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Materials and Methods 

Wing electrode modelling. Fig. S5 shows a diagram of a wing electrode of length 𝐿 in 

bending, along with a section of the electrode of length 𝑑𝑥 at a distance from the wing 

root 𝑥. 𝑤(𝑥, 𝑡) is the displacement of the electrode from its rest position, which varies 

with position along the electrode 𝑥 and time 𝑡. 𝑀 and 𝑉 are the moment and shear force 

acting on the electrode section at that position, respectively. Taking Newton’s 2nd Law 

𝐹 = 𝑚𝑎 and applying it to the electrode section: 

 𝑉 − (𝑉 + 𝑑𝑉) = 𝜌𝐴𝑑𝑥
𝜕2𝑤

𝜕𝑡2
  

   

 ∴ 𝜌𝐴𝑑𝑥
𝜕2𝑤

𝜕𝑡2
= −𝑑𝑉 (1) 

where 𝜌 is the wing electrode density and 𝐴 is wing electrode cross-sectional area. Making 

the Euler-Bernoulli beam theory assumption that the second derivative of electrode section 

angle with respect to time is negligible, 
𝜕2𝜃

𝜕𝑡2
≈ 0, it is assumed that the overall moment on 

the wing electrode section is equal to zero. Taking clockwise-positive moments about 

point O (Fig. S5B): 

 𝑀 + (𝑉 + 𝑑𝑉)𝑑𝑥 − (𝑀 + 𝑑𝑀) = 0  

   

 ∴ (𝑉 + 𝑑𝑉)𝑑𝑥 − 𝑑𝑀 = 0 (2) 

To simplify these equations, say: 

 𝑑𝑉 =
𝜕𝑉

𝜕𝑥
𝑑𝑥 (3) 

and: 

 𝑑𝑀 =
𝜕𝑀

𝜕𝑥
𝑑𝑥 (4) