavior of a
pipe of length dx. A pipe is modelled by n pipes of length dx and dx = L/n. The
corresponding spatial discretization is presented in figure 3.6.

For a pipe of length l, the boundary conditions are the piezometric head at both
ends of the pipe, whereas momentum equations can be merged 2 by 2, introducing the
piezometric head at each node i + 1/2. The matrices [A] and [B] of equations set 3.57
becomes for a pipe of length l:

[A] =



C (n) (2n+1)

C
. . . 0

C

(n) C
L/2

L

0
. . .

L

(2n+1) L/2


(3.61)

And:

[B] =



(n) −1 1 (2n+1)

−1 1

0
. . .

−1 1

(n) −1 1
1 R/2
−1 1 R

. . . . . .

−1 1 R

(2n+1) −1 R/2


(3.62)

One can notice that the equation set has the dimension (2n+ 1) · (2n+ 1) and the state
vector comprises n piezometric head along the pipe for the nodes 1 + 1/2 to n+ 1/2 and
n+ 1 discharges at both end of n pipes of length dx.
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The state vector of dimension (2n+ 1) · 1 is given by:

−→x =
[
h1+1/2 h2+1/2 . . . hn+1/2 Q1 Q2 . . . Qn+1

]T
(3.63)

The boundary conditions vector of dimension (2n+ 1) · 1 is given by:

−→
C =

[
0 . . . 0 h1 0 . . . 0 −hn+1

]T
(3.64)

It is also important to notice that the matrix [B(Qi)] is function of the discharge and
introduces a non-linear behavior. For the numerical integration of this set of equation, all
the discharge Qi in matrix [B(Qi)] are retrieved from the previous time step.

3.3.2 Equivalent Scheme Representation

Set of equation 3.57 corresponds to the equations of an equivalent scheme which is a
T-shaped ”quadripol” as presented in figure 3.7 [85].

 iQ  1iQ + ih

 / 2R / 2L

 C

 / 2R  / 2L

 i+1h
 i+1/2h

Figure 3.7: Equivalent scheme of a pipe of length dx.

This equivalent scheme is the model of a pipe with length dx where the hydroacoustic
parameters are defined as follows:

• hydroacoustic capacitance C = dx·g·A
a2 [m2], related to storage effect due to pressure

increase and is therefore function of the wave speed ; in the wave speed equation 2.20,
the term ρ/Ewater account for water compressibility storage and the term D/(eEc)
account for pipe wall deflection storage;

• hydroacoustic inductance L = dx
g·A [s2/m2], related to inertia effect of the water;

• hydroacoustic resistance R = λ·dx·|Q̄|
2·g·D·A2 [s/m2], related to the head losses through the

pipe.

Qualitative Analysis of the Equivalent Scheme

The equivalent scheme can be analyzed qualitatively for both steady state and transient
conditions. First, for the steady state conditions the inductances and capacitances do not
play any role: only the resistance causes head losses along the x coordinates according to
the length of the pipe. The discharge in both loops are identical: Qi = Qi+1 and the head
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losses correspond to the piezometric head difference between the inlet and the outlet. The
steady state conditions lead to the following equation:

hi − hi+1/2 =
R

2
·Qi

hi+1/2 − hi+1 =
R

2
·Qi+1

(3.65)

The sum of the two above equations gives:

hi − hi+1 = R ·Qi (3.66)

During transients, assuming a sudden increase of the downstream head hi+1 gives the
following equation for the second loop of the equivalent scheme:

hi+1/2 − hi+1 −
R

2
·Qi+1 =

L

2
· dQi+1

dt
(3.67)

For an increase of the downstream piezometric head hi+1, the inequality is obtained:

hi+1/2 − hi+1 −
R

2
·Qi+1 < 0 → dQi+1

dt
< 0 (3.68)

The increase of the downstream piezometric head induces the decrease of the discharge
in the second loop, and as a result, the piezometric head in the middle of the pipe increases
because the discharge in the first loop has not changed after an infinitesimal time interval:

C ·
dhi+1/2

dt
= Qi −Qi+1 →

dhi+1/2

dt
> 0 (3.69)

This qualitative explanation describes how the equivalent scheme of a pipe represents
the propagation of pressure waves in a pipe when the downstream pressure increases
suddenly.

Generalized Representation of a Pipe

The implicit system of equation 3.57 can be derived directly from the equivalent scheme
of the pipe of figure 3.7 using Kirchhoff’s law. The same approach can be used to model
a pipe of length l made of n pipes of length dx as presented in figure 3.6. Kirchhoff’s law
applied to this system leads to equation 3.57.

It can be noticed that the piezometric heads are determined for the node i+ 1/2 and
the discharges are determined for the loops i as indicated in figure 3.8. The corresponding
equivalent scheme is presented in figure 3.9 where n equivalent schemes are concatenated
together.

The 3-step modelling procedure is summarized by figure 3.10: (i) a mathematical
model of the physical system is established, providing a set of hyperbolic partial differential
equations; (ii) a numerical integration scheme in space provides the structure of the
equivalent scheme that can be generalized, meaning that the set of total partial derivative
can be obtained directly from the equivalent scheme using Kirchhoff’s law; (iii) the set
of total derivative equations is integrated numerically using standard algorithm such as
Runge-Kutta.
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dx

x+

dx dx/2

Boundary condition:
h      = cste n+1

dxdx/2

Boundary condition:
h   = cste 1

 1Q  2Q  iQ  i+1Q  nQ  n+1Q
 1+1/2h  2+1/2h  i-1/2h  i+1/2h  n-1/2h  n+1/2h i+1+1/2h

Figure 3.8: State variable location definition.

 1Q  1nQ + 1h

 / 2R / 2L

 C

 / 2R  / 2L

 n+1h
 1/2h

 R  R L L

 C  C  C
 2Q  nQ

 1+1/2h  n-1-1/2h  n-1/2h

Figure 3.9: Equivalent scheme of the system of figure 3.8.

3.3.3 Free Oscillation Analysis: Discrete System

The free oscillation analysis of a hydraulic facility can be performed from its equivalent
circuit with 2 different approaches: (i) solving the eigen value/vectors problem, directly
from the total differential equation set 3.59; (ii) performing a numerical calculation of the
system impedance, and searching for the complex frequencies satisfying all the boundary
conditions.

Eigen Values/Vectors Problem

The free oscillation analysis of a discrete system modelled by n elements corresponds
to the problem of the determination of the eigen values/vectors of the system of partial
differential equations 3.59 using Kirchhoff’s law:

[A] · d
−→x
dt

+ [B] · −→x =
−→
0 (3.70)

Introducing Laplace operator s = σ + j · ω yields to:

[A] · s · −→x + [B] · −→x =
−→
0 (3.71)

Rearranging equation 3.71 gives a system of dimension (2n+ 1)× (2n+ 1):(
[I] · s+ [A]−1[B]

)
· −→x =

−→
0 (3.72)

Where [I] is the identity matrix. To ensure a non-trivial solution, the determinant of
the global matrix of the system must be zero:

det
(
[I] · s+ [A]−1[B]

)
= 0 (3.73)
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Numerical integration 
of the matricial system
(Runge-Kutta for ex.)

Physical system PDE system
(Partial differential 
equations)

Multidimensional
Kirchhoff circuit

Physical modeling Interpretation into 
equivalent electrical 
circuit

Equation set definition 
according to circuit topology

Implicit equation set

Figure 3.10: Global discrete modelling approach.

This equation is the characteristic equation of the system whose (2n + 1) roots com-
prising a null root and n double complex roots sn = σn ± j · ωn are the eigen values of
the system with the corresponding eigen vectors −→x n. The free oscillation regime of this
system is then given by:

−→x (t) = −→x 1 · es1·t +−→x 2 · es2·t + . . .+−→x n · esn·t (3.74)

It can be noticed that the real part of the eigen values σn are the damping coefficients;
negative values correspond to damped modes. Stability of the system is ensured only if all
the damping coefficient of the system are negative. This stability criteria is represented
graphically in the complex plane where the shadow area in figure 3.11 is the stable domain.

Im

Re

|xk|

t

k k ks jσ ω= +

k k ks jσ ω= −
keσ

( )

( ) Re( ) cos( )

k k k

k k

s j t
k k k

s
k k k k

x t x e x e e

x t x e x e t

σ ω

σ ω

= ⋅ = ⋅ ⋅

= ⋅ = ⋅ ⋅

Figure 3.11: Complex eigen values with complex conjugates.

Discrete Impedance Method

This method is similar to the impedance method applied to a continuous system except
the fact that the impedance is calculated from the equivalent scheme [11]. The impedance
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is calculated starting from one end where the boundary condition are known, for example
an open end or a dead end, and then calculated until another end. The calculation is done
by successive series and parallel equivalent computation of the branches of the system.
The first loop of a pipe with a load impedance Z load at the end is presented in figure 3.12.

 nQ  nQ 1nQ + nh  loadZ  equZ

 / 2R / 2L

 C
 →

 / 2R  / 2L

 nh

Figure 3.12: Equivalent impedance of the last loop of a pipe with load impedance Zload .

The equivalent impedance of figure 3.11 can be expressed as follows:

Zequ = (L/2 · s+R/2) +
(L/2 · s+R/2 + Z load) · 1

C·s
(L/2 · s+R/2 + Z load) + 1

C·s
(3.75)

If the pipe is modelled by n elements, the equivalent impedance is calculated recur-
sively considering as load impedance Z load for the loop n − 1, the equivalent impedance
Zequ of the loop n, given by :

Zequi
= (L/2 · s+R/2) +

(
L/2 · s+R/2 + Zequi+1

)
· 1

C·s(
L/2 · s+R/2 + Zequi+1

)
+ 1

C·s
(3.76)

The computation is done for a given complex frequency. The problem to be solved
is therefore to find the complex frequency satisfying all the boundary conditions. This
leads to a minimization calculation based, for example, on Newton-Raphson’s algorithm.
It is convenient to use a first guess obtained from frictionless system whose complex roots
become:

s = j · ω

This approach allows computing the impedance of the system at one end for a given
range of pulsation ω and identifying which are satisfying the boundary conditions. The
typical boundary conditions are:

• open end: |Zx(jω)| = 0

• dead end: |Zx(jω)| = ∞
The pulsations obtained from frictionless conditions are an excellent guess for the

research of the eigen values sk = σk + j · ωk of the dissipative system as the damping
affects only slightly the eigen pulsation of a system. Once the eigen frequencies are
known, the impedance can be computed along the system for the eigen value of interest
indicating the location of minima and maxima of the discharge and the head.
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3.4 Comparison of Continuous and Discrete Simula-

tion Model

3.4.1 Truncation Error

The spatial discrtization of the partial derivative introduce truncation errors as the Taylor
development of a value u is given for a progressive scheme by:

ui+1 ' ui +

(
∂u

∂x

)
i

·∆x+

(
∂2u

∂x2

)
i

· (∆x)2

2
+

(
∂3u

∂x3

)
i

· (∆x)3

6
+ . . . (3.77)

After rearrangement, the approximation of the partial derivative of u at the location
i is given by:

(
∂u

∂x

)
i

' ui+1 − ui

∆x
+O(∆x) (3.78)

A progressive or backward finite difference scheme leads to a truncation error O(∆x)
of first order (∆x). A centered scheme leads to a truncation error of second order O(∆x2).
In order to assess this truncation error, the transfer matrix of a pipe is computed using the
discrete model and compared with the exact solution obtained for a continuous system
and taken as reference value. Finally, the error is quantified in the frequency domain.
This quantification is done for 3 numerical finite difference scheme: (i) the ”progressive”
scheme, (ii) the ”backward” scheme and (iii) the ”centered” scheme. This comparison
permits to establish a confidence threshold.

Centered Scheme

The finite difference scheme developed above leads to an equivalent scheme, see figure
3.13, whose set of ordinary differential equations can be derived directly from Kirchhoff’s
law.

 iQ  1iQ + ih

 / 2R / 2L

 C

 / 2R  / 2L

 i+1h
 i+1/2h

Figure 3.13: Centered equivalent scheme of a pipe of length dx.
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The corresponding set of equations is given by:
hi =

L

2
· dQi

dt
+
R

2
·Qi + hi+1/2

C ·
dhi+1/2

dt
= Qi −Qi+1

hi+1/2 =
L

2
· dQi+1

dt
+
R

2
·Qi+1 + hi+1

(3.79)

Combining equations 3.79 yields to the transfer matrix of the equivalent circuit of
figure 3.13 :

[
hi

Q
i

]
=

(
γ2

x

2
+ 1

) (
γ2

x

2·C·s ·
[
1 +

[
γ2

x

2
+ 1

]])
C · s

(
γ2

x

2
+ 1

)  · [hi+1

Q
i+1

]
(3.80)

Where: γ
x

= γ · dx.

Backward Scheme

Conserving the RL terms of the branch of the equivalent scheme of a pipe while moving
the capacitance upstream leads to the equivalent scheme of figure 3.14. This equivalent
scheme is based on backward numerical scheme without Lax scheme.

 iQ  1iQ +
 ih

 L

 C

 R

 i+1h ch

Figure 3.14: Backward equivalent scheme of a pipe of length dx.

The corresponding set of equations is given by:
hi = hi+1/2

C ·
dhi+1/2

dt
= Qi −Qi+1

hi+1/2 = L · dQi+1

dt
+R ·Qi+1 + hi+1

(3.81)

Combining equations 3.81 yields to the transfer matrix of the equivalent circuit of
figure 3.14:

[
hi

Q
i

]
=

 1
γ2

x

C·s

C · s
(
γ2

x
+ 1

) · [hi+1

Q
i+1

]
(3.82)
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Progressive Scheme

As it is done for the backward scheme, RL terms are conserved, but the capacitance is
moved downstream. This leads to the equivalent scheme of figure 3.15, corresponding to
a progressive numerical scheme without Lax scheme.

 iQ  1iQ +
 ih

 L

 C

 R

 i+1h ch

Figure 3.15: Progressive equivalent scheme of a pipe of length dx.

The corresponding set of equations is given by:
hi =

L

2
· dQi

dt
+
R

2
·Qi + hi+1/2

C ·
dhi+1/2

dt
= Qi −Qi+1

hi+1/2 = hi+1

(3.83)

Combining the above equations 3.83, yields to the transfer matrix of the equivalent
circuit of figure 3.15:[

hi

Q
i

]
=

[(
γ2

x
+ 1

)
γ2

x

C·s

C · s 1

]
·
[
hi+1

Q
i+1

]
(3.84)

3.4.2 Comparison of Hydroacoustic Models

The transfer matrix of the following 4 models are compared: (i) the continuous hyperbolic
model, (ii) the discrete centered model, (iii) the discrete backward model, and (iv) the
discrete progressive model. The transfer matrix and the equivalent scheme of these models
are summarized in figure 3.1.
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Table 3.1: Comparison of the transfer matrix of 4 models of a pipe of length dx.

Model Equivalent scheme Transfer matrix

C
on

ti
n
u
ou

s
h
y
p
er

b
ol

ic

i i+1

dx

[
h(dx)
Q(dx)

]
= [M ] ·

[
h(0)
Q(0)

]

[M ] =

[
cosh(γ · dx) −Zc · sinh(γ · dx)

− 1
Zc
· sinh(γ · dx) cosh(γ · dx)

]

D
is

cr
et

e
ce

nt
er

ed

 iQ  1iQ + ih

 / 2R / 2L

 C

 / 2R  / 2L

 i+1h
 i+1/2h

[
hi

Q
i

]
= [M ] ·

[
hi+1

Q
i+1

]

[M ] =

(
γ2

x

2
+ 1

) (
γ2

x

2·C·s ·
[
1 +

[
γ2

x

2
+ 1

]])
C · s

(
γ2

x

2
+ 1

) 

D
is

cr
et

e
ba

ck
w

ar
d

 iQ  1iQ +
 ih

 L

 C

 R

 i+1h ch
[
hi

Q
i

]
=

 1
γ2

x

C·s

C · s
(
γ2

x
+ 1

) · [hi+1

Q
i+1

]

D
is

cr
et

e
pr

og
re

ss
iv

e

 iQ  1iQ +
 ih

 L

 C

 R

 i+1h ch
[
hi

Q
i

]
=

[(
γ2

x
+ 1

)
γ2

x

C·s

C · s 1

]
·
[
hi+1

Q
i+1

]
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Assuming frictionless regime, the transfer matrix of equation 3.27 becomes for a length
dx: [

h(dx)
Q(dx)

]
=

[
cos(ω·dx

a
) −j · Zc · sinh(ω·dx

a
)

−j · 1
Zc
· sinh(ω·dx

a
) cosh(ω·dx

a
)

]
·
[
h(0)
Q(0)

]
(3.85)

Introducing the wave length λ:

λ =
a

f
=

2 · π · a
ω

, (3.86)

the attribute of the trigonometric functions of 3.85 is given by:

ω · dx
a

= 2 · π · dx
λ

(3.87)

The key parameter for a study in the frequency domain is the ratio:

dx

λ
(3.88)

It is necessary that the wavelength of the phenomenon of interest is at least 10 times
larger than the length of the elements modelling the pipe [50]. The amplitude of the
4 terms of the matrix transfer are computed for a pipe characterized by λ/dx = 10 and
presented in figure 3.16. The boundary conditions of the pipe is set as open end for x = 0.
The 4 terms of the transfer matrix are defined as follows:[

h(dx)
Q(dx)

]
=

[
M11 M12

M21 M22

]
·
[
h(0)
Q(0)

]
(3.89)

The impedance of the pipe of length dx is evaluated starting from the open end x = 0
until the end of the pipe x = dx using one element for the modelling of the pipe. The
resulting impedance amplitude are represented in figure 3.17. The impedance of the pipe
with open end is given by:

Z(dx) =
M12(dx)

M22(dx)
(3.90)

3.4.3 Frequency Confidence Threshold of the Model

The amplitude of the impedance can be used to compare the accuracy of the 3 discrete
models, the continuous hyperbolic model being taken as reference. The error of the
impedance amplitude is represented for the 3 discrete models as a function of the rated
wavelength λ/dx in figure 3.18. The error is provided in table 3.2 for λ/dx = 10 and
λ/dx = 20.

The numerical scheme of the centered model is of the second order while the numerical
scheme of both the backward and the progressive scheme are of the first order. As a result,
the centered scheme features an error less than 3% for λ = 10 · dx and even less than
1% for λ = 20 · dx. This means that 20 nodes are required to model properly a standing
wave of one wavelength with less than 1% of error. The 4 terms of the transfer matrix

EPFL - Laboratoire de Machines Hydrauliques



3.4. COMPARISON OF CONTINUOUS AND DISCRETE SIMULATION
MODEL 49

0 1 2 3 4
0

1

2

3

4

5

6

Dimensionless frequency f/f
max

 [-]

A
m

p
lit

u
d

e 
[-

]

M11

λ/dx = 10

f
max

 = a*dx/10

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

Dimensionless frequency f/f
max

 [-]

A
m

p
lit

u
d

e/
Z ca

r [-
]

M12

Hyperbolic model
Backward
Progressive
Centered

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

Dimensionless frequency f/f
max

 [-]

A
m

p
lit

u
d

e*
Z

ca
r [-

]

M21

0 1 2 3 4
0

1

2

3

4

5

6

Dimensionless frequency f/f
max

 [-]

A
m

p
lit

u
d

e 
[-

]

M22

Figure 3.16: Comparison of the amplitude of the 4 terms of the transfer matrix of the 4
models.

of the centered scheme presented in figure 3.16 show good agreement with the hyperbolic
solution up to f = fmax corresponding to λ = 10 · dx. Whereas for both first order
scheme the accuracy is much worst due to the non symmetry of the models. Thus, the
models behave differently if they are considered from one side or the other. The increase
of spatial resolution presents the drawback of increasing the size of the equation system
to be solved and reducing the integration time step. It is therefore very important to have
criteria to define the appropriate discretization offering a good balance between accuracy
and computational time.

To summarize, the spatial discretization of a hydraulic system should be defined prior

Error Centered scheme [%] Backward scheme [%] Progressive scheme [%]
(|Z| − |Zref |)/|Zref | (|Z| − |Zref |)/|Zref | (|Z| − |Zref |)/|Zref |

λ = 10 · dx 2.9 13.5 42.9
λ = 20 · dx 0.8 3.3 7.3

Table 3.2: Error on the impedance amplitude obtained for a pipe of length dx with the 3
discrete models as a function of the rated wavelength λ/dx.
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Figure 3.17: Comparison of the magnitude of the impedance Zx=dx of the 4 terms of the
transfer matrix obtained for the 4 models.
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Figure 3.18: Comparison of the error on the impedance amplitude of the 3 discrete models
regarding the continuous model.
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to the simulation and setup according to the frequency of interest finterest and the wave
speed a of the pipe with the following resolution:

dx =
a

10 · finterest

→ error < 3%;

dx =
a

20 · finterest

→ error < 1%.
(3.91)

3.5 Summary of the Approach

Figure 3.19 is a synoptic representation of the analysis of the dynamic behavior of a
hydraulic circuit by solving equation 2.26. Two general approaches are considered: (i)
a continuous model with analytical resolution and (ii) a discrete model with numerical
resolution.

The approach based on a continuous system has the advantage of providing the exact
solution of the set of hyperbolic partial differential equations. The resolution in the
frequency domain is rather convenient, however the resolution in time domain is complex
because it requires to perform a Fourrier inverse transform. Moreover, the determination
of the natural frequencies of the system requires an iterative algorithm.

The discrete approach presents numerical modelling errors that can be evaluated with
equation 3.91 in order to use an appropriate spatial discretization ensuring reasonable
accuracy at the frequency of interest while minimizing computation time.

Furthermore, the approach based on equivalent schemes is an intuitive way to represent
and understand the dynamic behavior of hydraulic systems and helps for the elaboration
of advanced models.

Moreover, once the ordinary equation set is established for a given topology, ma-
trix mathematical operators can be used for the study in the frequency domain (eigen
value/vector problem) and in the time domain (simulation of the dynamic behavior of the
system considering all the system non-linearities).

Overall, the discrete approach offers many advantages in spite of the errors introduced
by the numerical scheme. Such approach appears to be the most suitable for analyzing
in detail the dynamic behavior of hydraulic circuits.
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Physical system

Set of partial 
differential equation

Physical model

Continuous system: Discreet system:

Exact solution:

- transfer matrix

- impedances

 2 1systx M x = ⋅ 

 systh Z Q= ⋅

Calculation of the system response to 
periodic excitation:

-

-                                    or
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Figure 3.19: Summary of the method for analyzing dynamic behavior of a pipe.
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Chapter 4

Hydroacoustic Characterization of a
Pipe

4.1 Case Study Definition: Pipe with Constant Pa-

rameters

To illustrate the hydroacoustic modelling methods presented in chapter 3, the case of a
single pipe of figure 4.1 is investigated. The pipe is fed by an upstream reservoir and the
discharge through the pipe is controlled by a downstream valve. The main characteristics
of the problem are summarized in table 4.1.

D

L

Ho a, λ Kv, Aref

Q

Figure 4.1: Case study of a pipe of length L.

Table 4.1: Parameters of the hydraulic system of figure 4.1.

L D a λ Qo fo = a/(4L)
[m] [m] [m/s] [−] [m3/s] [Hz]

600 0.5 1200 0.02 0.5 0.5

In order to characterize the hydroacoustic behavior of the above hydraulic installation,
both frequency domain and time domain analysis are performed. The frequency domain
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54CHAPTER 4. HYDROACOUSTIC CHARACTERIZATION OF A PIPE

analysis consists of: (i) a free oscillation analysis, (ii) a forced response, (iii) an impedance
calculation of the system. The time domain analysis consists of: (i) the determination of
the maximum amplitude of the waterhammer overpressure, (ii) the graphical resolution
of the waterhammer problem by the method of the characteristics, (iii) the numerical
resolution of the waterhammer problem.

4.2 Frequency Domain Analysis

The hydraulic system of interest includes a valve characterized by a energetic loss coeffi-
cient Kv and a reference cross section Aref . The head losses through the valve for a given
discharge are given by:

Hr =
Kv

2 · g · A2
ref

Q2 = Rv ·Q (4.1)

The valve resistance is given by:

Rv =
Kv

2 · g · A2
ref

∣∣Q∣∣ [s/m2] (4.2)

The valve impedance Zv can be obtained by linearizing the energetic loss for a mean
discharge Q:

dHr =
Kv

2 · g · A2
ref

dQ2 =
Kv

2 · g · A2
ref

2 ·Q · dQ (4.3)

The valve impedance is given by:

Zv =
H(jω)

Q(jω)
= Rv

∼=
dHr

dQ
=

Kv

2 · g · A2
ref

2 ·Q (4.4)

For a given valve stroke position, the energetic losses can be expressed by:

Hro

Q2
o

=
Kv

2 · g · A2
ref

(4.5)

The impedance is finally expressed as function of the nominal values:

Zv
∼=

Kv

2 · g · A2
ref

2 ·Q =
2 ·Hro

Qo

(4.6)

4.2.1 Free Oscillation Analysis

Continuous System

The analytical expression of the eigen frequencies of the system can be determined using
the characteristic impedance of the system, equation 3.45. The eigen values of the system
are the complex frequencies s satisfying the following boundary conditions:

• for x=0 ; Za(0) = 0;
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• for x = L ; Za(L) = Zv.

Introducing the above boundary conditions in equation 3.45 yields to:

Zv · cosh(γ · l) + ZC · sinh(γ · l) = 0 (4.7)

The exponential expression of the hyperbolic functions gives:

e2·γ·l (ZC + Zv) + (Zv − ZC) = 0 (4.8)

Thus:

2 · γ · l = ln

(
(−1)kZC − Zv

ZC + Zv

)
+ i · (k · π) (4.9)

Assuming frictionless pipe gives γ = s/a , ZC = ZC = a/(gA); and noticing that
Zv = Zv, enables the separation of the imaginary and the real part of equation 4.9:

ω =
k · π · a

2 · l
; k = 1, 2, 3, ... (4.10)

And:

σ =
a

2 · l
ln

(
(−1)kZC − Zv

ZC + Zv

)
(4.11)

As the attribute of logarithm functions must be positive, 2 cases are identified for real
positive values of Zc and Zv:

• Zv > ZC : σ = a
2·l ln

(
Zv−ZC

ZC+Zv

)
and ω = k·π·a

2·l ; k = 1, 3, 5, ...

(4.12)

• Zv < ZC : σ = a
2·l ln

(
ZC−Zv

ZC+Zv

)
and ω = k·π·a

2·l ; k = 2, 4, 6, ...

(4.13)

The following conclusion can be drawn:

• if Zv > ZC , the eigen mode are the odd harmonics; the valve behaves as a dead end;

• si Zv < ZC , the eigen mode are the even harmonics; the valve behaves as an open
end;

Discrete System

For the hydraulic system of figure 4.1 the eigen frequencies and corresponding mode shapes
are determined from equation 2.28 for the 2 following boundary conditions:

• 2 open ends (Kv = 0) ;

• 1 open and 1 dead end (Kv = ∞).

The 3 first eigen modes of the pipe are determined for both above boundary condi-
tions with a model of the pipe made of n = 100 elements and are presented in figure
4.2. It can be noticed that eigen frequencies computed with the discrete model present
good agreement with the eigen frequencies obtained with the continuous model given by
equations 4.12 and 4.13.
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Table 4.2: Three first eigen mode shape determined with the discrete model with n = 100
elements for open/open and open/dead boundary conditions.
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Influence of the Number of Elements Modelling the Pipe

Increasing the number of elements n modelling the pipe enables improving the accuracy of
the value of the eigen frequencies of the pipe. The evolution of the first eigen frequency fo

of figure 4.1 is reported in figure 4.2 as a function of the number of elements n considering
open/dead boundary conditions. It can be seen that a good accuracy on the determination
of the first eigen frequency of the pipe is reached from n = 10 elements, with an error
equal to 0.1%.

0 5 10 15 20
n [-]

0.9

0.92

0.94

0.96

0.98

1

f/f
o 

[-]

Figure 4.2: First natural frequency fo as function of the number of elements n modelling
the pipe.

The confidence threshold is connected to the number of elements as follow:
λ

dx
=

a

f · dx
=
a · n
f · L

(4.14)

Therefore:

n =
λ

dx
· f · L

a
(4.15)

For the confidence threshold previously determined the following values are obtained:

• confidence threshold of 3 % : n = λ
dx
· f ·L

a
= 10 · 0.5·600

1200
= 2.5 ; from figure 4.2

→ 1.85% < 3% ok!;

• confidence threshold of 1 % : n = λ
dx
· f ·L

a
= 20 · 0.5·600

1200
= 5 ; from figure 4.2

→ 0.42% < 1% ok!.

The above results show good agreement with the confidence threshold.
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4.2.2 Forced Response Analysis

The eigen frequencies of the system, see figure 4.1, can be also determined from a time
domain simulation with a frequency domain analysis. Therefore, a simulation model
made of the upstream reservoir, a pressure source excitation H(t), the studied pipe and
the downstream valve is setup. The time domain simulation is performed considering
a Pseudo Random Binary Sequence, PRBS, pressure source excitation. The pressure
source is in series, and therefore corresponds to a difference of pressure specified between
2 elements (and not the pressure at a given node).

A PRBS signal is a random sequence of number of value 0 or 1. Such a signal is a
good approximation of white noise excitation as the energy of the signal is distributed
almost uniformly in the frequency domain. The amplitude spectra of a PRBS signal with
period dT = 0.01s is presented in figure 4.4 and the corresponding energy spectra of the
signal are presented in figure 4.5. This PRBS signal is obtained using a shift register
as illustrated by figure 4.6. The energy spectra shows that the energy of the signal is
distributed uniformly in the range 0 to 50 Hz.

D

L

Ho a, λ Kv, Aref

H(t)=PRBS(t)

Figure 4.3: Case study including pressure source excitation for forced response analysis.

The simulation of the dynamic behavior of the case study with the pipe modelled
by n = 100 elements under PRBS pressure source excitation provides the pressure and
discharge fluctuations in the time domain. The waterfall diagram representation of the
pressure fluctuations reveals the eigen mode and frequencies of the system. The down-
stream valve opening is selected ranging from open end until dead end conditions, and
is characterized using the linearized impedance Zv. The resulting waterfall diagrams are
presented as a function of the rated valve impedance Zv/Zc in table 4.3; where Zc is the
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Figure 4.4: Amplitude spectra of a PRBS signal for period dT = 0.01s.

characteristic impedance of the pipe. As expected, the resulting eigen modes fulfil the
specified boundary conditions.

When Zv/Zc < 1, according to equation 4.12 the eigen frequencies obtained are given
by:

fk = k
a

2 · L
; k = 1, 2, 3, ... (4.16)

When Zv/ZC > 1, according to equation 4.13 the eigen frequencies are given by:

fk = (2 · k − 1)
a

4 · L
; k = 1, 2, 3, ... (4.17)

When Zv/ZC = 1, the boundary condition is ”anechoic”, and there is no wave reflection
downstream the pipe and no piping mode shape can be excited. To summarize:

• fk = k a
2·L ; k = 1, 2, 3, ... for Zv/ZC < 1, it is an open end;

(4.18)

• fk = (2 · k − 1) a
4·L ; k = 1, 2, 3, ... for Zv/ZC > 1, it is a dead end.

(4.19)
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Figure 4.5: Energy spectra of a PRBS signal for period dT = 0.01s.

Figure 4.6: Shift register algorithm for generation of PRBS signal.
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Table 4.3: Waterfall diagram obtained from PRBS excitation of the pipe with downstream
valve.

Zv/ZC = 0 Zv/ZC = 0.96

Zv/ZC = 0.04 Zv/ZC = 3.13

Zv/ZC = 0.25 Zv/ZC = 10.1
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4.2.3 System Impedance

The impedance of the hydraulic system of figure 4.1 can also be calculated using equation
3.76. The impedance of this system Z = Z(x, f), is calculated assuming an upstream
tank impedance Z = 0. The magnitude of the impedance divided by the characteristic
impedance of the pipe Zc is represented as a 3D plot function of the rated frequency f/fo

and rated location x/L, see figure 4.7. This impedance reveals 2 information:

• the impedance downstream the pipe, |Z(x = L, f)|, providing to the determination
of the eigen frequencies fk;

• the longitudinal impedance, |Z(x, f = fk)|, providing the location of pressure/discharge
minima and maxima.

The downstream impedance corresponds to the front face of the 3D impedance while
the longitudinal impedance is a cut at an eigen frequency f = fk. The downstream
impedance is extracted from figure 4.7 and presented in figure 4.8.

Figure 4.7: Three dimensional representation of the magnitude of the impedance of the
pipe.

As the downstream conditions are supposed to be known, it is possible to identify the
eigen frequencies of the whole system. The odd modes, f/fo = 1, 3, 5, etc, correspond
to the dead end condition |Z(x = L, f)| = ∞ , while the even modes f/fo = 2, 4, 6, etc
correspond to the open end condition |Z(x = L, f)| = 0. The longitudinal impedance
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Figure 4.8: Downstream impedance of the pipe.

extracted for the first 4 eigen frequencies identified from 4.8 are presented in table 4.4.
The minima and maxima of pressure and discharge locations are determined knowing
that:

• for Zx(fk) = H(jω)
/
Q(jω) = 0 are the minima of pressure and maxima of discharge;

• for Zx(fk) = H(jω)
/
Q(jω) = ∞ are the maxima of pressure and minima of dis-

charge.

The locations of pressure and discharge minima and maxima present good agreement
with the results of table 4.2.
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Table 4.4: Longitudinal impedance of the pipe for the different eigen frequencies f/fo =
1, 2, 3 and 4.
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4.3 Transient Behavior Simulation

Waterhammer are produced by sudden closure of valves in piping system. In this sec-
tion, the waterhammer problem is treated for the case study of figure 4.1 via 3 different
time domain approaches: (i) analytical determination of the overpressure, (ii) graphical
resolution, and (iii) numerical simulation.

4.3.1 Determination of the Maximum Amplitude of Waterham-
mer Overpressure

Applying mass and momentum conservation law to the volume of control V 3 of figure 4.9
leads to the determination of the overpressure due to the valve closure.

V1V1 V2V2

V3V3

a-Co

(a-Co)∆t

Co Co+∆C

AA∆∆pp

x, u

y, v

Figure 4.9: Control volume definition at the end of the pipe.

The momentum conservation equation applied to the volume of control V 3 is expressed
as: ∫

V 3

∂

∂t

(
ρ ·
−→
C · −→n

)
dV +

∫
∂V 3

ρ
−→
C ·

(−→
C · −→n

)
dA = ΣFx (4.20)

The momentum change in control volume V 3 can be decomposed in momentum change
in the volumes V 1 and V 2:∫

V 3

∂

∂t

(
ρ ·
−→
C · −→n

)
dV =

∫
V 1

∂

∂t

(
ρ ·
−→
C · −→n

)
dV +

∫
V 2

∂

∂t

(
ρ ·
−→
C · −→n

)
dV (4.21)

There is no momentum variation in the volume V 1 while momentum change in volume
V 2 for a time interval ∆t is given by:∫

V 3

∂

∂t

(
ρ ·
−→
C · −→n

)
dV = 0 + A(a− Co)∆t

[(ρ+ ∆ρ) · (Co + ∆C)− ρ · Co]

∆t
(4.22)

The momentum balance at the inlet and the outlet surfaces of the volume ∂V 3 gives:

∫
∂V 3

ρ
−→
C ·

(−→
C · −→n

)
dA = (ρ+ ∆ρ) (Co + ∆C)2 · A− ρ · A · C2

o (4.23)
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Introducing equations 4.22 and 4.23 in equation 4.20 and expressing the force resulting
from the pressure balance yields to:

A(a−Co)∆t
[(ρ+ ∆ρ) · (Co + ∆C)− ρ · Co]

∆t
+(ρ+ ∆ρ) (Co + ∆C)2·A−ρ·A·C2

o = (p2−p1)A

(4.24)

The mass conservation equation for the same volume V 3 can be written as:

dM

dt
=

∂

∂t

∫
V 3

ρdV +

∫
∂V 3

ρ ·
−→
C · −→n · dA = 0 (4.25)

For a time interval ∆t, one gets:

A (a− Co) ∆t
[(ρ+ ∆ρ)− ρ]

∆t
− A [ρCo − (ρ+ ∆ρ) · (Co + ∆C)] = 0 (4.26)

Combining equations 4.24 and 4.26 leads to an expression for the overpressure as a
function of the velocity change:

∆p = −ρA∆C (4.27)

The overpressure expressed in water column:

∆H = −a ·∆C
g

(4.28)

For a total closure of the valve: ∆C = −Co, leading to the maximum overpressure
given by:

Hmax =
a · Co

g
(4.29)

4.3.2 Graphical Method of Characteristics (MOC)

The hyperbolic partial differential equations 2.26 can be solved using the method of
characteristics [7]. The set of differential equations to be solved is given by:

L1 =
∂Q

∂t
+ gA

∂h

∂x
+
λQ |Q|
2DA2

= 0

L2 = gA
∂h

∂t
+ a2∂Q

∂x
= 0

(4.30)

The linear combination of the 2 equations above gives:

L1 + µL2 = 0 (4.31)

Combining equations 4.30 and 4.31 yields to:(
∂Q

∂t
+ µa2∂Q

∂x

)
+ µgA

(
∂h

∂t
+

1

µ

∂h

∂x

)
+
λQ |Q|
2DA2

= 0 (4.32)
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The piezometric head and discharge are both functions of the location x and the time
t, Thus:

dh

dt
=
∂h

∂x

dx

dt
+
∂h

∂t
;

dQ

dt
=
∂Q

∂x

dx

dt
+
∂Q

∂t
(4.33)

Introducing:

dx

dt
=

1

µ
= µa2 (4.34)

One obtains:

dQ

dt
+ µgA

dh

dt
+
λQ |Q|
2DA2

= 0 (4.35)

With:

µ = ±1

a
(4.36)

Finally, the following set of equations is obtained:
dQ

dt
+
gA

a

dh

dt
+
λQ |Q|
2DA2

= 0

dx

dt
= a

(4.37)


dQ

dt
− gA

a

dh

dt
+
λQ |Q|
2DA2

= 0

dx

dt
= −a

(4.38)

The 2 above equation sets 4.37 and 4.38 consists of a ”compatibility” equation, which
is only a function of the time derivative and a characteristic equation given by dx/dt =
±a. The linear combination of equations 4.30 leads to the more convenient equations of
compatibility, but its validity is restricted along the characteristic lines.

For graphical resolution purposes, the equation sets 4.37 and 4.38 are expressed with
finite difference while head losses are assumed to be concentrated at one pipe end, yielding
to: 

∆h

∆Q
= − a

gA
∆x

∆t
= a

(4.39)


∆h

∆Q
= +

a

gA
∆x

∆t
= −a

(4.40)
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The equation sets 4.39 and 4.40 define straight lines in the diagram [Q, h] with the
slopes ±a/(gA) with respective straight lines in the diagram [x, t] with slopes ±a. Figures
4.10 and 4.11 presents the graphical resolution in both diagram [x, t] and [Q, h] of a
waterhammer resulting from a valve closure with tclosure = 4L/a. The resolution is based
on the survey of 2 observers leaving at same time locations A and B, respectively the
reservoir and the valve. The 2 observers travel with the wave speed velocity a along the
characteristic lines dx/dt = +/− a in the diagram [Q, h], see figure 4.11 left, going forth
and back from the valve characteristic Hv(Kv(ti)) and reservoir characteristic Ho − Hr.
The combination of the journey of the 2 observers in terms of location and time in both
diagrams [x, t] and [Q, h], provides the time evolution of the head and the discharge at
the valve and reservoir. In addition, the [Q, h] diagram provides the maximum amplitude
of the pressure Hmax = a ·Co/g from the characteristic line starting from the steady state
operation A(t1) to the vertical abscissa H. From this characteristic line, it can be stated
that:

tclosure < 2L/a→ ∆H = ∆Hmax (4.41)

It leads to the expression of the critical closure time of the valve given by:

tcrit =
2L

a
(4.42)

Finally, it can be noticed that:

• valves closing faster than the critical time tcrit, induces the maximum overpressure
Hmax;

• valves closing slower than the critical time tcrit = 2(L/a) leads to amplitudes am-
plitudes below Hmax.
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Figure 4.10: Diagram [x, t] for the graphical resolution by the method of the characteristic

Ho

Ho-Hr

Hv(Kv(t1))Hv(Kv(t2))Hv(Kv(t4)) Hv(Kv(t3))
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Ho-Hr(Qo)+a*Co/g

(B,t2)

(A,t3)

(B,t4)
(B,t3)

(A,t4)

(B,t5)

(A,t6)

(B,t7) (A,t1)
(B,t1)

1       2        3        4         5       6        7        8        9       10 t/(L/a)

Hv Qv

Figure 4.11: Diagram [Q, h] for the graphical resolution by the method of the characteristic
and resulting time evolution of the discharge and the pressure.
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4.3.3 Numerical Simulation of Waterhammer

The equivalent scheme of the system presented in figure 4.1 is presented in figure 4.12.
The equivalent scheme is made of a pressure source Ho, a series of n T-shaped equivalent
schemes of elements of length dx and a variable resistance modelling the downstream
valve.

PipeReservoir Valve

Ho Rv(t)

R/2 R/2 R/2 R/2L/2L/2L/2L/2

C1 Cn

Figure 4.12: Equivalent scheme of the case study.

The downstream valve is closed according to:

y1 = 1−
(
t− Tstart

Tclosure

)0.75

(4.43)

With:
Tstart: time at the start of the closure [s]
Tclose : valve closure time [s]

The valve loss coefficient is defined as follows:

Kv(t) =
Kvo

y1(t)2
(4.44)

Applying Kirchhoff’s law to the equivalent scheme of figure 4.12 leads to a set of
ordinary differential equations given by:

[A] · dx
dt

+ [B] · x = C (4.45)

This system is solved by using the 4th order explicit Runge-Kutta method. The sim-
ulation parameters are summarized in table 4.5.

Table 4.5: Simulation parameters

n[−] dt[s] Tclose[s]

50 0.005 2.1

The critical time of the valve closure is for the case study tcrit = 2L/a = 1s. As a
result, the amplitude of the waterhammer overpressure with a valve closing time of 2.1s is
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below the maximum overpressure Hmax. The time evolution of the head at the valve, Hv,
of the discharge at the valve, Qv and of the discharge at the reservoir, Qb, are represented
in figure 4.13. It can be noticed that the discharge at the valve decreases until zero within
the valve closure time inducing an overpressure at the valve of amplitude 0.8 · Ho. The
maximum overpressure occurs at the instant Tstart + 2L/a.

Hv/Ho

Qb/Qo

Qv/Qo

Figure 4.13: Time evolution in rated values of the head at the valve Hv/Ho, the discharge
at the valve Qv/Qo and of the discharge at the reservoir Qb/Qo resulting from a valve
closure in 2.1s, i.e. 4.2L/a.

The simulation results obtained with the equivalent scheme are compared with the
simulation results obtained by MOC solved using a finite difference method. The com-
parison of the simulation results is presented for the head at the valve and the discharge
at the reservoir in table 4.14. The results obtained with the equivalent scheme show good
agreements with the ones obtained with MOC.

The results of the simulation of the valve closure in 0.2s (0.1 · tcrit) are presented
in figure 4.15. The maximum amplitude of Hv/Ho = 3 is reached after the full valve
closure for t = 0.2s. The time evolution of the pressure exhibits square shape with period
T = 4L/a.

The piezometric line along the pipe is represented in figure 4.16 for 8 different times
extending from to + T/8 to to + T with T = 4L/a. This representation evidences the
pressure wave propagation and also shows the steep slope of the pressure wave propagating
in the pipe for valve closure time below the critical time tcrit. The pipe experiences
successively overpressure and underpressure phases lasting each 2L/a. The 4 phases are
summarized in figure 4.17.

Figure 4.16 depicts numerical instabilities visible on the head signal and on the dis-
charge signal at the valve. The longer the simulation, the higher the numerical instabili-
ties. These simulation errors are amplified at each wave reflection owing to the fact that
the model of the pipe is of the second order in the middle of the pipe but only of the first
order at the end. Furthermore, the quicker is the valve closure, the higher is the amplitude

EPFL - Laboratoire de Machines Hydrauliques



72CHAPTER 4. HYDROACOUSTIC CHARACTERIZATION OF A PIPE
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Q
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Hv/Ho MOC
Hv/Ho Equ. scheme
Qb/Qo MOC
Qb/Qo Equ. scheme

Figure 4.14: Comparison of the time evolution of the pressure at the valve (left) and
discharge at the reservoir (right) obtained with equivalent scheme and method of charac-
teristic (MOC).

Hv/Ho

Qb/Qo Qv/Qo

Figure 4.15: Time evolution of the rated head at the valve Hv/Ho, of the rated discharge
at the valve Qv/Qo and of the rated discharge at the reservoir Qb/Qo resulting from valve
closure in 0.2s, (0.4 · L/a).
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of the numerical instabilities because the frequency content of the pressure wave shape
becomes higher and thus requires a higher number of elements to model properly the phe-
nomenon. Figure 4.18 shows how numerical instabilities can be reduced by increasing the
number of elements n from 10 to 100. This means that for simulating an instantaneous
valve closure, an infinite number of elements would be required and therefore, infinitely
small time steps. The influence of the integration method on the numerical instabilities
is discussed in appendix A.

For the realistic cases encountered in the operation of hydropower plants, instanta-
neous valve closures are not supposed to be experienced. Indeed, designing the pipe walls
with a thickness capable of supporting the maximum amplitudes of waterhammer over-
pressure or underpressure is not possible for economical reasons. Thus, the appropriate
spatial discrtization must be a compromise between computational time and simulation
accuracy.

Figure 4.16: Piezometric line along the piping for different time (T = 4L/a).
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Ho
Co

t = 0

Co

C=0a

0 < t < L/a

Co

C=0a

L/a < t < 2L/a

Co C=0

a

2L/a < t < 3L/a

Co C=0
a

3L/a < t < 4L/a

Figure 4.17: Definition of the 4 phases of the waterhammer.

n = 1 0

n = 2 0
n = 5 0

n = 1 0 0

Figure 4.18: Comparison of the time evolution of the head at the valve for different spatial
discretization of the pipe.
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Chapter 5

Modelling of Hydraulic Components

5.1 Circuit Components Modelling

The hydraulic circuits of hydroelectric power plants are made of several components that
have to be included to model its dynamic behavior. The modelling of the following
components are presented: (i) elastic or viscoelastic pipe, (ii) valve, (iii) surge tank, (iv)
surge shaft, (v) air vessel, (vi) cavitating flow.

5.1.1 Pipe

The pipe model is the key component of the hydroacoustic modelling. In most of indus-
trial applications pipes are made of metallic materials with elastic behavior. However,
recent developments in the domain of polymer materials has brought a wide range of new
materials to hydraulic installations. PVC for industrial applications and fiber glass for
prototyping are 2 examples of polymers that are commonly used in the construction of
hydraulic circuits.

Many polymers materials exhibit a viscoelastic behavior that induces additional damp-
ing in the systems that has to be properly taken into account especially for stability
analysis purposes. Therefore, the model of the pipe presented in chapter 3 is extended
for taking into account possible viscoelastic effects of the pipe wall material. The concept
of viscoelastic behavior is also extend to the fluid.

Elastic Pipe

The model of the pipe derived from the momentum and mass equations leads to the
representation of pipe of length dx by an equivalent electrical circuit made of 2 resistances,
2 inductances and one capacitance as presented in figure 5.1.

This modelling approach can be extended to a full length pipe by considering n equiv-
alents schemes in series as shown in figure 5.2.

Viscoelastic Pipe

Viscoelastic materials present dynamic behavior as stress σ in the material is not propor-
tional to the rated deformation ε = dl/l but is also function of the rate of deformation
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 iQ  1iQ + ih

 / 2R / 2L
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gρ
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+
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 i
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 i+1
Q

Figure 5.1: Modelling of a pipe of length dx (left), with the corresponding equivalent
scheme (right).

 1Q  1nQ + 1h

 / 2R / 2L

 C

 / 2R  / 2L

 n+1h
 1/2h

 R  R L L

 C  C  C
 2Q  nQ

 1+1/2h  n-1-1/2h  n-1/2h

Figure 5.2: Full length pipe model made by n elements.

dε/dt. Figure 5.3 shows typical time evolution of the stress as a function of the rated
deformation for viscoelastic materials.

The modelling of the viscoelastic behavior can be achieved using rheologic models
made of springs and dashpots. Maxwell’s, Kelvin-Voigt’s and Standard models are 3
common rheologic models presented in table 5.1 with their equivalent electrical schemes.
Theses models are elementary models from which more advanced models can be derived.

Without loss of generality, a viscoelastic pipe accounting for both pipe material and
water viscoelasticity can be modelled by 2 Kelvin-Voigt models as presented in figure 5.4.
Therefore, considering first the pipe wall material viscoelastic behavior and assuming a
pipe perimeter deflection ε = dD/D due to pressure increase leads to:

σ = Epipe · ε+ µpipe ·
dε

dt
= Epipe ·

dD

D
+ µpipe ·

1

D
· d(dD)

dt
(5.1)

The total derivative of the volume of the pipe V of length dx is given by:

dV = d(πD2/4) · dx =
π ·D

2
dD (5.2)
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σ

ε

Figure 5.3: Stress as function of the deformation for a viscoelastic material.

Table 5.1: Rheologic models of viscoelastic materials and their equivalent scheme.

Model Rheologic model Equivalent scheme Equations

M
ax

w
el

l

E

µ

ε1

ε2

σ

RCU

i1 i2

σ = ε1 · E = µ · dε2

dt

U = 1
C

∫
i1 · dt = R · i2

K
el

v
in

-V
oi

gt

Eµ

σ1

ε

σ2

C
U1

RU2

i

σ = σ1 + σ2 = ε · E + µ · dε
dt

U = U1 + U2 = 1
C

∫
i · dt+R · i

S
ta

n
d
ar

d

E1µε1

ε2
σ

E2

σ1 σ2

R
C2U

i1 i2

C1

σ = ε2 · E2 = ε1 · E1 + µ · dε1

dt

ε = ε1 + ε2

U = 1
C2

∫
i2 · dt

U = 1
C1

∫
i1 · dt+R · i1

i = i1 + i2
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Efluid Epipe Cfluid

Cpipe

Rfluid

Rpipeµfluid µpipe

Figure 5.4: Rheologic (left) and equivalent (right) models of a viscoelastic pipe with
contribution of water and and pipe material viscoelastic behavior.

Introducing the piezometric head, h = p/(ρg) + z, in equation 2.18, and neglecting
vertical displacement of the pipe (dz/dt = 0), gives:

dσ

dt
=
Dρg

2e
· dh
dt

(5.3)

Combining equations 5.1, 5.2 and 5.3 and introducing the stored discharge Qp = dV/dt
leads to:

dh

dt
=

Epipee

ADρgdx
·Qp +

µpipee

ADρgdx
· dQp

dt
(5.4)

By integrating equation 5.4, one get Kelvin-Voigt’s equation of the pipe wall material:

h =
1

Cpipe

∫
Qp · dt+Rpipe ·Qp (5.5)

Where the viscoelastic resistance Rpipe and capacitance Cpipe of a pipe of length dx
are given by:

Rpipe =
µpipee

ADρgdx
; Cpipe =

ADρgdx

Epipee
(5.6)

Then, considering the fluid compressibility from equation 2.14 and the second viscosity
µfluid leads to:

dp

dt
=
Efluid

ρ
· dρ
dt

+
µfluid

ρ
· d

2ρ

dt2
(5.7)

Reintroducing the piezometric head h = p/(ρg) + z and the stored discharge due to
fluid compressibility Qf = −V

ρ
· dρ/dt gives:

dh

dt
=

Efluid

Aρgdx
·Qf +

µfluid

Aρgdx
· dQf

dt
(5.8)

By integration of equation 5.8, one get Kelvin-Voigt’s equation of the pipe fluid:

h =
1

Cfluid

∫
Qf · dt+Rfluid ·Qf (5.9)
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Where the viscoelastic resistance Rfluid and capacitance Cfluid of a pipe of length dx
are given by:

Rpipe =
µfluid

Aρgdx
; Cpipe =

Aρgdx

Efluid

(5.10)

It can be noticed that:

• both viscoelastic resistance are proportional to the invert of the length of the pipe
dx;

• the viscoelastic losses are proportional to the discharge and not to the square of
the discharge.

It can be also noticed that, if, in the model of the pipe of figure 5.4, the 2 viscoelastic
resistances of the fluid and of the wall material are neglected, the 2 capacitances in parallel
are equivalent to the capacitance of the elastic pipe:

Cequ = Cpipe + Cfluid = Aρgdx

[
D

Epipee
+

1

Efluid

]
=
gAdx

a2
(5.11)

In the same way, if compressibility effects are neglected, the 2 viscoelastic resistances
in parallel can be expressed as:

Requ =
1

1
Rpipe

+ 1
Rfluid

=
1

Aρgdx
· 1

D
µpipee

+ 1
µfluid

=
µequ

Aρgdx
(5.12)

From the strict modelling point of view, a viscoelastic pipe is modelled by considering
the equivalent scheme of figure 5.4 made of 2 Kelvin-Voigt models for both the pipe
material and the fluid instead of the single capacitance of the elastic pipe model of table
5.1 (right). From the practical point of view, the determination of either the second
viscosity of the fluid or the viscosity of the pipe material is very difficult to perform with
good accuracy. However, experiments described by Haban et al. [41] have provided data
for a pipe filled with water. In this case, the equivalent viscosity is determined rather than
the fluid viscosity as in the experiment both viscosity contributions can not be dissociated.
As a result, it is very convenient to use a model made only of one Kelvin-Voigt model of
the whole pipe and accounting for both the fluid and the pipe material. In this model the
capacitance is calculated according to equation 5.11 and the viscoelastic resistance Rve is
calculated according to equation 5.12. The resulting model is presented in figure 5.5.

5.1.2 Valve

A valve induces head losses in hydraulic systems which are function of the valve obturator
position s. The head losses through a valve are given by:

Hv =
Kv(s)

2gA2
ref

·Q2
i (5.13)

With Kv the valve head loss coefficient. Therefore the valve corresponds to a variable
resistance function of the obturator position. The valve hydraulic resistance is given by:

Rv(s) =
Kv(s)

2gA2
ref

· |Qi| (5.14)

The valve equivalent scheme is presented in figure 5.6.
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Figure 5.5: Equivalent scheme of a viscoelastic pipe of length dx.

Rv

hi hi+1Qi

s

Qi

hi

hi+1

Hv

Piezometric line

Figure 5.6: Valve modelling with the example of butterfly valve characteristic [68].

5.1.3 Surge Tank

The surge tank is a protection device against waterhammer effect behaving as a free
surface for wave reflection but where the water level is function of the discharge time
history. Surge tanks sometimes feature cross section being function on the elevation Z.
The volume of the surge tank is therefore expressed as the integral of the cross section
A(Z) along the elevation Z and is given by:

VST =

∫
A(Z)dZ (5.15)

The time derivative of the surge tank volume is:

dVST

dt
= A(Z) · dZ

dt
(5.16)

Noticing that the volume variation of the water in the surge tank is equivalent to the
stored discharge Qc = dVST/dt and introducing the piezometric head hc leads to:

A(Z) · dhc

dt
= Qc (5.17)
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Equation 5.17 evidences the capacitive behavior of the surge tank whose capacitance
is directly the surge tank cross section:

CST = A(Z) (5.18)

The flow incoming and leaving the surge tank is subject to sudden cross section changes
and therefore energetic losses. It is common to have a diaphragm at the surge tank inlet
in order to increase the damping of water level oscillations. The head losses through the
diaphragm or the sudden change of cross section are given by:

Hd =
Kd

2gA2
ref

·Q2
c (5.19)

With Kd, the diaphragm head loss coefficient [−]. The corresponding hydraulic resis-
tance is given by:

Rd(Qc) =
Kd(Qc)

2gA2
ref

· |Qc| (5.20)

The head at the T-junction HST is given by:

HST = hc +Rd(Qc) ·Qc (5.21)

It can be noticed that the diaphragm loss coefficient Kd is usually function of the
discharge amplitude and direction: Kd = Kd(Qc). The equivalent scheme of the surge
tank is made of a resistance and a capacitance in series as presented in figure 5.7. The
discharge incoming into the surge tank Qc is equal to the difference of the discharges at
the T-junction and is given by:

Qc = Qi −Qi+1 (5.22)

5.1.4 Surge Shaft

Surge shafts are surge tanks with small cross sections. If the surge tank inductance
effects can be neglected as the inductance is inversely proportional to the cross section
L = l/(gA), it is not anymore the case for the surge shaft. The inductance related to the
water inside the surge shaft is given by integrating the inductance along elevation axis Z
and is given by:

LSS =

hc∫
Zmin

dZ

g · A(Z)
=
hc − Zmin

g · A
(5.23)

The capacitance and resistance of the surge shaft have the same expression as that of
the surge tank and are given by:

Rd(Qc) =
Kd(Qc)

2gA2
ref

· |Qc| and CSS = A(Z) (5.24)

The head at the T-junction HSS is then given by:

HSS = hc +Rd(Qc) ·Qc + LSS ·
dQc

dt
(5.25)

The resulting surge shaft equivalent scheme is presented in figure 5.8.
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Figure 5.7: Surge tank model.

Rd

HSSQi

Piezometric line

CSS hc

Hd

Qi Qi+1

Qc

Qi+1

Qc

Datum

HSS hc

LSS HL

Zmin

Figure 5.8: Surge shaft model.
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5.1.5 Air Vessel

Air vessels are used for mitigating pressure fluctuations induced in hydraulic systems by
pumps, vortex shedding, valves openning/closure, etc. The water level hc changes in the
vessel lead to capacitive behavior. The stored discharge Qc and the cross section are
linked as follows:

A(Z) · dhc

dt
= Qc (5.26)

The capacitance is given by:

Cg = A(Z) (5.27)

The gas volume is varying due to water level changes. Assuming a polytropic trans-
formation of the gas leads to:

hg · V n
g = cste (5.28)

The total derivative of equation 5.28 gives:

hg · n · V n−1
g · dgV + V n

g · dhg = 0 (5.29)

After rearrangement, and introducing the stored discharge Qc yields to:

Vg

hg · n
· dhg

dt
= −dVg

dt
= Qc (5.30)

Equation 5.30 evidences the non-linear capacitive behavior of the gas volume for which
the capacitance is given by:

CAV (Vg, hg) =
Vg

hg · n
(5.31)

The head at the junction HAV is then given by:

HAV = hc + hg (5.32)

The equivalent scheme of the air vessel is therefore made of 2 capacitances in series as
presented in figure 5.8.

5.1.6 Cavitating Flow

The development of cavitation in fluid flows is known to be a source of instabilities for the
whole hydraulic system. It was found that cavitation does not only represent a passive
additional compliance to the flow [15] but can play a crucial role of self excitation source
like of the famous POGO effect in propulsion systems of aerospace aircrafts [82]. The
stability of such system was studied using an one-dimensional approach to model the
cavitation development as a lumped elements. The volume of a cavitation development
is function of the head and discharge, therefore the total derivative of the volume is given
by:

V (Q, h)i+1 ⇒ dV =
∂V

∂hi+1

· dhi+1 +
∂V

∂Qi+1

· dQi+1 (5.33)
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Figure 5.9: Air vessel model.

Time variation is given by:

dV

dt
=

∂V

∂hi+1

· dhi+1

dt
+

∂V

∂Qi+1

· dQi+1

dt
(5.34)

Defining:

• the cavity compliance C = −∂V
∂h

;

• the mass flow gain factor χ = − ∂V
∂Qi+1

.

yields to:

Qi −Qi+1 = Qc = C · dhi+1

dt
+ χ · dQi+1

dt
(5.35)

In addition, no losses or inertias effects are considered, and leads to:

hi = hi+1 (5.36)

Cavitation development can be modelled using equations 5.35 and 5.36. The resulting
equivalent scheme of the cavitation development is made of 1 capacitance as presented
in figure 5.10. The representation of the mass flow gain factor is difficult as it is kind of
mutual inductance effect and it is represented in figure 5.10 only by the χ value referring
to the discharge Qi+1
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Figure 5.10: Cavitating flow model.
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5.2 Quasi Static Modelling of Hydraulic Machines

5.2.1 General

There is 3 different types of hydraulic machines that are commonly used in the context of
hydroelectric power production: (i) the Francis turbine, or pump-turbine, (ii) the Pelton
turbine and (iii) the Kaplan turbine.

For safety purposes, the transient behavior of the entire hydraulic system compris-
ing the turbine must be undertaken with appropriate turbine models. However, during
the exploitation, these hydraulic machines are subject to off design operations where 3D
complex flow structures such as flow separations, secondary flows, reverse flows, vortices,
cavitation development, arise. Mathematical modelling of such flows leads to Compu-
tational Fluid Dynamic codes, which are nowadays far from being able to provide the
transient turbine parameters at a reasonable computational time with sufficient accuracy
for all the flow regimes experienced during transients. Therefore, experimental data are
required for the modelling of the dynamic behavior of turbines and pump-turbines. It is
assumed that the transient behavior of the hydraulic machines can be accurately simu-
lated by considering that the machines are experiencing a succession of different steady
state operating points and therefore, can be modelled using the static characteristic of
the machine [58]. These models are called ”quasi-static” models.

An operating point of a hydraulic machine is characterized by 5 quantities: the specific
energy E, the discharge Q, the rotational speed N , the torque T , and the guide vane
opening y. Therefore, the graphical representation of a turbine characteristic requires the
elimination of one of these quantities by the use of the hydraulic machines similitude laws.
For efficiency purposes, where the rotational speed can be considered to be constant, it
is convenient to use the dimensionless representation with ϕ , ψ and τ . For transients
analysis, it is more convenient to use dimensional factors where the specific energy E is
eliminated. These factors are given by:

N11 =
N ·Dref√

(E/g)
; Q11 =

Q

D2
ref ·

√
(E/g)

; T11 =
T

D3
ref · E/g

(5.37)

The modelling of hydraulic turbines based on the quasi-static approach is described
below.

5.2.2 Francis Pump-Turbine

Francis pump-turbines are reaction turbines, i.e. they convert both kinetic and potential
energy of the fluid into mechanical work. The Francis turbine features fixed blades and
therefore the discharge through the turbine is controlled by the distributor. Figure 5.11
presents a vertical cutting plan of a Francis turbine.

Figure 5.12 presents a 4 quadrants characteristics of a Francis pump-turbine having a
specific speed of ν = 0.217. The discharge and torque factors are represented as a function
of the speed factor with the guide vane opening y as parameter; all values are rated by
the best efficiency point (BEP) value.

Some of the curves Q11 = Q11(N11) of the pump-turbine characteristics of figure 5.12
exhibit a typical pump-turbine ”S” shape between the 1st and the 4th quadrants leading
to numerical troubles for the interpolation of the Q11 values in the surface characteristics
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 I

 I

Figure 5.11: Francis turbine cutting plan.

as illustrated in figure 5.13. This problem has been successfully solved by Marchal et al.
[65] who used a polar representation of the turbine characteristics. The polar coordinates
are defined in the plane N11 −Q11. Accordingly the polar angle θ is given by:

θ = atan

(
Q11/Q11BEP

N11/N11BEP

)
(5.38)

After simplification:

θ = atan

(
Q/QBEP

N/NBEP

)
(5.39)

The radial coordinate of the polar representation is defined as:

r(θ)2 = (Q11/Q11BEP )2 + (N11/N11BEP )2 (5.40)

Lets introduce the new parameter WH(θ):

WH(θ) =
1

r(θ)2
(5.41)

After rearranging the terms:

WH(θ) =
H/HBEP

(Q/QBEP )2 + (N/NBEP )2 (5.42)

A new parameter WB(θ) is introduced for the torque and is given by:

WB(θ) = WH(θ) · T11

T11BEP

=
T/TBEP

(Q/QBEP )2 + (N/NBEP )
(5.43)

The polar representation of the turbine characteristics of figure 5.12 is presented in
figure 5.14. This representation has the advantage of preserving the similitude law. How-
ever, numerical troubles appears for closed guide vanes where there is no discharge and

EPFL - Laboratoire de Machines Hydrauliques



88 CHAPTER 5. MODELLING OF HYDRAULIC COMPONENTS

-2 -1 0 1 2
N11/N11BEP

-3

-2

-1

0

1

2
Q

11
/Q

11
BE

P

y = 0
y = 0.03
y = 0.07
y = 0.14
y = 0.21
y = 0.29
y = 0.43
y = 0.57
y = 0.71
y = 0.86
y = 1.00

-2 -1 0 1 2
N11/N11BEP

-4

-2

0

2

4

T 1
1/T

11
BE

P

y = 0
y = 0.03
y = 0.07
y = 0.14
y = 0.21
y = 0.29
y = 0.43
y = 0.57
y = 0.71
y = 0.86
y = 1.00

Figure 5.12: 4 quadrants characteristics of a turbine with specific speed ν = 0.217.

therefore the abscissa θ is equal either to 0 or to π. This problem can be overcome by
considering small leakage discharge for closed guide vanes.

From the modelling point of view, the turbine behaves essentially as a pressure source
converting hydraulic energy into mechanical work. Inertia effects of the water in the
turbine can be taken into account through the equivalent inductance of the turbine that
can be determined by a curvilinear integration from turbine inlet I to turbine outlet I as
follows:

Lt =

∫ I

I

dx

g · A(x)
=

lequ

g · A
(5.44)

The full closure of the guide vanes of the turbine must ensure no discharge through the
turbine. This can be only achieved, from the simulation point of view, with a resistance.
This resistance is effective only for small discharge, below 5% of the nominal value. The
resulting equivalent scheme of the Francis pump-turbine is made of an inductance, a
resistance and a pressure source in series as presented in figure 5.15. The pressure source
of the model is directly driven from the turbine characteristic WH(y, θ(Q,N)) function of
the guide vane opening y, the rotational speed N and the discharge Q. The connection
with the mechanical inertias in rotations is achieved through the momentum equation
applied to the rotational inertias and given by:

J · dω
dt

=
∑

Text = Tturb − Telect (5.45)

Where:

• J : total inertia of the rotating parts [kgm2]

• ω: rotational pulsation [rd/s]

• Tturb: mechanical torque of the turbine [Nm]
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Figure 5.13: Multiple value problem due to ”S” shape of the characteristics and definition
of the polar representation.

• Telect: electromagnetic torque of the generator [Nm]

The mechanical torque of the pump-turbine is obtained from the torque characteristic
WB(y, θ(Q,N)) also function of the guide vane opening y, the rotational speed N and the
discharge Q.

It is possible to improve the model of the turbine by considering the dynamic behavior
of the spiral case and of the diffuser of the turbine that can be both modelled as straight
pipes. Doing so, the compressibility and inertias effects of the spiral case and diffuser are
also taken into account. Such model has been successfully validated by Bolleter in the
case of a pump [13]. Such an approach is suitable for transients purposes. However, the
modelling of more complex phenomena occurring in the hydraulic machine itself requires
even more detailed modelling.
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Figure 5.14: Polar representation of the pump-turbine characteristics of figure 5.12.

Qi

Piezometric line

Datum

HI

E/g

Zref
HI

y

Qi

H(WH(y, Qi, N))

N

RtLt

HIHI

Figure 5.15: Francis turbine model.
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5.2.3 Pelton Turbine

Single Injector Modelling

Pelton turbines are impulse turbines; i.e. the conversion of the kinetic energy of the flow
into mechanical work is performed at the atmospheric pressure. The discharge of each
injector is controlled by a nozzle leading to a free water jet. The jet interacts with the
turbine buckets deviating the jet so that the outflow has almost no kinetic energy.

D1

Z o

Do D2

B

Figure 5.16: Pelton turbine.

The Pelton turbine is modelled by Ninj times a single injector turbine characteristic.
As a result, the Pelton turbine is viewed from the hydraulic circuit only as Ninj valves in
parallels. The equivalent circuit modelling the Pelton turbine corresponds to an equivalent
resistance of all injectors single resistance, as illustrated in figure 5.17:

Rt =
1

Ninj∑
i=1

1
Rinji

(5.46)

The single injector resistance is calculated from the characteristic of the turbine Q11 =
Q11(yinj), see figure 5.18, and is given by:

Rinj =
|Qinj|

Q2
11(yinj) ·D4

ref

(5.47)

The mechanical torque of the machine is calculated as the sum of the contribution of
the torque of each single injectors as follows:

T = Kt ·
Ninj∑
i=1

T11(N11, yinji
) ·D3

ref ·H (5.48)

Where Kt is a torque coefficient that accounts for the unsteadiness of the torque during
operation.

This modelling, neglects both the influence on the efficiency of the multi-injectors op-
eration and the dynamic behavior of the piping of the flow repartitor. However, with this
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Figure 5.17: Pelton turbine model.

model, injectors can be put in operation or shut off using the same turbine characteristic.
As the main purpose of such model is to perform transient simulations and not performing
energy production optimization, the single injector model is the most suitable.

Deflector Modelling

Pelton installations usually feature very long penstocks. As a consequence, the piping
critical valve closure time are very long and usually in contradiction with flywheel time
constants of the rotating parts. Specific protection devices have been developed, consisting
of deflectors cutting or deviating the jet between the injector and the turbine runner, see
figure 5.19. Such system can be activated within very short time, 1 − 3 seconds, and
inducing a quick drop to zero of the mechanical torque, providing time for a slow closure
of the injectors in order to minimize the waterhammer effects in the piping.

As it exists several different types of deflectors, it is suitable to use a general method
for its modelling allowing to take into account any kind of deflectors. Therefore, a deflector
coefficient is introduced and is given by the ratio between the discharge that effectively
reaches the turbine and the discharge of the injector and is given for the ith injector by:

Kdef i =
Qrunner i

Qinjector i

(5.49)

An ”equivalent” nozzle stroke ydef (t) corresponding to the discharge of the deflector
times this deflector coefficient is determined from the nozzle characteristic y(Q11). Fi-
nally the torque of the turbine is determined not from the nozzle position but from the
equivalent nozzle position ydef . In this modelling the deflector function Kdef has to be
known. The algorithm for the consideration of the deflector is illustrated in figure 5.20.
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Figure 5.18: Single injector Pelton turbine characteristic.

Figure 5.19: Different types of deflectors, deviating jet (left) and cutting jet (right) [81].

Q11

y [-]

T11

N11

y=cst

10
y(t)

Q11(t)

Kdef*Q11(t)

ydef(t) N11(t)

T11(t)

T11def(t)
ydef(t)

y(t)

y(t)

interpolation
Q11(y(t))

Kdef(t)

T(t)

π

interoplation 
T11(ydef(t), N11(t))

interpolation
ydef(Kdef*Q11(y(t)))

Kdef*Q11(y(t))

Figure 5.20: Consideration of the deflector in the torque calculation.
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5.2.4 Kaplan Turbine

Kaplan turbines are reaction turbines, converting both kinetic and potential energy into
mechanical work. Because Kaplan turbines are subject to high relative variations of the
available energy ∆E/E, they feature a double control system comprising the distributor
and mobile blades in order to ensure high efficiency on the whole operating range, see
figure 5.21. As a consequence, the characteristics of the Kaplan turbine has an extra
parameter, compared to Francis turbines, i.e. the blade pitch angle β. Thus, the turbine
characteristics is made of a family of characteristics defined for different blade angles.
Figure 5.23 presents 2 characteristics for 2 different blade angles.

D
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z o

i

eD

z b

B

Figure 5.21: Kaplan turbine.

The model of the Kaplan turbine is also based on the polar representation of Suter,
as for the Francis turbine model, but the WH(θ, β) and WB(θ, β) values are interpolated
linearly between 2 blades angles as illustrated in figure 5.23 [44]. The linear interpolation
is given by:

WH,B(θ, β) =
WH,B(θ, β2)−WH,B(θ, β1)

β2 − β1

· (β − β1) (5.50)

Linear interpolation is preferred to higher order interpolation as it requires only 2
values for the calculations of the interpolated value, and therefore overlapping of only 2
characteristics is necessary. Indeed, experimental data are not always available on the
same range for all tested blade angles, especially in the polar reference frame.

The equivalent scheme of the Kaplan turbine is identical to the Francis turbine model
except the fact that the head of the turbine is also function of the blade angle β. Fig-
ure 5.24 presents the equivalent model of the Kaplan turbine made of an inductance, a
resistance, and a source.
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Figure 5.22: Kaplan turbine characteristic for 2 blades angles; β = 0.60 (top) and β = 0.87
(bottom).
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Figure 5.24: Kaplan turbine equivalent scheme.
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5.3 Hydraulic Models Implementation in SIMSEN

5.3.1 General

Once the models of the main hydraulic components constituting the hydroelectric power
plants are established, it is important to implement them in a software enabling a fast
modelling of the system, robust and efficient time domain integration and results analysis
in order to perform systematic analysis and optimization of the system. The Laboratory
of Electrical Machines -LME- of the EPFL has developed a simulation software for the
analysis of electrical power networks and adjustable speed drives called SIMSEN [83].
This software enables the time domain simulation of the dynamic behavior of an elec-
trical installation featuring an arbitrary topology including the electrical machines, the
mechanical inertias and the control devices.

The modelling of the hydraulic components with electrical equivalents offers the pos-
sibility to implement them in SIMSEN in an easy way as it is based on the same syntax
and conventions. Thus, all the hydraulic components models described above have been
implemented in SIMSEN with the following advantages:

• treating systems with arbitrary topology;

• modelling hydroelectric systems comprising hydraulic circuit, electrical installations,
mechanical inertias and control devices;

• ensuring considering properly the interaction between all components of the instal-
lation as there is only one set of differential equations to be solved within the same
integration time step.

However, there is a drawback resulting from the last point. Electrical systems feature
time constants of about τelec = 0.001s while hydraulic system features time constants of
about τ = 0.1s, i.e. 100 times larger.

5.3.2 The Simulation Software SIMSEN

Structure of SIMSEN

The SIMSEN software enables to set up the simulation model of a system according to
its own topology using electrical, mechanical and control modules through a Graphical
User Interface (GUI). Once all the parameters of each components are setup, the software
builds up a global system matrix using Kirchhoff’s laws of the following form:

[A] · d
−→x
dt

+ [B] · −→x =
−→
C (5.51)

With:

• [A], [B]: system global matrix;

• −→x : state vector;

•
−→
C : boundary conditions vector.
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Equation system 5.51 is solved in SIMSEN with the procedure of Runge-Kutta 4th

order taking into account all the non-linearities of the system as every parameter of each
components can be parameterized using external functions. Finally, all the simulation
results are stored in text files with vectors structure.

Electrotechnic Modules

SIMSEN offers a wide range of electrotechnic modules comprising:

• electrical machines: synchronous machine, induction, permanent magnet and DC
motors; rotor,

• mechanical inertias: rotor, stator, shaft stiffness and damping, clutch, gear-box;

• three-phase elements: voltage supply, transmission lines, circuit breaker, trans-
formers, loads;

• semi-conductors: diode, thyristor, thyristor GTO, IGTB;

• single-phase elements: voltage supply, resistance, inductance, capacitance, cir-
cuit breaker, linked inductor, transformer;

• analog functions: program, s-transfer function, regulators, points/grid functions,
external DLL;

• digital functions: limiter, pulse, generator, z-transfer function, hysteresis, sample.

The above list is non-exhaustive. These modules have been successfully validated by
comparison with experimental data [84] as illustrated by the example presented in figure
5.25. This example is the simulation of a load acceptance of an asynchronous machine
with a frequency converter of the Three-level Voltage Source Inverter (VSI) type. Figure
5.26 presents the comparison of the simulated and experimental results witnessing the
good agreement.
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Figure 5.25: Three-level Voltage Source Inverter (VSI) simulation example.

Figure 5.26: Comparison between simulation (bottom) and measurements (top) of volt-
ages (left) and torques (right) resulting from load acceptance of the system of figure 5.25
[84].
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Synchronous Machine Modelling

Synchronous machines are playing an important role in hydropower plants. Hydro-
generators features salient poles with laminated rotor (see figure 5.27 (a),) with strong
geometric anisotropy and therefore their modelling is decomposed in 2 axis, the direct axis
d and the quadrature axis q; as illustrated in figure 5.27 (b). Using Park’s transformation,
it is possible to represent the synchronous machine as 2 equivalent schemes in the direct
and quadrature axis [17], see 5.27 (c). The equivalent scheme of the synchronous ma-
chine leads to a set of 5 first order differential equations with 5 currents as state variables
and 5 voltages as boundary conditions and the rotor position as parameter. Introducing
the momentum equation applied to the rotating inertias including the electromagnetic
torque obtained from the current and flux, gives a system of 7 equations and 7 unknowns.
The equivalent scheme parameters, state variables and boundary conditions of this set of
equations are given in table 5.2 defined according to the scheme of figure 5.27 (c).

a) b)

c)
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xad xsD
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rfxsf
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xaq xsQ
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Figure 5.27: Modelling of a synchronous machine with decomposition in the direct and
quadrature axis; a) geometry of salient pole [78], b) direct and quadrature axis [19], c)
equivalent schemes [17].
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Table 5.2: Synchronous machine equivalent scheme parameters, state variables and bound-
ary conditions.

Parameters Units Description
rs, Xxs [p.u.] statoric resistance and leakage inductance
Xad [p.u.] inductance of principal field in axis d
XsDf [p.u.] exclusive mutual inductance between

dampers of d axis and excitation
rf , Xsf [p.u.] excitation resistance and leakage inductance
rD, XsD [p.u.] damper circuit resistance

and leakage inductance in axis d
Xaq [p.u.] principal field inductance in axis q
rQ1, XsQ1 [p.u.] resistance and leakage inductance of the

damper circuit in axis q
p [-] number of pair poles

State variables Units Description
id,iq [p.u.] statoric phase in axis d and q
iD [p.u.] damper circuit current in axis d
if [p.u.] excitation current
iQ1 [p.u.] damper circuit current in axis q
θm [rd] angular position of the rotor
ωm = dθm/dt [rd] angular pulsation of the rotor

Boundary conditions Units Description
ud,uq [p.u.] statoric voltages in axis d and q
uD ≡ 0 [p.u.] damper circuit voltage in axis d
uf [p.u.] excitation voltage
uQ ≡ 0 [p.u.] damper circuit voltage in axis q

Initial Conditions Determinations

The determination of the initial conditions of an electrical simulation should be achieved
according to the boundary conditions prior to a time domain simulation. This initial
conditions problem is solved for electrical systems in SIMSEN by performing a load flow
calculation where 2 situations can be treated:

• the loads parameters are specified and the excitation voltage of the synchronous
machines are adapted to match the demand of active and reactive power, see figure
5.28 (top);

• the active and reactive power of the synchronous machines are specified and the
loads parameters are adapted to match the production, see figure 5.28 (bottom).

In both cases, the load flow calculation is achieved in SIMSEN using Newton-Raphson’s
algorithm.

EPFL - Laboratoire de Machines Hydrauliques



102 CHAPTER 5. MODELLING OF HYDRAULIC COMPONENTS

Uabc:  given

Uf:  adapted

RLC:  given

P, Q:  obtained

P, Q:  given
RLC:  adapted

Uabc:  given

Uf:  adapted

Figure 5.28: Load flow scenarios according to available data; excitation voltage adapted
to the demand (top) or load parameters adapted to the production (bottom).

5.3.3 Extension to Hydraulic Systems: SIMSEN-Hydro

Hydraulic Modules

A hydraulic extension comprising all the hydraulic models presented above and called
SIMSEN-Hydro, has been implemented in SIMSEN. These hydraulic models are summa-
rized in figure 5.29 for the hydraulic circuit components and in figure 5.31 for the hydraulic
turbines.

Turbine Characteristics Interpolation

The modelling of the turbines is based on their characteristics curves. Therefore it is
necessary to perform interpolation of the WH,B values for the given abscissa y and θ. The
interpolation method implemented in SIMSEN-Hydro is based on a Delaunay triangula-
tion in the plane y − θ. To each vertex of the triangle is associated the corresponding
WH,B values. Then, a ”planar” interpolation is performed from the equation of the plan
in three dimensions. This method ensures the continuity of order 0 on the whole turbine
characteristic. The representation of the 2D triangulation and the resulting 3D surface
of the pump-turbine characteristic of figure 5.14 are presented in figure 5.31.

Initial Conditions Determination

Similarly to electrical systems, initial conditions of a hydraulic system simulation should
be determined according to the system boundary conditions prior to perform time domain
simulation. In SIMSEN-Hydro, the initial condition procedure is not achieved by Newton-
Raphson algorithm but by performing a ”fast” simulation of the transient behavior of the
system leading to steady state conditions. However, to speed up the stabilization of the
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Description Equivalent schemeScheme
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Figure 5.29: Summary of the models of the hydraulic circuit components.
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Description Equivalent schemeScheme
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Figure 5.30: Summary of the models of the hydraulic turbines.

system, the system parameters are optimized. Basically, 3 optimizations are undertaken:

• an additional damping is introduced;

• large capacitance leading to high period oscillations are reduced;

• turbine characteristics are bounded in order to avoid errors due the search of a point
outside the turbine characteristic.

The additional damping is introduced by setting the viscoelastic resistance of the pipes
according to the system limit time constants. The time constant of the RC elements in
series in the T-branch of the pipe model is given by:

τRC = Rve · C (5.52)

The value of the viscoelastic resistance can therefore be determined with respect to the
integration time step to avoid numerical integration troubles by setting the integration
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Figure 5.31: Delaunay triangulation of the pump-turbine characteristic of the figure 5.14;
2D (left) and 3D (right).

time step dt equal to the RC time constant divided by two leading to:

τRC = Rve · C > 2 · dt (5.53)

Hence:

Rve =
2 · dt
C

(5.54)

Regarding the initial condition determination, there is 2 possible scenarios:

• the pump-turbine is in generating mode: the water levels of the reservoirs, the
mechanical torque and the rotational speed of the pump-turbine are specified and
the corresponding guide vanes opening is determined;

• the pump-turbine is in pumping mode: the water levels of the reservoirs, the rota-
tional speed and the guide vanes opening of the pump-turbine are specified and the
resulting mechanical power is determined.

The 2 above scenarios are illustrated in figure 5.32.
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∆Z:  given

T, ω:  given

y:  adapted

Q:  result

∆Z:  given

y, ω:  given

T:  result

Q:  result

Figure 5.32: Hydraulic load flow scenarios for generating mode (left) and pumping mode
(right).
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Chapter 6

Analytical Analysis of Simplified
Hydraulic Systems

6.1 General

The modelling by electrical equivalent enables to setup simplified models of hydraulic in-
stallation to study their global dynamic behavior. The simplified models are preferably of
a low order to obtain the analytical solutions of the related differential equation set. Such
solutions provide the main dynamic quantities of the system in terms of eigen frequencies
and damping [1], [3], [18].

6.2 Mass Oscillations Problems

In the following sections, the eigen frequency related to mass oscillation problems is
analyzed for various types of tanks, i.e. (i) a surge tank, (ii) a surge shaft and (iii) an air
vessel.

6.2.1 System with Surge Tank

The dynamic behavior of the hydraulic circuit shown by figure 6.1 (left) comprising an
upstream reservoir, a gallery, a surge tank and a penstock with a downstream valve is
investigated. Focusing only on low frequencies, permits to neglect the compressibility of
both pipes. Thus the equivalent circuit of this system is made of a pressure source Ho,
the gallery inductance LG and resistance RG, the surge tank capacitance CST and the
diaphragm resistance Rd, the penstock inductance LP and resistance RP and the valve
resistance Rv as presented in figure 6.1 (right).

The consequence of a sudden closure of the valve is analyzed assuming an initial steady
state condition with constant valve opening. Closing the valve yields to open the right
hand loop of the equivalent scheme related to Q2. The differential equations written using
Kirchhoff’s law applied to the left hand loop leads to:

Ho = LG ·
dQ1

dt
+ (Rd +RG) ·Q1 + hST

CST ·
dhST

dt
= Q1

(6.1)
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Surge tank

Valve

Figure 6.1: Hydraulic circuit with surge tank.

Combining the 2 above equations leads to the following characteristic equation:

d2hST

dt2
+
Rd +RG

LG︸ ︷︷ ︸
2·µ

·dhST

dt
+

1

CST · LG︸ ︷︷ ︸
ω2

o

·hST = 0 (6.2)

The general solution of the above equation is given by:

hST (t) = hSTo · e−µ·t · sin(ω1 · t) (6.3)

With:

ω1 = ωo ·
√

1− ζ2 ; ζ =
µ

ωo

(6.4)

The natural frequency of the frictionless system is given by:

ωo =
1√

(CST · LG)
(6.5)

The related period is then given by:

To = 2 · π ·

√(
lG · AST

g · AG

)
(6.6)

Where:

• lG: length of the gallery [m]

• AST : surge tank cross section [m2]

• AG: gallery cross section [m2]

The period To is usually very low as the surge tank cross section and the gallery length
are large and the gallery cross section is small. This period is called the mass oscillation
period related the oscillation of the discharge in the gallery between the reservoir and the
surge tank.
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The amplitude of the water level oscillations in the surge tank, assuming a constant
surge tank cross section and a frictionless system, is obtained considering a solution of
the type hST (t) = hSTo · sin(ωo · t + φ) whose first derivative introduced in equation 6.1
gives the oscillation amplitude:

hSTo =
Q1o

CST

· 1

ωo

= C1o ·

√
lG · AG

g · AST

(6.7)

Where C1o = Q1o

AG
is the initial flow velocity in the gallery.

6.2.2 System with Surge Shaft

The dynamic behavior of the hydraulic circuit presented by figure 6.2 (top) comprising
an upstream reservoir, a first part of gallery, an upstream valve, a surge shaft, a second
part of gallery, a surge tank and a penstock with a downstream valve is investigated.
Focusing again only on low frequencies, the compressibility of the pipes are neglected.
The system is considered frictionless. Thus the equivalent circuit of this system is made
of a pressure sourceHo, the first gallery inductance LGo, the valve resistance Rv1, the surge
shaft capacitance CSS and inductance LSS, the second gallery inductance LG1, the surge
tank capacitance CST , the penstock inductance LP and the downstream valve resistance
Rv2 as presented in figure 6.2 (bottom).

 1Q  2Q oH

 GoL  PL

 v2R

 G1L v1R

 SSL

 STC SSC
 oQ

 oH
 1Q

 2QGallery

Penstock

Surge tank

Valve2

 oQ

Surge shaft

Valve1

Figure 6.2: Hydraulic circuit with surge tank and surge shaft.

The consequence of a sudden closure of both valves is analyzed assuming an initial
steady state condition with constant valves openings. Closing valves 1 and 2 yields to
open loops related to Qo and Q2. The differential equations written using Kirchhoff’s law

EPFL - Laboratoire de Machines Hydrauliques



110
CHAPTER 6. ANALYTICAL ANALYSIS OF SIMPLIFIED HYDRAULIC

SYSTEMS

applied to the loop related to Q1 leads to:
(LG1 + LSS) · dQ1

dt
+ hST − hSS = 0

CST ·
dhST

dt
= Q1

CSS ·
dhSS

dt
= −Q1

(6.8)

Combining the 3 above equations leads to the following characteristic equation:

d2Q1

dt2
+

(
1

CST

+
1

CSS

)
· 1

LSS + LG1︸ ︷︷ ︸
ω2

o

Q1 = 0 (6.9)

The natural frequency of the frictionless system is given by:

ω2
o =

1
CSS

+ 1
CST

LSS + LST

(6.10)

The corresponding mass oscillation period is given by:

T = 2 · π ·

√√√√ lSS

g·ASS
+ lG1

g·AG1

1
ASS

+ 1
AST

(6.11)

Once the 2 valves are closed the system constituted of the surge shaft, the gallery and
the surge tank undergo mass oscillations. The mass of water oscillates between the surge
shaft and the surge tank with amplitudes driven by the tanks cross sections. It can be
seen that the inertia of the water in the surge shaft may strongly influence the oscillation
period depending on the inductance ratio between the surge shaft and the gallery.

6.2.3 System with Air Vessel

The dynamic behavior of the hydraulic circuit presented by figure 6.3 (left) comprising
an upstream reservoir, a gallery, an air vessel and a penstock with a downstream valve
is investigated. Focusing only on low frequencies permits to neglect the compressibility
of both pipes. The system is considered frictionless. Thus, the equivalent circuit of
this system is made of a pressure source Ho, the gallery inductance LG, the 2 air vessel
capacitances CAV and Cg, the penstock inductance LP and the valve resistance Rv as
presented in figure 6.3 (right).

The consequence of a sudden closure of the valve is analyzed assuming an initial steady
state condition with constant valve openings. Closing the downstream valve yields to open
loop related to Q2. The differential equations written using Kirchhoff’s law applied to the
first loop leads to:

LG ·
dQ1

dt
+ hAV + hg = Ho

CAV ·
dhAV

dt
= Q1

Cg ·
dhg

dt
= Q1

(6.12)
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Figure 6.3: Hydraulic circuit with air vessel.

Combining the 3 above equations leads to the following characteristic equation:

d2Q1

dt2
+

(
1

CAV

+
1

Cg

)
· 1

LG︸ ︷︷ ︸
ω2

o

Q1 = 0 (6.13)

The natural frequency of the frictionless system is given by:

ω2
o =

1
CAV

+ 1
Cg

LG

(6.14)

The corresponding mass oscillation period is given by:

T = 2 · π ·

√√√√√ lG
g·AG

1
AAV

+ 1�
Vg

Hg ·n

� (6.15)

Comparing the mass oscillation period obtained for a system with air vessel with the
period obtained for a system with a surge tank, given by equation 6.5, it can be noticed
that:

• if the gas volume tends to infinity, the period of the system with air vessel corre-
sponds to the period of the system with a surge tank;

• if the volume of gas becomes small, the mass oscillation period decreases;

• for small gas volume and high oscillation amplitudes, the system becomes strongly
non-linear as the air vessel capacitance is function of the gas volume and pressure.

To illustrate the influence of the gas volume on the mass oscillation period and time
evolution, the simulation of the sudden closure of the downstream valve is performed for
3 different gas volumes. The dimensions of the hydraulic circuit are summarized in table
6.1. The time domain evolution of the gas piezometric head hg, the water level in the air
vessel hAV and the total piezometric head h = hg + hAV are represented in dimensionless
values in figure 6.4. The 3 above statements are clearly confirmed by the simulations.
Especially the non-linear behavior induced by the gas volume is clearly pointed out for
the simulation results with Vg = 50m3.
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Table 6.1: Parameters of the hydraulic installation with air vessel of figure 6.3.

Gallery Air vessel Penstock Nominal values

l = 1100m A = 38.48m2 l = 1100m Ho = 700m
a = 1100m/s hgo = 100m a = 1100m/s Q1o = 30.9m
D = 3.57m hAV o = 598m D = 2.52m

6.3 Stability of Hydraulic Circuit

In the following sections, stability criteria are determined for the following installations:
(i) power plant with regulated turbine and surge tank; (ii) piping with cavitation develop-
ment; (iii) piping with valve leakage; (iv) pumping system; and (v) pump-turbine power
plant.

6.3.1 Mass Oscillation Stability: Thoma Cross Section Criteria

A hydraulic circuit comprising an upstream reservoir, a gallery, a surge tank, a penstock
connected to a turbine driven by a speed controller is subject to system instabilities.
Therefore the stability limit of the system must be determined. The system and the
corresponding equivalent scheme are presented in figure 6.5. For the purpose of the
present investigation, the dynamic behavior of the penstock and the diaphragm losses are
neglected and the perturbation are considered small so that the turbine efficiency assumed
to be constant.

The differential equation related to the loop of discharge Q1 is given by:
LG ·

dQ1

dt
+RG ·Q1 + hST = Ho

CST ·
dhST

dt
= QST

(6.16)

The continuity equation gives:

QST = Q1 −Q2 (6.17)

From the second loop, it can be stated that the piezometric head of the surge tank
corresponds to the turbine head Ht which is equal to initial head Hto plus a perturbation
z and is therefore given by:

hST = Ht = Hto + z (6.18)

The similitude of the turbine efficiency gives:

Q2 ·Ht = Q2o ·Hto (6.19)

Then the discharge of the turbine can be expressed with equation 6.18 and then
expressed with the limited development (1/(1 + x) = 1− x+ x2 − x3...) leading to:

Q2 = Q2o ·
Hto

Hto + z
' Q2o ·

(
1− z

Hto

)
(6.20)
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(hg + hAV)/Ho

hAV/Ho

hg/Ho

Figure 6.4: Mass oscillations with air vessel of volume: Vg = 5000m3 (top), Vg = 500m3

(middle), Vg = 50m3 (bottom).

Combining equation 6.18 and 6.20 gives:

dQ2

dt
= −Q2o

Hto

· dhST

dt
(6.21)

Introducing equations 6.17 and 6.21 in equations 6.16 leads to:

LG ·
[
−Q2o

Hto

· dhST

dt
+ CST ·

d2hST

dt2

]
+RG ·Q1 + hST = Ho (6.22)

The head loss in the gallery is a non-linear term that requires to be developed, and
therefore the head losses are expressed as follows:

RG ·Q1 = R′
G ·Q2

1 (6.23)

With equation 6.17 and 6.20, the discharge in the gallery gives:

Q2
1 = (QST +Q2)

2 =

(
QST +Q2o ·

(
1− hST

Hto

))2

(6.24)
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Figure 6.5: Hydraulic system with surge tank and regulated turbine.

Equation 6.24 above can be rearranged in the following form:

Q2
1 = Q2

2o ·
(

1 +

(
QST

Q2o

− hST

Hto

))2

' Q2
o ·

(
1 + 2 ·

(
QST

Q2o

− hST

Hto

))
(6.25)

Introducing equation 6.16, 6.21 and 6.25 in equation 6.22 leads to the characteristic
equation:

d2hST

dt2
+

(
2 · R

′
G ·Q2o

LG

− Q2o

Hto · CST

)
︸ ︷︷ ︸

2·µ

·dhST

dt
+

(
1− 2 · R

′
G ·Q2

2o

Hto

)
· 1

LG · CST︸ ︷︷ ︸
ω2

o

·hST =

=
Hto −R′

G ·Q2
2o

LG · CST

(6.26)

The stability of the system is ensured while 2 ·µ > 0, leading to the following stability
criteria:

CST >
Q2o

Hto

· LG

2 ·RG

(6.27)

After expressing the inductance, resistance and capacitances, the stability criteria
gives the Thoma cross section:

AST >
Q2

2o

2 · g
· lG
Hto ·HrGo · AG

(6.28)

Where HrGo are the head losses in the gallery calculated with the initial discharge Q2o,
lG and AG are respectively the length and the cross section of the gallery, and Hto is the
initial head of the turbine.

The Thoma cross section is the surge tank limit cross section below which the system
becomes unstable after a perturbation induced by the turbine [89].
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6.3.2 Cavitating Flow Stability

Cavitation development was early identified as a source of instabilities in pumping systems
and is known as the POGO effect [82]. A theoretical model for the cavitation development
was setup by Brennen and Acosta [15]. For simplicity, this model is applied to study the
dynamic behavior of the piping system presented figure 6.6 (left) comprising an upstream
reservoir, a first pipe, a cavitation development, a second pipe and a downstream reservoir.
The 2 pipes of this system being identical, the equivalent model of this system is made
of a resistance R and inductance L for the modelling of the pipes, the compressibility
of the pipe being neglected, and a capacitance C related to the cavitation compliance.
In addition, the model of the cavitation development includes the mass flow gain factor
χ referring to the discharge of the second loop. The equivalent scheme of the hydraulic
system is presented figure 6.6 (right).

 1Q  2Q

 R L

 C

 R  L

 1H  2H

χ

V
 1H  2H

 1Q  2Q

Figure 6.6: Hydraulic circuit with cavitation development in the middle.

The system of differential equations of the equivalent scheme of the hydraulic system
is given by:

H1 = L · dQ1

dt
+R ·Q1 +Hc

χ · dQ2

dt
+ C

dHc

dt
= Q1 −Q2

Hc = L · dQ2

dt
+R ·Q2 +H2

(6.29)

The determinant of this set of equations written in matrix form leads to the charac-
teristic equation: R

L︸︷︷︸
1/τ

+δ


δ2 +

[
R

L
+

χ

L · C

]
︸ ︷︷ ︸

2·µ

·δ +
2

L · C︸ ︷︷ ︸
ω2

o

 = 0 (6.30)

Where δ is the eigen value of the set of equation 6.29. The free motion time constant
τ of the fluid in the pipe can be identified in the left hand term of equation 6.30. The
frictionless eigen pulsation of the system ωo and the stability criteria of the system given
by 2 · µ > 0 are determined from the right hand term. The stability criteria leads to the
following criteria:

−R <
χ

C
(6.31)
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The above criteria as illustrated in figure 6.7 indicates that the stability of the system
depends on both values of the cavitation development, the cavitation compliance χ and
the cavitation mass flow gain factor χ. The ratio χ/C can be viewed as a damping or
amplification factor related to the cavitation development. The system starts to oscillate
if this ratio is above the resistance of the system R. As R and C are always positive, it
means that only negative values of the mass flow gain factor lead to system instabilities,
i.e. for positive ∂V/∂Q; when cavitation volume increases with the discharge.

Caution should be payed to the fact that the resistance of the system R is a function
of the discharge and thus the criteria of equation 6.31 cannot be applied directly.

 R−
 R

C
χUnstable domain

0

Figure 6.7: Stability domain related to cavitation development.

6.3.3 Valve Leakage Induced Instabilities

Hydraulic circuit comprising an upstream reservoir, a pipe and a downstream valve may
present an unstable behavior after perturbations [54], [71]. Such a system can be modelled
with a first order equivalent scheme of the pipe made of an inductance Lp and a capacitance
Cp while the valve is modelled by a variable resistance Rv as presented in figure 6.8. The

 1Q  2Q

 pL

 pC
 vR oH

 oH  2Q

Pipe Valve

Figure 6.8: Hydraulic circuite with downstream valve.

corresponding set of differential equations is given by:
Lp ·

dQ2

dt
+Rv ·Q2 + hc = 0

Cp ·
dhc

dt
= Q1 −Q2

(6.32)

Combining the 2 above equations leads to the following characteristic equation:

d2Q2

dt2
+

Rv

Lp︸︷︷︸
2·µ

·dQ2

dt
+

1

Cp · Lp︸ ︷︷ ︸
ω2

o

·Q2 = 0 (6.33)
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The system remains stable for 2 · µ > 0, leading to the following stability criteria:

Rv > 0 (6.34)

It means that negative slopes of a valve characteristic in the Q − h diagram lead to
system instabilities. Such phenomenon can occur for valves whose seals are located on the
downstream side of the valve bearing axis. A pressure increase at the valve induces a valve
deflection that reduces the leakage discharge because of the reduction of the seals gap.
On the contrary, if the seals are located upstream the bearing axis, a pressure increase
leads naturally to an increase of the leakage discharge. These 2 situations are illustrated
in figure 6.9.

Figure 6.9: Diagram Q− h for a valve with leakage [38].
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6.3.4 Pumping System Stability

Pumping systems comprising air vessel may feature instabilities as reported by Greitzer
[40]. Such a system can be simplified for investigation purposes to a system comprising a
downstream reservoir, a pump with fixed rotational speed, a pipe, a valve, an air vessel
and an upstream reservoir. The equivalent scheme of this system is made of the pump
pressure source Hp(Q), the pipe model with the pipe inductance Lp and resistance Rp,
while the air vessel is modelled by its capacitance CAV and the valve by its resistance
Rv, see figure 6.10. The compliance of the pipe is neglected with respect to the air vessel
compliance.

 1Q  2Q oH

 pL vR

 oH 1Q  2Q

Pipe

Air vessel

Valve  AVC

 pR

 pH  (Q2 )

Figure 6.10: Hydraulic circuit with pump.

The corresponding set of differential equations is given by:
Lp ·

dQ2

dt
+Rp ·Q2 +Rv ·Q2 +Hp(Q2) = hAV

CAV ·
dhAV

dt
= Q1 −Q2

(6.35)

The head of the pump can be linearized around the operating point Q2∗ of interest as
follows:

Hp(Q2) = Hp∗ +
dH

dQ2

|Q2∗︸ ︷︷ ︸
RQ2∗

·(Q2 −Q2∗)
(6.36)

Combining the 2 above equations and assuming that the upstream discharge fluctua-
tions are negligible leads to the following characteristic equation:

d2Q2

dt2
+
Rv +Rp +RQ2∗

Lp︸ ︷︷ ︸
2·µ

·dQ2

dt
− 1

CAV · Lp︸ ︷︷ ︸
ω2

o

·Q2 = 0 (6.37)

The system remains stable for 2 · µ > 0, leading to the following stability criteria:

Rv +Rp > − dH

dQ2

(6.38)

The above stability criteria shows that a negative slope of the characteristic curve of
the pump Hp = Hp(Q) considering a negative discharge in pump mode may lead to system
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instabilities. Then, for system whose slope of energetic losses in the pipe and the valve
are higher than the slope of the pump characteristic, the system is stable, as illustrated
in figure 6.11 left. But, if the slope of the energetic losses are below the energetic losses,
as illustrated in figure 6.11 right, the system is unstable.

(Rv'+Rp')Q2

-Q

E

ω = cste

Stable
(Rv'+Rp')Q2

-Q

E

ω = cste

Unstable

Figure 6.11: Condition of stability of a pumping system.

6.3.5 Pump-Turbine Installation Stability

Hydraulic circuit comprising an upstream reservoir, a pipe and a non-cavitating pump-
turbine may exhibit an unstable behavior after perturbations (Greitzer [40], Martin [66],
Jacob [50], Huvet [48]). For the stability analysis of such a system, the rotational speed
changes of the pump-turbine has to be taken into account (Martin [66], Huvet [48])
and therefore the model should consider both hydraulic and mechanical properties. The
hydraulic part of the system can be modelled with a first order equivalent scheme for the
pipe made of a resistance Rp and an inductance Lp, compressibility effects being neglected,
while the pump-turbine is modelled by a variable pressure sourceHpt as presented in figure
6.12. For the mechanical model, the angular momentum law is applied to the inertia J
accounting for both the rotor of the generator and the turbine inertia.

 Q

 pL  pR

 ptH  (Q,ω) oH
 oH  Q

Pipe
Pump-turbine

J

ω

Figure 6.12: Hydraulic circuit with pump-turbine.

The corresponding set of differential equations is given by:
Ho = Lp ·

dQ

dt
+Rp ·Q+Hpt

J · dω
dt

= Tpt + Tel

(6.39)
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Where Tel is the electromagnetic torque and Tpt is the torque of the pump-turbine.
The head and the torque of the pump can be linearized around the operating point Q∗, ω∗
of interest as follows:

Hpt(Q,ω) = Hpt∗ +
dH

dQ
|Q∗︸ ︷︷ ︸

RQ∗

·(Q−Q∗) +
dH

dω
|ω∗︸ ︷︷ ︸

Rω∗

·(ω − ω∗)

Tpt(Q,ω) = Tpt∗ +
dT

dQ
|Q∗︸ ︷︷ ︸

KQ∗

·(Q−Q∗) +
dT

dω
|ω∗︸ ︷︷ ︸

Kω∗

·(ω − ω∗)
(6.40)

Combining equations 6.39 and 6.40 leads to the following matrix equation:

d

dt
·
[
Q
ω

]
=

[
−RQ∗+R

Lp
−Rω∗

Lp
kQ∗
J

kω∗
J

]
︸ ︷︷ ︸

[A]

·
[
Q
ω

]
+

[
H ∗ −Hpt∗ +Rω∗ · ω∗ +RQ∗ ·Q∗
Tpt∗ + Tel − kω∗ · ω∗ − kQ∗ ·Q∗

]
(6.41)

The characteristic equation of the system 6.41 is obtained with the determinant
det([A]− [I] · δ), leading to:

δ2 +

(
RQ∗ +Rp

Lp

− kω∗

J

)
︸ ︷︷ ︸

2·µ

·δ +
kQ∗ ·Rω∗

J · Lp︸ ︷︷ ︸
ω2

o

= 0 (6.42)

The system remains stable for 2 · µ > 0, leading to the following stability criteria:

RQ∗ +Rp

Lp

>
kω∗

J
(6.43)

Expressing again the local derivative gives:

dH
dQ
|Q∗ +Rp

Lp︸ ︷︷ ︸
1/τfQ∗

>
dT
dω
|ω∗
J︸ ︷︷ ︸

1/τmω∗

(6.44)

In equation 6.44 above, the local fluid time constant τfQ∗ evaluated for a given Q∗
and the local mechanical time constant τmω∗ evaluated for a given ω∗ are introduced. The
above stability criteria indicates that it is necessary that τmω∗ > τfQ∗. The US Bureau of
Reclamation even specifies that the stability of the power plant is ensured if τm > 2 · τ 2

f

[63]. Where:

• τm = J ·ωBEP

TBEP
: is the nominal mechanical time constant [s];

• τf = lp·QBEP

g·HBEP ·Ap
: is the nominal fluid time constant [s].

This criteria basically indicates that:

• a low penstock inductance Lp is suitable; i.e. a short penstock with large diameter;
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• a high mechanical inertia J is suitable; i.e. a large diameter of generators rotors;

• the penstock and valves head losses have positive effect, as it was identified by
Dörfler [27];

• negative slopes in the H(Q) curves is not suitable; i.e. a positive slope in a H −Q
curve of a pump when the discharge is considered positive, or in the ”S” part of the
Q11(N11) curve in turbine mode;

• positive slopes of the T (ω) curves are not suitable.

From the above statements, it can be deduced that the stability criterion is intrinsically
fulfilled for low head Francis turbines, but for high head francis turbines or pump-turbines
with long penstock of small diameter, and low rotating inertia, the situation is more criti-
cal. Furthermore, high head pump-turbines are commonly of the low specific speed types
and therefore presents ”S”-shapes Q11(n11) and T11(n11) characteristic curves. But Mar-
tin [67], has demonstrated that overall, the relevant criteria is the sign of the slope of the
T11(n11) for T11 = 0, the runaway condition, which should be negative to ensure stability.
Martin has also established the period of the undamped oscillations using linearization of
the turbine characteristic curves in order to evaluate the values of the coefficient kQ∗ and
Rω∗ of equation 6.42 yielding to ωo [66]. This method was validated on full scale facilities
by Dörfler[27]. The stability criterion of Martin is illustrated in figure 6.13.
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Figure 6.13: Stability analysis in the plane Q11(n11) and T11(n11) for a low specific speed
Francis turbine [67].
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Chapter 7

Transients Phenomena in
Hydroelectric Power Plants

7.1 General

Once the models and the related equivalent scheme of the hydraulic components are
established, transient simulation can be performed to highlight the possible hydroelectric
interactions. The following aspects are treated in the following sections:

• validation of the hydraulic modules of SIMSEN-Hydro;

• investigation of the impact of classical hydraulic or electric disturbances on the
dynamic behavior of a hydroelectric power plant;

• comparison of the stability of the turbine speed governor with strictly hydraulic
model vs hydroelectric model in isolated production mode;

• investigation on the turbine speed governor stability in islanded production mode.

7.2 Validation of SIMSEN-Hydro

7.2.1 Case Study Definition

The validation of SIMSEN-Hydro is achieved by simulating the transient behavior of a
1260 MW pumped storage plant for generating and pumping load rejection and comparing
the simulation results with the available data. The hydraulic layout of the pumped storage
plant is presented in figure 7.1. A 590 meters long penstock is feeding 4 Francis pump-
turbines, with 4 downstream surge chambers of variable sections that are all connected
to a 304 meters long pressurized tailrace water tunnel. The exhaustive set of data related
to the piping system is given in table 7.1 and the design values of the pump-turbines are
given in table 7.2. The cross sections and elevations of the downstream surge chambers
are given in figure 7.2. The loss coefficient of the surge chambers sudden cross section
changes is calculated to be K = 1.5. The number of nodes used for the modelling of each
pipe is calculated in order to fulfill the CFL criterion with the same frequency resolution.

The pump-turbine characteristic of the pumped storage plant are represented in figure
7.3. The modelling of the pump-turbines takes into account the servomotor stroke vs.
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Figure 7.1: Layout and pipe numbering of the pumped storage plant test case.

Table 7.1: Rated values of the pump-turbines of the validation test case.

Hn Qn Pn Nn Dref Jtot ν
[m] [m3/s] [MW ] [rpm] [m] [kg ·m2] [−]
305 109 315 300 5.08 2.77 · 106 0.272

guide vane opening cinematic relation. The spiral case and draft tube are modelled as
pipes of equivalent length and diameters and correspond respectively to pipes N̊ 17− 20
and N̊ 21 − 24. During the load rejection, the circuit breaker between the generator
and the transformer is opened, and leading to an electromagnetic torque equal to zero.
Consequently, the electrical installations are assumed to have no significant influence on
the transient and are modelled as an external torque acting on the mechanical inertias.

Table 7.2: Pipes dimensions according to numbering of figure 7.1.

Pipe 1 2 3 4 5 6 7 8 9-12 13-16
L[m] 30.48 590.4 29.14 29.14 78.70 72.89 67.06 61.23 24.23 28.96
D[m] 13.02 10.67 7.47 7.47 5.33 5.33 5.33 5.33 4.18 3.05
a[m/s] 1219 1297 1166 1166 1311 1325 1341 1225 1212 1158
λ[−] 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015

Pipe 17-20 21-24 25-28 29 30 31 32 33 34 35
L[m] 30.48 26.85 60.14 79.49 62.06 38.77 42.67 33.96 33.96 304.8
D[m] 2.20 5.015 5.33 5.33 5.33 5.33 5.33 7.47 9.30 10.67
a[m/s] 870 1342 1336 1324 1241 1292 1219 1358 1358 1287
λ[−] 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015
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Figure 7.2: Surge chamber cross sections and elevations.
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Figure 7.3: Pump-turbine characteristic of the pumped storage plant.
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7.2.2 Simulation Results

Transients Simulation Scenarios

Transient tests carried out during commissioning have been performed for different sit-
uations of emergency shutdown and load acceptance/rejection. Two transients tests are
selected for the validation of the simulation results and the corresponding sequences are
the following:

• emergency generating shutdown test: Units 1, 3 and 4 are set to fully opened
guide vanes, y=1, that corresponds to 390 MW under the test head defined by the
upstream reservoir level of 489.2m (1605 ft), Unit 2 being kept in operating. The
guide vanes of the pump-turbine 1, 3 and 4 are closed within 24 seconds with 2
slopes.

• emergency pumping shutdown test: Units 1,3 and 4 are set to 65% guide vane
opening, best pump efficiency point, under an upstream reservoir water level of 481
m (1578 ft), Unit 2 being at rest with the guide vanes closed. The guide vanes of
the pump-turbines 1, 3 and 4 are closed within 16.4 seconds, with two slopes.

The servomotor stroke closing law used for both simulations is based on a closure in
20 seconds from y = 1 to y = 0.08, and 4 seconds from y = 0.08 to y = 0.

Simulation Results for Emergency Shutdown in Generating Mode

The results of the simulation of the emergency shutdown of the units 1, 3 and 4 while
Unit 2 is kept at the same operating point, are presented for the pump-turbine 1, for the
surge tank of Unit 1, and for the level of the 4 surge tanks, in figure 7.4.

The pump-turbine of Unit 1 is operating at the full guide vane opening, y = 1, for
10s, then the electromagnetic torque is set to zero. As a consequence the rotational speed
of the Unit is increasing. To reduce the runaway rotational speed the guide vanes are
closed linearly with 2 slopes thus reducing the discharge and therefore the mechanical
torque of the pump-turbine. When the torque reaches the zero, the maximum over-
speed is attained. Then the discharge becomes also negative and the pump-turbine is in
the turbine dissipation quadrant. The closure of the guide vanes induces a waterhammer
effect in the penstock leading to head fluctuations. The related head fluctuation is quickly
damped as the discharge in Unit 2 remains almost constant. When the guide vanes are
fully closed, after 24s, the discharge value is zero, the rotational speed decreases because
of the negative value of the torque. The operating points of the pump-turbine during the
transient are represented in the Q11(N11) and T11(N11) plane in figure 7.5. Due to the
shutdown of the pump-turbines of Unit 1,3 and 4, the water level of the surge chambers
are first decreasing according to the downstream mass oscillation period between the
tailrace tunnel and the surge chambers. The water level evolutions in the surge chambers
are almost simultaneous for Units 1,3 and 4 while the water level decrease start later on
Unit 2 because the pump-turbine is kept in operation. The influence of the different cross
sections are visible on the time evolution of the water level in the surge tank. The mass
oscillation period is about 100s and is dependant on the water level history as the cross
section of the surge chambers are changing during the transient.
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Figure 7.4: Transient behavior of the pumped storage plant resulting from an emergency
shutdown in generating mode; transient of the pump-turbine Unit 1 in rated values a),
transient of surge chamber of Unit 1 b), transient of the 4 surge tanks c).
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Figure 7.5: Operating point trajectory in the plan Q11(N11) and T11(N11) during the
emergency shutdown in generating mode for Unit 1.

Simulation Results for Emergency Shutdown in Pumping Mode

The simulation results of emergency shutdown of Unit 1, 3 and 4 in pumping mode while
Unit 2 is at rest are presented for pump-turbine 1, surge tank 1 and the 4 surge tanks
water levels, in figure 7.6.

The pump-turbine of Unit 1 is operating at steady state pump operating point with y =
0.65, negative discharge and negative rotational speed for 10s. Then the electromagnetic
torque is set to zero, inducing the slow down of the rotational speed of the Unit 1, the
decrease of the discharge, head and torque. Then the discharge becomes positive and the
pump-turbine is operating in the pump dissipation quadrant. Once the guide vanes are
fully closed the discharge value is zero and the rotational speed is positive but decreasing.
Waterhammer is also induced in the penstock and leads to head fluctuations. Here the
amplitudes require more time to be damped as there is no more discharge in the 4 pump-
turbines. Here the mass oscillation starts by an increase of the water level in the surge
chamber as the initial discharge is negative. The operating points of the pump-turbine
during the transient are represented in the Q11(N11) and T11(N11) plane in figure 7.7.
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Figure 7.6: Transient behavior of the pumped storage plant resulting from an emergency
shutdown in pumping mode; transient of the pump-turbine Unit 1 in rated values a),
transient of surge chamber of Unit 1 b), transient of the 4 surge tanks c).
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Figure 7.7: Operating point trajectory in the plan Q11(N11) and T11(N11) during the
emergency shutdown in pumping mode for Unit 1.

EPFL - Laboratoire de Machines Hydrauliques



7.2. VALIDATION OF SIMSEN-HYDRO 131

7.2.3 Validation

During the transients tests carried out at the commissioning of the pumped storage plant,
the piezometric head time history was recorded on the Unit 1 at the spiral case inlet, at
the draft tube man-door, and the surge chamber. The simulation results in generating
and pumping mode time evolution are compared for theses 3 values and represented in
table 7.3.

Table 7.3: Comparison of simulation results with transients tests carried out on Unit 1
during an emergency shutdown in both generating and pumping mode; simulation in light
red line and measurements in bold black line.

Generating Mode Pumping Mode

By comparing the simulation results with the measurements on site during an emer-
gency shutdown in generating mode it can be noticed that:

• the steady state conditions before the transients presents a very good agreement;
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• the amplitudes and time evolution of water level in surge tank 1 and piezometric
head in draft tube of unit 1 present also a very good agreements;

• the overpressure amplitude of the piezometric head at the unit 1 inlet presents a
discrepancy of 30%, however the time evolution of the piezometric head presents a
good agreement.

By comparing the simulation results with the measurements on site during emergency
shutdown in pumping mode it can be noticed that:

• the steady state conditions of the simulation presents small discrepancies that can
be due to errors on the downstream water level, difference in the friction losses
in pumping and generating mode or difference between scale model and prototype
characteristics;

• the amplitudes of the piezometric head at pump-turbine 1 inlet presents a good
agreement;

• the waterhammer at the pump-turbine 1 inlet is not as damped as in measurements;

• the time evolution of the water level in the surge tank 1 and piezometric head in
the draft tube of unit 1 present discrepancies on the period of the mass oscillation
but the amplitudes fit roughly.

In order to identify the origin of the discrepancies of the surge tank water level time
evolution during the emergency shutdown in pumping mode, the steady state discharges
obtained by simulation is compared to the discharge measured on site. The comparison of
the steady state discharge for generating and pumping mode is presented in table 7.4. The
measured values of the discharges are given with a confidence range of ±8m3/s because of
the poor resolution of the graphical representation of the time evolution of the discharge
from which the value is deduced.

Table 7.4: Steady state initial conditions of discharge for Unit 1.

Test Case Simulation Measurements Error
Q [m3/s] Q [m3/s] [−]

Generating mode 166.8 155.7± 8 +0.07
Pumping mode 98.1 120± 8 −0.18

The comparison of the simulated and measured discharge points out an error on the
discharge in the case of generating mode that is in the range of uncertainties of the
measured value. However, a difference of about 18% is found on the initial conditions
of the discharge in the pumping mode. If only small error arises in turbine mode the
error in pumping mode is probably not due to errors on the friction parameters of the
hydraulic circuit. Therefore, the error is probably due to differences of the pump-turbine
characteristic between the scale model and the prototype.

Moreover, the mechanical power obtained in generating mode differs between the
simulation and the measurements. The measurements report a power of 390 MW for
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the chosen operating point while the simulation predicts only 362 MW. It corresponds
to a difference of efficiency between the scale model and the prototype. It means that
the prototype efficiency is higher than the scale model efficiency. This fact is commonly
admitted.

As the initial discharge in pumping mode is smaller in the simulation than in the
experiments, the amplitudes are also smaller, and thus it reduces the period of oscillation
due to the non-linear cross section of the surge chambers. It also explains the difference
on the initial conditions of the piezometric head whose value would be reduced in the case
of higher discharge and thus presents a better fit with the experiments. Therefore, if the
discharge was higher in the simulation, the waterhammer in the spiral case would show
higher amplitudes in similar fashion as in generating mode.

The error on the amplitude of the waterhammer is also probably due to differences
of the pump-turbine characteristics that influences strongly the overpressure of the emer-
gency shutdown of the pump-turbine. Indeed, as the turbine goes through the ”S” shape
of the pump-turbine during such transient, see figures 7.5 and 7.7, the discharge becomes
negative during the closure of the guide vanes and therefore induces higher overpressure
than in the case of turbines without ”S” shape characteristic.

In spite of the differences between the simulation and the experiments found in pump-
ing mode, the models of hydraulic components developed and implemented in SIMSEN-
Hydro are satisfactory.

7.2.4 Numerical Instabilities

The simulation of the emergency shutdown resulting from a full load rejection of a pump-
turbine shows that the pump-turbine is going through the unstable part of the character-
istic, i.e. the S-shape. The numerical integration of the differential equation set of the
whole system using Runge-Kutta 4th order has proven its robustness, see Appendix A.
However, when simulating the load rejection, numerical instabilities have been pointed
out during the transit through the ”S”. To overcome this numerical problem, it has been
identified that the CFL criteria, equation 3.60, must be fulfilled as follow:

dx

a · dt
= k ; k = 1, 2, 3... (7.1)

Then, for each pipe, the wave speed has to be adapted in order to satisfy the above
criteria. It is acceptable to adapt the wave speed as there are uncertainties on this value
because its analytical value present dispersion compared to the experimental data due
to errors on the wall material properties, dimensions, contact between the pipe and the
support or concrete, or air content. A comparison of the simulation results of a load
rejection of a pump-turbine with guide vane opening y kept constant is presented in
figure 7.8 for both cases: wave speed adapted or not. It appears, that when the turbine
is going through the unstable part of the characteristic, i.e. negative torque, the torque
and the head start oscillating for the simulation without adaptation of the wave speed,
while, the torque and head evolution show stable time evolution for the simulation with
adaptation of the wave speed.

EPFL - Laboratoire de Machines Hydrauliques



134
CHAPTER 7. TRANSIENTS PHENOMENA IN HYDROELECTRIC

POWER PLANTS

T/TR

H/HR

H/HR adapted wave speed

T/TR adapted 
wave speed 

y

[-
]

[-
]

Figure 7.8: Simulation of a full load rejection with constant guide vane opening with and
without adaptation of the wave speed.
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7.3 Hydroelectric Transients

7.3.1 Case Study Definition

In order to highlight hydroelectric interactions, a hydroelectric power plant comprising
both the hydraulic circuit and the electrical installation is modelled. The system investi-
gated comprises an upstream reservoir, a gallery, a surge tank with variable cross section,
2 Francis turbines of 86 MW and 2 generators connected to a 205 kV network, see figure
7.9. The data related to this example are presented in table 7.5. The Francis turbine and
the generator are regulated as follows:

• a turbine power or speed governor acting on the guide vane opening of the Francis
turbine;

• a voltage regulator acting on the excitation field voltage of the generators.

-
KU(s)

+ Uc

-

KP(s)

+Pc
2x86 MW Hydroelectric 
power plant

-
KU(s)

+ Uc

-

KP(s)

+Pc

UNIT 1

UNIT 2

Infinite network
U=205kV, f=50Hz(1), (3)

(1)

(2)

Figure 7.9: Layout of the hydroelectric power plant case study.

To investigate the dynamic behavior of the power plant 3 simulation models are used:
(i) a hydraulic model, (ii) an electric model and (iii) a hydroelectric model. Then, the
hydroelectric model simulation results are compared with either the hydraulic model or the
electric model respectively for hydraulic disturbance and electric disturbances. Therefore,
3 standard disturbances are simulated:

• a total load rejection: the 2 circuit breakers between the transformers and the
synchronous machines of both Units, see figure 7.9 (1), are opened at t = 1 s, while
the guide vanes of the 2 Francis turbines are closed linearly in 7 s; hydraulic and
hydroelectric models are compared;
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Table 7.5: Main dimensions of the power plant.

Reservoir Gallery Surge Tank
Ho = 85 m L = 4000 m AST (ZST < 77) = 700 m2

D = 10 m AST (77 < ZST < 87) = 400 m2

λ = 0.02 AST (ZST > 87) = 700 m2

a = 1000 m/s

Penstock Turbine Generator
L = 125 m Hn = 82 m Sn = 98 MVA
D = 5.5 m Qn = 114 m3/s Un = 17.5 kV
λ = 0.02 Nn = 200 rpm f = 50 Hz

a = 1250 m/s Tn = 4.11 · 106 Nm pair pole = 15
Jt = 8.415 · 104 kg ·m2 Jg = 1.683 · 106 kg ·m2

Kshaft = 1.27 · 1010 Nm

• an earth fault: the 3 phases between the synchronous machine and the transformer
of Unit 1 are connected to the ground by closing the circuit breaker (2) of figure
7.9, electric and hydroelectric models are compared;

• an out of phase synchronization: the circuit breaker between the transformers and
the synchronous machines of Unit 1, see figure 7.9 (3), is closed with an error of
synchronization with the infinite network, only the hydroelectric model is used.

7.3.2 Load Rejection

The first investigation deals with the case of a total load rejection where the circuit-
breaker between the transformer and the generator is tripped. Simultaneously, the guide
vanes of the two Francis turbines are closed in 7 seconds linearly. The evolution of the
main variables during the total load rejection is presented in figure 7.10.

At the outset, the electromagnetic torque of the generators drops to zero instanta-
neously, as a result the rotational speed of the 2 Units increases. The closure of the guide
vanes reduces the hydraulic torque quickly limiting the maximum rotational speed. The
guide vanes closure induces a waterhammer effect in the adduction part of the power plant
and a mass oscillation between the reservoir and the surge tank.

The comparison between the hydraulic and hydroelectric simulation results are shown
in figure 7.11 for the rotational speed and the pressure at the turbine inlet. In the
hydraulic model the electrical installation is modelled by a constant torque dropping
to zero instantaneously at t = 1s. It can be seen that the 2 simulation results are
identical and therefore a hydroelectric model is not required for simulating such transient
phenomenon.
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Figure 7.10: Evolution of the turbine 1 and surge tank variables during total load rejection.

 

Figure 7.11: Comparison of the evolution of the turbine 1 rotational speed n (left) and
inlet piezometric head H (right) obtained with two simulations: simulation with hydraulic
model and simulation with the hydroelectric model.
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7.3.3 Earth fault

The effect of an earth fault occurring between the generator and the transformer of Unit
1 is evaluated using both the electric and hydroelectric simulation models. Depending
on the duration of the fault, the synchronization is maintained or lost after the fault
is removed, leading to the critical time tc. Figure 7.12 presents the comparison of the
simulation results obtained using the two models, for a duration inferior and superior to
the critical time tc. It is pointed out that the critical time tc is underestimated by 2%
using the electric model in which the turbine torque is assumed constant. The difference
between the 2 simulation results is due to the action of the turbine power regulator that
is taken into account by the hydroelectric model. For the simulation, it can be seen that
the maximum amplitudes are well predicted by the electric model but the time history
is more realistic using the hydroelectric simulation as the influence of the turbine speed
governor is properly taken into account. However, its influence on the critical time of the
duration of the fault is negligible.

 

Figure 7.12: Comparison of the effect of an earth fault on Unit 1 with a duration under
and over critical time tc obtained with two simulation models: electric model and the
hydroelectric model. On the left the synchronism is kept and on the right it is lost.

7.3.4 Out of Phase Synchronization

Three conditions are required for the success of the synchronization of the generator to the
power network during the group start-up: the frequency, the phase and the magnitude
have to match the corresponding network conditions before the closure of the circuit-
breaker (3). The worst synchronization cases occur when the generator and the network
are 120̊ and 180̊ out of phase. The simulation results obtained with the hydroelectric
model are presented in figure 7.13 for Unit 1, and the impact on Unit 2 is presented in
figure 7.14 for the out of phase synchronization of 120̊ . For these simulations a turbine
speed governor is used in state of the turbine power governor.

In the case of a 120̊ out of phase synchronization, the closure of the circuit-breaker
induces a strong transient electromagnetic torque up to 6 pu that produces rotational
speed variations. This induces a reaction of the turbine speed governor acting on the
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Ttem1/TR 

Figure 7.13: Evolution of the electromagnetic torque, the head of the turbine and rota-
tional speed of the group number 1 during synchronization fault of 120̊ electrical degree.

guide vane opening in order to keep the rotational speed constant. Both effects contribute
to the variation of the inlet pressure variations of the Unit 1 turbine. In addition, the
first peak of the electromagnetic torque produces a free torsional vibrations at 63 Hz of
the shaft line constituted of the turbine and the generator inertias linked through the
connecting shaft. This dynamic response of the structure is observable on the pressure at
the inlet of the turbine of Unit 1 that evidences the coupling between the hydraulic and
mechanical parts. It is interesting to notice that Unit 2 is also affected by the fault on
Unit 1 through both: the piping system and the electrical lines. Thus, the head of the
turbine and the current of the stator of the generator of Unit 2 are disturbed by the out
of phase synchronization of Unit 1.

The simulation results of the 180̊ out of phase synchronization are presented for Unit
1 in figure 7.15. It can be noticed that, as expected, this fault produces stronger current
variations in the stator than for 120̊ . The statoric current reaches 8 pu while transient
electromagnetic peak is reduced to 4 pu.

The simulation of the out of phase synchronization points out clearly the interaction
between the hydraulic and electric parts of the installation due to the link between the
2 Units through the piping and the electrical lines. Such influence can be analyzed only
with hydroelectric simulation model.
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Figure 7.14: Effects of 120̊ out of phase fault of the Unit 1 on the Unit 2.
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Figure 7.15: Time evolution of the electromagnetic torque, the head of the turbine and
rotational speed of Unit 1 due to 180̊ out of phase synchronization.
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7.4 Stability of Turbine Speed Governor

Hydroelectric interactions have been pointed out by simulating classical fault on a hydro-
electric power plant such as total load rejection, earth fault and out of phase synchro-
nization. The maximum amplitudes of dimensioning values such as current, pressure, and
rotational speed, are properly predicted by either single electric or single hydraulic models
as they depend mainly on short term transients. On the other hand differences on long
terms transients are highlighted. As a consequence, the difference in the dynamic behavior
of the single electric or hydraulic model compared with the hydroelectric model becomes
more significant when the focus is put on the stability of the turbine speed governor.

This is the reason why the stability of turbine speed governor during load rejection is
investigated using 2 different simulation models: (i) a hydraulic model and (ii) a hydro-
electric model. In order to emphasize the possible interactions, the case of an islanded
production mode resulting from the disconnection from the infinite electrical grid is sim-
ulated using the hydroelectric model.

7.4.1 Case Study Definition

The investigated hydroelectric power plant comprises an upstream reservoir, a 1100 meters
long penstock, a 230 MW Francis turbine connected by mechanical inertias to a 250
MVA synchronous generator linked to a 205 kV infinite network through a 17.5/205 kV
transformer. A passive RL load is also connected on the high voltage side. The layout
of the hydroelectric power plant is presented by figure 7.16. The main dimensions of the
power plant are summarized in table 7.6. The installation is driven by a turbine speed
governor and a generator voltage regulator. Both are of the PID type.

-
KU(s)

+ Uc

-

KN(s)

+Nc

1x230 MW 
Hydroelectric 
power plant

UNIT 1 Infinite network
U=205kV, f=50Hz(1)

Passive 
RL load

Figure 7.16: Layout of the hydroelectric power plant case study.

The transient behavior investigated is a 25% load rejection simulated as follows:

• (i) hydroelectric model: the infinite power network is disconnected at t = 10 s by
tripping the circuit breaker (1), see figure 7.16. The synchronous generator faces an
isolated production mode, i.e. connected with only the passive RL load 25% smaller
than the original condition;
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Table 7.6: Main dimensions of the power plant.

Reservoir Penstock Turbine Generator

Ho = 315 m L = 1100 m Hn = 309 m Sn = 250 MVA
D = 5 m Qn = 85.3 m3/s Un = 17.5 kV
λ = 0.02 Nn = 375 rpm f = 50 Hz

a = 1100 m/s Tn = 5.85 · 106 Nm pair pole = 8
Jt = 5 · 104 kg ·m2 Jg = 1 · 106 kg ·m2

Kshaft = 5 · 108 Nm

• (ii) hydraulic model: the dynamic behavior of the synchronous generator is modelled
by a constant torque dropping by 25% instantaneously at t = 10s.

The initial conditions in terms of power distribution are given in table 7.7.

Table 7.7: Initial conditions of power distribution.

Element Active Power Reactive Power

Generator P = −200 MW Q = −100 MVAR
Passive Load P = 150 MW Q = 50 MVAR

Network P = 50 MW Q = 50 MVAR

7.4.2 Simulation Results and Analysis

The simulation results of the 25% load rejection obtained with the hydraulic and the
hydroelectric models are presented respectively in figure 7.17 top and bottom. The time
evolution of the rated head H/Hn, discharge Q/Qn, rotational speed N/Nn, torque T/Tn,
guide vane opening y and electromagnetic torque Tel/Tn are represented. It can be seen
that the simulation results obtained using the hydraulic model is fully stable and stable
operating conditions are recovered 40s after the disturbance. However, using the same
turbine speed governor settings with the hydroelectric model leads to a dynamic response
at the limit of stability of the system, and after 90s, the system still not recovers stable
operating conditions. This difference is due to the strong influence of the dynamic behavior
of the electrical installation in the isolated production mode. This difference is evidenced
by the time evolution representation of the rated electromagnetic torque Tel/Tn obtained
with that of the hydroelectric model compared with the hydraulic model. This means
that for isolated production modes, the set of parameters of a turbine speed
governor cannot be determined with only a hydraulic simulation model.

In order to deeply analyze the dynamic behavior of both models, the transfer function
of the turbine G(s) is identified by simulation considering the guide vane opening y as in-
put variable and the turbine rotational speed N as output variable. The transfer function
of the turbine is expressed in the Laplace domain as follows:

G(s) =
N(s)

Y (s)
(7.2)
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Figure 7.17: Simulation results of the transient of the Francis turbine resulting from a
25% load rejection with the hydraulic model (top) and the hydroelectric model (bottom).

A PRBS signal of 2% amplitude is superimposed on the mean value of the guide
vane opening y for the identification of the transfer function of the turbine. From the
time domain simulation the time history of the rated rotational speed and of the guide
vane opening are used for the calculation of the transfer function using the hydraulic
and hydroelectric models. The 2 resulting transfer functions are compared in figure 7.18.
First, the natural frequencies of the mechanical inertias are visible at 3.5 Hz and 16.3
Hz. The lowest one is an anti-resonance of the generator inertia while the second one
is the resonance of the turbine inertia. The odd eigen frequencies of the penstock are
also visible for f = 0.25, 0.75, 1.25, Hz and so on, corresponding respectively to f =
a/(4l), 3a/(4l), 5a/(4l), and so on, up to the 20th eigen frequency as the penstock is
modelled using 20 nodes.

However, the 2 transfer functions are almost identical except for very low frequencies
where the amplitude of the hydroelectric transfer function exhibits much higher ampli-
tudes than the hydraulic transfer function. These high amplitudes result from the dynam-
ics of the electrical installation in the isolated production mode. Because this difference
appears at very low frequency, it restrict the performances of the turbine speed governor.
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As consequence, to be stable in the hydroelectric production mode, the integrator time
constant Ti of the PID turbine speed governor is increased to reduce the amplification at
low frequencies. The initial integration time constant was Ti = 3.7 s and is increased to
Ti = 14 s to have an efficient governor; the gain and the derivative time constant remain
unchanged (Kp = 1, Td = 1.21 s). The simulation results of the dynamic behavior of the
installation resulting from a 25% load rejection using the hydroelectric model is presented
in figure 7.19. It can be seen that, as expected, the system is again fully stable in the
isolated production mode.

Eigen frequencies of 
mechanical inertias First eigen frequency 

of the penstock (a/(4l))

Second eigen frequency 
of the penstock (3a/(4l))

Low frequency influence of 
electrical isolated power network

Figure 7.18: Transfer function of the turbine G(s) = N(s)/Y (s) in the range 0 → 25Hz
on the left, and 0 → 1Hz on the right.

H/Hn Q/Qn

T/TnTel/Tn

y

N/Nn

Figure 7.19: Simulation results of the transient of the Francis turbine resulting from a 25%
load rejection with the hydroelectric model and the modified integration time constant of
the turbine speed governor.

EPFL - Laboratoire de Machines Hydrauliques



7.5. HYDROELECTRIC STABILITY IN ISLANDED PRODUCTION
MODE 145

7.5 Hydroelectric Stability in Islanded Production

Mode

Islanded power networks feature a small number of power plants and loads leading to
high interactions between all the components. Therefore high performance governors
must be used for each power unit. It is even more important for hydraulic power plants
having a dynamic behavior strongly related to the hydraulic circuit layout. Since every
hydraulic power plant is unique, no standard governor setting can be used. Hydraulic
power plants featuring a long penstock and a surge tank need to be properly modelled
in order to take into account waterhammer, surge tank water level oscillations and the
effects of the turbine characteristics. All these phenomena present a non-linear behavior,
thus restricting the performances of the turbine speed/power governor. To ensure the
stability of the turbine governor, the governor parameters have to be validated by a time
domain simulation. The order of the model of the hydraulic installation has to be adapted
to the hydraulic layout and the investigated case, as advised by the ”working group on
prime mover and energy supply models for system dynamic performance studies” [92].
It appears that hydroelectric power plants featuring a surge tank and a long penstock
connected to an islanded power network require a high order model. Such an installation
is investigated in this section.

7.5.1 Case Study Definition

The investigated test case is an islanded power network comprising:

• a 1 GW hydroelectric power plant with 4× 250 MW Francis turbine;

• 4× 1.3 GW thermal power plants;

• 2 passive consumer loads: one 200 MW load that can be tripped and one 2.1 GW
to 6 GW whose power is adapted to the network power level considered.

The 5 power plants and the 2 loads are connected through a 400 kV transmission line
network as presented by figure 7.20. The case is investigated with a 3-step approach. (i)
The modelling of a 1 GW hydroelectric power plant in an islanded power network consid-
ering the waterhammer effects, the surge tank water level oscillations and the dynamics
due to turbine characteristics is performed. The determination of the governor parame-
ters is based on the identification of the turbine transfer function using a time domain
simulation with a PRBS excitation. (ii) A 1.3 GW thermal power plant is modelled using
a simplified approach based on the steam flux. (iii) Combining both models, the whole
6.2 GW islanded power network comprising the 4 thermal and the hydraulic power plants
is set up. The turbine governor performances are assessed for 5 different hydro to thermal
power ratios.

7.5.2 Modelling of the Hydroelectric Power Plant

Hydraulic power plant model

The power plant is made of a 1′515 meters long gallery, a surge tank with variable section,
a 1′388 meters long penstock and a manifold feeding 4× 245 MW Francis turbines. The
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Figure 7.20: Islanded power network structure.
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main parameters of the hydraulic circuit are summarized table 7.8.

Table 7.8: Main dimensions of the hydraulic installation.

Element Dimensions

Reservoir Ho = 364 m
Gallery L = 1′515 m

D = 8.8 m
a = 1′000 m/s

Surge tank Mid tank section: AST = 133 m2

Penstock L = 1′388 m
D = 8.8/7.15 m
a = 1′200 m/s

Francis turbine Pn = 250 MW
Nn = 333.3 rpm
Qn = 75 m3/s
Hn = 350 m
ν = 0.23
Dref = 2.82 m
Jt = 1.7 · 105 kg ·m2

Generator Sn = 270 MVA
Un = 18 kV
f = 50 Hz
Pole pairs: p = 9
Stator windings: Y
JG = 1.54 · 106 kg ·m2

Coupling shaft K = 3.62 · 108 Nm/rad
Viscous damping: µ = 6.7 · 103 Nms/rad

The gallery and the penstock are respectively discretized into 22 and 31 elements. The
turbine draft tube is also modelled by 2 pipe elements. The Francis turbine characteristics,
discharge and torque factors versus the speed factor are presented for different guide vane
opening values y, see figure 7.21.

The block diagram of the PID governor of the Francis turbine is presented in figure
7.22. The governor structure includes both speed and power feedbacks. The network
frequency feedback is neglected in this study because only islanded and isolated production
modes are considered. The servomotor of the guide vanes is modelled using a first order
transfer function with a time constant of τsv = 0.1 s.

Turbine governor parameters determination

The transfer function of the system to be regulated, G(s), should be determined for setting
the parameters of the turbine governor. The system consists of a turbine with the guide
vane opening y as input parameter and the rotational speed N as output parameter. The
transfer function of the turbine is identified for 4 different power levels: P/Pn = 0.4, 0.7, 1
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Figure 7.21: Turbine characteristics Q11 = Q11(N11), left, and T11 = T11(N11), right, for
different GVO opening.

and 1.15 p.u., in order to take into account the influence of the local gradient of the
turbine characteristics.

The model of the hydraulic installation setup using SIMSEN-Hydro is of a high order
(up to 150 ODE), however the transfer function of the system cannot be directly inferred
from them. The transfer function of the turbine including the hydraulic circuit is identified
through a time domain simulation considering a white noise excitation. A PRBS signal
of 5% amplitude around a mean value of guide vane opening is used as excitation signal,
see figure 7.23. The mean value is set in accordance with the turbine power for which the
transfer function is identified. The PRBS excitation function [91] is preferred to an indicial
response because of its higher frequency content that evidences all natural frequencies of
the system. The PRBS signal is obtained using a shift register [36].

The amplitude and phase spectra of the turbine transfer function obtained from the
PRBS identification, for P/Pn = 0.4 is presented in figure 7.24. The amplitude of the
transfer function reveals that the hydraulic system natural frequencies are mainly related
to the piping system, the mechanical masses and the surge tank. The first natural fre-
quency of the piping system is fo = 0.2 Hz and corresponds to the fourth wavelength
free oscillation mode of the penstock given by f = a/(4l). The natural frequencies above
correspond to higher mode eigen frequencies of the piping system. The natural frequency
of the mechanical masses presents a high amplitude at fm = 7.6 Hz and is given by [75]:

ω2
m1,2 =

1

2
·
(
Ω2

1 + Ω2
2

)
±

√(
Ω2

2 − Ω2
1

2

)2

+ Ω4
12 (7.3)

Where :

Ω2
1 =

Kshaft

JG

; Ω2
2 =

Kshaft

JT

; Ω4
12 =

K2
shaft

JG · JT

(7.4)

The anti-resonance of the generator inertia corresponding to Ω1 is also visible for fm = 2.44
Hz. The eigen frequency of the mass oscillation between the upstream reservoir and
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Figure 7.22: Block diagram of the turbine governor.

the surge tank is calculated with equation 6.6 and is equal to fST = 0.00866 Hz, i.e.
TST = 115.5 s. This frequency is visible also as an anti-resonance on the spectrum. The
anti-resonance behavior results from the fact that when more power is required, the guide
vanes open, resulting in an increase of the discharge coming from the surge tank but
reducing its water level, thus the available head at the turbine inlet. As a consequence,
the hydraulic power may decrease depending on the governor action. Similarly, the gate
opening induces a pressure drop at the turbine inlet resulting from a waterhammer effect
leading to a non-minimum phase visible on the lin-lin phase plot. The non-minimum phase
corresponds to half a period of the penstock, i.e. 2.5 seconds. This non-minimum phase is
clearly pointed out in figure 7.25 where the guide vane step response are simulated for the
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Figure 7.23: Open loop transfer function identification with a PRBS excitation for P/Pn =
0.4.
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4 different power levels. It can be noticed that even if the guide vanes open, the rotational
speed does not increase immediately due to the waterhammer under pressure. It can be
also noticed that the higher the power level the higher the non-minimum phase influence.
Therefore, this non-minimum phase is strongly restrictive for the governor performance.
A large integrator time constant Ti is consequently required to ensure the system stability.

Surge tank

Pipe

Rotating inertias

 

Frequency [Hz]

Frequency

Generator inertia

Frequency [Hz]

A
m

p
lit

u
d

e 
[-

]

Figure 7.24: Amplitude (left) and phase (right) of the transfer function of the Francis
turbine for P/Pn = 0.4 including the hydraulic circuit and mechanical inertia.

The transfer function of the turbine is identified for the 4 power levels considered
P/Pn = 0.4, 0.7, 1 and 1.15 p.u. and are represented in figure 7.26. As the 4 transfer
functions are different because of the turbine characteristic, the determination of the PID
parameters is based on the most restrictive one, i.e. on the most critical behavior of the
system. The parameters of the governor are set in order to ensure a phase margin of
60 − 90̊ , a gain margin of 6 − 9 dB, a cut-off frequency of 0.02 Hz to avoid resonance
amplification and a slope of −20 dB/decade at the cut-off frequency.

Then, the assessment of the regulator performance is performed by simulating the
dynamic behavior of the hydraulic power plant resulting from a successive 6% load rejec-
tion and acceptance for P/Pn = 0.4, 0.7, 1 and 1.15 p.u.. The electromagnetic torque is
modelled by an external torque function which does not take into account the dynamic
behavior of any electrical installation. The resulting time evolution of the rotational speed
N/Nn and guide vane position y are presented in figure 7.27 for P/Pn = 0.7 and 1.15 p.u..
The speed deviations obtained from the simulation correspond to 1.5% and 4.5% of the
nominal speed. For P/Pn = 0.7 p.u. the speed is stabilized after 10 seconds while it takes
150 seconds to stabilize the speed for P/Pn = 1.15 p.u. The full load appears to be more
critical because of the influence of the surge tank. A surge phenomenon occurs between
the PID governor and the surge tank. It is clearly visible from the time evolution of the
guide vane opening that fluctuates at the mass oscillation period (TST = 115 s). The
cross section of the surge tank is far from the Thoma section calculated to be 80m2 ac-
cording to equation 6.28. It appears clearly that this criterion is not sufficient, especially
at full load where the turbine efficiency gradient becomes negative (dη/dQ < 0). The
governor parameter values have to be validated by a time dependent simulation to ensure
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Figure 7.25: Non-minimum phase of the turbines evidenced by rated transient rotational
speed N/Nn resulting from a guide vane opening step response for different power levels
P/Pn = 0.4, 0.7, 1, 1.15.

the stability on the whole operating range, even for large stroke variation of the guide
vanes.

7.5.3 Modelling of the Thermal Power Plant

The turbine governor parameter values are validated only with the hydraulic simulation
model. To investigate the influence of the connection to an islanded power network, a
model of a thermal power plant is set up. The thermal power plant is modelled with a
constant pressure tank, the steam generator dynamic being neglected, feeding the High
Pressure steam turbine (HP) through a regulating valve. Then the vapor flux transits
through a re-heater before feeding 2 Low Pressure (LP) steam turbines as presented in
figure 7.28. The model of this thermal power plant is made of a proportional governor
with a frequency drop feedback and a speed feedback, a valve model, the model of the HP,
LP1 and LP2 steam turbines and the mechanical masses as presented in figure 7.29. The
parameter values of the model are given in table 7.9. The model of the steam turbines
is made of 3 parallels branches, one for each steam turbine, driven by the valve opening.
A time delay of b = 4 seconds is considered between the high pressure steam turbines
and the low pressure steam turbines to take into account the transit time of the steam
through the re-heaters. The 3 turbines are modelled by first order transfer functions with
a short time constant for the high pressure and a long time constant for the low pressure
steam turbines. The model includes also simplified steam turbines characteristics that are
deduced from [9]. The inertia, stiffness and damping of the mechanical shaft are obtained
from [37]. The synchronous machine excitation is controlled by a ABB Unitrol voltage
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Figure 7.26: Amplitude (left) and phase (right) of the transfer function of the Francis
turbine for P/Pn = 0.4, 0.7, 1 and 1.15 p.u..
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Figure 7.27: Time evolution of rotational speed N/Nn and guide vane opening GV O of
the Francis turbine during a 6% load rejection at 0.7 p.u. (top) and 1.15 p.u. (bottom)
power level.

regulator. The synchronous machine is connected to a 28.5/400 kV transformer with Yd5
connection. As the synchronous machine is of the solid iron rotor type, its modelling takes
into account the damping of the windings, saturation and leakage effects.
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Figure 7.28: Layout of the thermal power plant.

The dynamic response of the thermal power plant is investigated for a 6% load re-
jection. The time evolution of the rotational speed N/NR, the electromagnetic torque
Tem/TR and the valve opening yvalve are represented in p.u. in figure 7.30. The rotational
speed recovers stability after 10 seconds, demonstrating that the dynamic response of the
thermal power plant is very efficient. However, due to the proportional nature of the gov-

EPFL - Laboratoire de Machines Hydrauliques



154
CHAPTER 7. TRANSIENTS PHENOMENA IN HYDROELECTRIC

POWER PLANTS

ernor, a static error can be noticed after full stabilization of the system. The pressurized
steam reservoir enables the thermal power plant to have short time constant. The static
error is not compensated because steam generator dynamic is neglected. The transient
response of this thermal power plant was validated by comparison with measurements on
a power plant performed by EDF [24].

Table 7.9: Main dimensions of the thermal power plant.

Element Dimensions

Steam turbines model τHP = 0.5 s
τLP = 12 s
b = 4 s
Kp = 25

Mechanical inertias JHP = 1.867 · 104 kg ·m2

JLP1 = 1.907 · 105 kg ·m2

JLP2 = 2.136 · 105 kg ·m2

Jgen = 5.223 · 104 kg ·m2

Mechanical shaft stiffness K1 = 3.614 · 108 Nm/rd
and damping K2 = 8.206 · 108 Nm/rd

K3 = 4.116 · 108 Nm/rd
µ1 = 6.719 · 103 Nms/rd
µ2 = 7.06 · 103 Nms/rd
µ3 = 7.06 · 103 Nms/rd

Generator Sn = 1400 MVA
Un = 28.5 kV
f = 50 Hz
Polepaire: p = 2
Stator windings: Y

7.5.4 Simulation of a Load Rejection in Islanded Power Network

To investigate the influence of the power network, a simulation model of an islanded power
network is build up. The islanded power network of concern, see figure 7.20, is composed
of the hydraulic power plant, 4 thermal power plants and 2 passive consumer loads. The
5 power plants represent all together a 6.2 GW power network. Figure 7.31 presents
the topology of this power network where the power plants are connected to 2 passive
consumer loads through 400 kV transport lines. The LR parameters of the 2 consumer
loads are set in order to absorb the production of all the power plant of the network. One
is a 200 MW load and the other one represents the complement to the total power of the
islanded power network. In order to investigate the transients due to a load rejection, the
200 MW consumer load is disconnected by tripping the circuit breaker considering the 5
different network power levels given in table 7.10.

For completness, the electrical installation of the hydroelectric installation is included
in the simulation model. The 4 hydrogenerators are 270 MVA synchronous machines
and are connected to the islanded network through 18.5/400 kV Yd5 transformers. The
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Figure 7.29: Block diagram of the model of the thermal power plant.

Table 7.10: Power distribution.

Hydraulic Power Production Thermal Power Production Power Ratio
Phydro PTH PHydro/Ptot

1 GW 1.3 GW 0.43
1 GW 2.6 GW 0.28
1 GW 3.9 GW 0.20
1 GW 5.2 GW 0.16
1 GW ∞ 0
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Figure 7.30: Transient response of the 1300 MW thermal power plant resulting from a
6% load rejection.

synchronous machine excitations are controlled by an ABB Unitrol voltage regulators.
The synchronous machines are of the laminated rotor type. The model is considering
saturation, leakage and damping effects of windings, allowing taking into account a sub-
transient behavior.

The Power System Stabilizers -PSS- of the hydroelectric power plant is not considered
in this investigation in order to focus on the performances and stability of the turbine speed
governors. The use of PSS would help reducing the speed deviations as demonstrated by
Kamwa et al. [56] but the influence of such device is out of the scope of the present work

Frequency analysis

The transfer function of the turbine connected to the power network is re-identified for
3 different network power levels: Ptot = ∞, 6.2 and 2.3 GW, the power of the hydraulic
power plant being 1 GW. The amplitude spectra of the resulting transfer function are
presented by figure 7.32. From the new transfer function an additional natural frequency
with high amplitude is pointed out at 1.36Hz. This corresponds to the synchronous
machine natural frequency that depends on the operating point of the generator, voltage
regulator and system configuration [59]. The source of this frequency was checked by
introducing a sinusoidal excitation added to the wicket gate mean value in open loop
conditions.

A high stabilization effect of the power network can be noticed on the amplitude
spectrum of the turbine transfer function for the low frequencies. The attenuation and
the frequency range affected by the network become smaller as the level of the power
network decrease. The power network behaves like a high-pass filter. It means that
the perturbations of the rotational speed at low frequencies are compensated by the
power network ”stiffness” and that the higher the power level of a network, the lower the
performances of the governor required.
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Figure 7.31: Islanded power network.

Transient analysis

A time domain simulation of the tripping of the 200 MW consumer load is performed
without considering the synchronous machine natural frequency in the turbine speed gov-
ernor design. The resulting turbine rotational speed evolutions are presented figure in
7.33. As expected, whatever the power level of the network, the turbines operation is
unstable and the rotational speed exhibits a fluctuation at 1.36 Hz. To avoid a resonance
between the turbine speed governor and the synchronous machine, the filter time con-
stant of the turbine rotational speed is reduced to τ = 0.3 s. Consequently, the turbine
rotational speed remains stable as presented in figure 7.34. As expected from the turbine
transfer function analysis, the islanded network power level has a strong influence on the
speed deviation. For infinite power level the tripping of the 200 MW load is almost not
perceptible while for a ratio PHydro/Ptot = 0.43 the speed deviation reaches 3.5%. The
amplitudes of the speed deviation are reported in figure 7.35 as a function of the ratio
between the power of the hydraulic part (1 GW here) and the power of the whole network.

7.5.5 Concluding Remarks

This investigation demonstrates the importance of a high order modelling in the case of a
hydroelectric power plant featuring a surge tank with small diameter and a long penstock
in islanded power networks. A detailed set up and an analysis procedure necessary to
ensure the hydraulic turbine governor stability are presented. The case of a 1 GW hydro-
electric power plant connected to a 5.2 GW islanded power network is investigated. The
transfer function of the hydraulic turbine is identified using a time domain simulation with
a PRBS excitation. This method has the advantage to evidence all the natural frequencies
of the hydraulic system. The governor performances are tied to the natural frequencies
of the power plant. To overcome the restrictions on the stability criterion of the surge
tank due to the turbine characteristics linearization, the turbine governor parameters are
validated by time domain simulations. The analysis of the transfer function of the tur-
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Figure 7.32: Francis turbine transfer function considering connection to an infinite power
network (top), 5.2 GW power network (middle) and 1.3 GW power network (bottom).
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Figure 7.33: Francis turbine rotational speed evolution after 200 MW load tripping for
PHydro/Ptot = 0.43, 0.28, 0.2 and 0.16 without filter modification.

bine in different islanded production levels, evidences a stabilization effect below 1 Hz
in larger power networks. In the case of weak power networks, the stability of hydraulic
installations with a long penstock featuring natural frequencies in this frequency range
can be strongly affected. A study taking all these considerations into account eases the
final tuning of governors and hence reduces the commissioning delay.
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Figure 7.34: Time evolution of the turbine rotational speed resulting from the tripping of
a 200 MW load for different thermal power plant level, with filter modification.
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Figure 7.35: Speed deviation due to a 200 MW load tripping as a function of power ratio
between the hydraulic power plant and the total power of the islanded power network.
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Appendix A

Numerical Integration Methods

The set of ordinary differential equations (ODE) to be solved in SIMSEN is the following:

[A] · dx
dt

+ [B(t, x)] · x = c (A.1)

The integration method used in SIMSEN to solve the system of equation A.1 is the ex-
plicit 4th order Runge-Kutta method (RK). This method might presents some restrictions
in terms of stability for solving stiff problems. Stiff problems are characterized by:

• high stiffness in the problem resulting in very high eigen frequencies of the system
to be solved;

• or, system presenting large differences of order of magnitudes leading to large dif-
ference between the smallest and the highest eigen values.

Stiff systems might be encountered in multi-physics system such as hydroelectric power
plants where electrical devices present time constants of τ = 0.001 s and hydraulic mass
oscillations period of T = 500 s. In addition, the explicit RK method presents a stabil-
ity domain covering the main part of the left hand complex plan that excludes system
physically unstable. Therefore, a more robust method for checking the validity of sim-
ulation results is necessary. Implicit integration methods are usually used to overcome
integration stability problems. Three test cases are considered for comparing the explicit
and the implicit methods: (i) waterhammer effect in pipe; (ii) surge effect due to physical
instabilities; and (iii) van der Pol equation.

A.1 Integration Methods

The differential equation set of interest can be expressed in the following compact form:

dy

dx
= f(x, y) ; y(xo) = yo (A.2)

To solve this ordinary differential equation set, explicit an implicit RK methods are
investigated.
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A.1.1 Explicit Runge-Kutta Method

The explicit Runge-Kutta sth order method applied to the system A.2 gives:

k1 = f(xo, yo)
k2 = f(xo + c2 · h, yo + h · a21 · k1)
k3 = f(xo + c3 · h, yo + h · (a31 · k1 + a32 · k2))
...
ks = f(xo + cs · h, yo + h · (as1 · k1 + ...+ as,s−1 · ks−1))
y1 = yo + h · (b1 · k1 + ...+ bs · ks)

(A.3)

Where h = x1 − xo and the parameters aij, bi, ci are given in the table A.1.

Table A.1: Parameters of the explicit Runge-Kutta method.

0
c2 a21

c3 a31 a32
...

...
...

. . .

cs as1 as2 · · · as,s−1

b1 b1 · · · bs−1 bs

Using the simplified approach described by Butcher for a 4th order method, the para-
meters of table A.1 gives the parameters table A.2:

Table A.2: Parameters of the Runge-Kutta explicit method 4th order.

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 2/6 2/6 1/6

The table A.2 gives the following set of equations:

k1 = f(xo, yo)
k2 = f(xo + h/2, yo + h/2 · k1)
k3 = f(xo + h/2, yo + h/2 · k2)
k4 = f(xo + h, yo + h · k3)
y1 = yo + h/6 · (k1 + 2 · k2 + 2 · k3 + k4)

(A.4)

The triangular structure of the table indicates that a kn can be calculated directly from
the previous ki<n. No iteration are necessary for the computation of y1. The method is
named ERK.
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A.1.2 Implicit Runge-Kutta Method

The implicit s-stage Runge-Kutta method [42] leads to the following expression:

ki = f(xo + ci · h, yo + h ·
s∑

j=1

aij · kj) ; i = 1, ..., s

y1 = yo + h ·
s∑

i=1

bi · ki

(A.5)

The table used for the explicit method is extended to the aij above the diagonal. The
method is named IRK method. Then a given kn is computed by iteration considering ki>n.
The ki values converge if the Lipschitz condition (with the L is a constant) is fulfilled:

h <
1

L ·maxi

∑
j |aij|

(A.6)

Several set of aij, bi, ci parameters can be used and present different stability patterns
and have to be chosen by experience depending on the nature of the system to be solved.
Here 3 methods are tested, the Euler and Radau IIA 3rd and 5th order method.

Implicit Euler Method

The Euler implicit method provides the parameters of table A.3:

Table A.3: Parameters of the Euler implicit method.

1 1
1

Implicit Radau IIA 3rd Order Method

The Radau IIA 3rd order method provides the parameters of table A.4.

Table A.4: Parameters of the Runge-Kutta Radau IIA 3rd order method.

1/3 5/12 −1/12
1 3/4 1/4

3/4 1/4

The table A.4 gives the following set of equations:

k1 = f(xo + 1/3 · h, yo + h/12 · (5 · k1 − k2))
k2 = f(xo + h, yo + h/4 · (3 · k1 + k2))
y1 = yo + h/4 · (3 · k1 + k2)

(A.7)

Implicit Radau IIA 5th Order Method

The Radau IIA 5th order method provides the parameters of table A.5.

EPFL - Laboratoire de Machines Hydrauliques



166 APPENDIX A. NUMERICAL INTEGRATION METHODS

Table A.5: Parameters of the Runge-Kutta Radau IIA 5th order method.
4−

√
6

10
88−7·

√
6

360
296−169·

√
6

1800
−2+3·

√
6

225
4+

√
6

10
296+169·

√
6

1800
88+7·

√
6

360
−2−3·

√
6

225

1 16−
√

6
36

16+
√

6
36

1
9

1 16−
√

6
36

16+
√

6
36

1
9

A.2 Comparison of the Methods

Three test cases have been selected to compare performances and stability of the 3 inte-
grations methods described above. The test cases are the following: (i) the waterhammer
effect in pipe due to valve closure; (ii) the surge effects due to physical instabilities related
to mass flow gain factor; and (iii) the van der Pol equation.

For both hydraulic cases, the parameters of the piping system are the same. The test
case piping layout is presented in figure A.1 and the related parameters are given in table
A.6. The number of nodes used to model the pipe is 10. To solve the differential equation
set with RK methods, the equation set A.1 is reordered as follows:

dx

dt
= [A]−1 · c− [A]−1 · [B(x, t)] · x︸ ︷︷ ︸

f(t,x)

(A.8)

D

L

Ho a, λ Kv, Aref

Q

Figure A.1: Test case.

Table A.6: Test case parameters.

L D a λ Qo fo = a/(4L)
[m] [m] [m/s] [−] [m3/s] [Hz]
600 0.5 1200 0.02 0.5 0.5

A.2.1 Waterhammer Phenomenon

First, the waterhammer effect is simulated for 10 seconds for a partial closure law from
fully opened valve to 10% valve opening within 2.1 seconds. The comparison of head and
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Figure A.2: Comparison of integration method for slow valve closure.

discharge at both end of the pipe are presented in figure A.2. The Method of Characteristic
(MOC) is taken as reference.

Secondly a fast valve closure of 0.2 seconds is simulated. The comparison of the
simulation results is presented in figure A.3 and in figure A.4.

The comparison of the different integration method shows that there is only a little
difference between all the integration methods. The number of iteration of the method
IRK-5th required to reach an error of ε = 10−5 for these simulations is 4.71 if 10 nodes are
used to model the pipe. Increasing the number of nodes to 20 induces a number of iteration
of 5.94 for the same error limit. Thus, the computational time required for a simulation
is 5 times greater. In addition, when the number of nodes increases, the integration
time step has to be reduced in the same proportion to fulfil CFL criteria. The IRK
methods can provide more accurate solutions than ERK methods but to detrimentally to
the computational time.
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Figure A.3: Comparison of integration method for fast valve closure.
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Figure A.4: Comparison of integration method for fast valve closure.
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A.2.2 Surge Phenomenon

The surge phenomenon is simulated by considering a cavitation volume in the middle of
the pipe. The cavitation volume is modelled as a compliant element featuring also a mass
flow gain factor. Assuming that the cavitation volume is function of the head and the
discharge yields to:

V (Q,H)2 ⇒ dV =
∂V

∂H2

· dH2 +
∂V

∂Q2

· dQ2 (A.9)

Time variation is given by:

dV

dt
=

∂V

∂H2

· dH2

dt
+

∂V

∂Q2

· dQ2

dt
(A.10)

Let’s define:

• the cavity compliance C = ∂V
∂H

• the mass flow gain factor χ = ∂V
∂Q

It yields to:

Q2 −Q1 = C · dH2

dt
+ χ · dQ2

dt
(A.11)

When the mass flow gain factor is negative, the hydraulic system might become unsta-
ble. In this test case, the limit of the stability is reached for χ = −0.035. The simulation
of the unstable behavior of the pipe is initiated by a 50% valve closure is presented in
figure A.5. This case features differences between the Euler method and the RK methods.
However, again, no big differences between ERK and IRK are visible.

0 1 2 3 4 5
-100

-50

0

50

100
Head at the valve inlet node

t [s]

]-[ 
o

H / 
H

H2
IRK-RIIA o5

 / Ho

H2
ERK

 / Ho

H2
Euler-E

/Ho

0 1 2 3 4 5
-5

0

5
Valve discharge

t [s]

]-[ 
uaT , ]-[  

o
Q /  

Q

Q2
IRK-RDIIA o5

 / Qo

Q2
ERK

 / Qo

Q2
Euler-E

 / Qo

Closure law

Figure A.5: Comparison of integration method for hydraulic surge.
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A.2.3 Van der Pol Equation

The van der Pol equation is chosen as test function to evaluate performances of the
different integration methods. The van der Pol’s equation is given by:

d2y

dt2
+ ε · (y2 − 1) · dy

dt
+ y = 0 (A.12)

In order to have a first order ODE, equation A.12 can be rearranged as follows:

dy1

dt
= y2 ;

dy2

dt
+ ε · (y2

1 − 1) · y2 + y1 = 0 (A.13)

The matricial expression gives:[
1 0
0 1

]
· d
dt

[
y1

y2

]
+

[
0 −1
1 ε · (y2

1 − 1)

]
·
[
y1

y2

]
=

[
0
0

]
(A.14)

The system is solved considering the following initial conditions:

y1(0) = 2 ; y2(0) = 0 → yo =

[
2
0

]
(A.15)

The van der Pol equation represents a dynamic system whose damping is negative for
small amplitudes (y < 1) and is positive for high amplitudes (y > 1). The parameter
ε enables emphasizing the instability of the system; the higher the ε, the more unstable
is the system. The simulation results obtained for ε = 10 using 5 different integration
methods are presented in table A.7 for different integration time steps and tolerances.

For high integration time step, the Euler’s methods, explicit or implicit, do not provide
accurate solution. The frequency of the oscillation is underestimated by implicit method
while it is overestimated by explicit method. However, all RK methods, implicit or
explicit, provide reasonable solution. The solution of ERK is almost identical to the IRK
RADAU IIA order 3. The tolerance of implicit method does not influence significantly
the results but increases the number of loop by time step. Decreasing the integration
time step improves strongly the simulation results of the Euler’s methods. To reach the
accuracy of RK method, the time step has to be divided by 100. So Euler’s methods are
not suitable for the simulation of unstable systems. Compared to the IRK methods, the
ERK method provides good results in a reasonable computation time. Figure A.6 shows
that all the methods provides the same results only for very small time step and tolerance.
Between the IRK methods, the 3rd order method is the most accurate method even for
large tolerance and time step as the solution is only slightly influence by the reduction of
the integration time step. The solution of the 5th order converge to the solution of the
3rd order when the time step is reduced.

The ERK method is found to be the most suitable integration for the integration of
hydraulic systems. IRK RADAU IIA o3 might be useful for the verification of solution of
the simulation of hydraulic system physically unstable.
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Table A.7: Comparison of simulation results for the van der Pol equation.
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Figure A.6: Comparison of simulation results for the van der pol equation with small
integration time step.
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A.3 Stability Analysis of RK Methods

Let consider the smooth solution ϕ(x) of equation A.1, dy/dx = f(x, y) . Linearizing
f(x, y) in its neighborhood as follows [43]:

dy(x)

dx
= f(x, ϕ(x)) +

∂f

∂y
(x, ϕ(x)) · (y(x)− ϕ(x)) + ... (A.16)

Introducing y(x)− ϕ(x) = y(x) leads to:

dy(x)

dx
=
∂f

∂y
(x, ϕ(x)) · y(x) + ... = J(x) · y(x) + ... (A.17)

As a first approximation, considering the Jacobian J(x) constant and neglecting the
errors terms yields to:

dy(x)

dx
= J · y (A.18)

Using an explicit method to solve the equation above gives:

y1 = R(h · J) · yo (A.19)

With the stability function R(z) :

R(z) = 1 + z +
z2

2!
+ ...+

zs

s!
+O(zp+1) (A.20)

The stability function can be interpreted as the numerical solution of the Dalhquist
test equation after one step for:

dy

dx
= δ · y ; yo = 1 ; z = h · δ (A.21)

For an equations set of dimension k, ym remains bounded for m = 1 → ∞, if for all
eigenvalues δk, the complex number z = h · δk is contained in the domain S given by:

S = {z ∈ C; |R(z) ≤ 1} (A.22)

For implicit functions:

• Euler implicit:

R(z) =
1

1− z
(A.23)

• IRK RADAU IIA order 5:

R(z) =
1 + z · 2/5 + z2/20

1− z · 3/5 + z2 · 3/20− z3/60
(A.24)
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The stability domains related to ERK methods of order 1 to 4 are presented in figure
A.7 while stability domain of implicit Euler and IRK RADAU IIA order 5 are respectively
presented in figure A.8 left and right.

So these integration methods are stable if R(h · δk) ≤ 1.

This inequality shows the influence of between the integration step h. The explicit
methods feature more stable behavior for higher order method that encloses region close to
the origin and higher frequencies. Highly damped systems might also present instabilities.
However, implicit method do cover the whole part of the left hand side an extended part
of the right hand part of the complex plan. The Euler implicit method appears to be a
very stable method. More than the IRK RADAU IIA 5th order method.
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Figure A.7: Stability domain of ERK methods order 1 to 4.
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Figure A.8: Stability domain of the Euler implicit method (left), and stability domain of
IRK RADAU method order 5 (right).
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[38] Graeser, J.-E. Régime transistoires en hydrauliques - Coup de Bélier. EPFL-IMH,
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[75] Pedro, M. D., and Pahud, P. Mécanique vibratoire - Système discret linéaires.
Presses Polytechniques et Universitaires Romandes, 1997.

[76] Pejovic, S. Troubleshooting of turbine vortex core resonance and air introduc-
tion into the draft tube. In Proceeding of the 21st IAHR Symposium on Hydraulic
Machinery and System (Lausanne, 2002), pp. 511–516.

[77] Pejovic, S., Obradovic, D., and Gajic, A. Field tests and calculations of
the effects of air introduction into the draft tube upon hydraulic oscillations in a hy-
dropower plant. In Proceeding of the 13th IAHR Symposium on Hydraulic Machinery
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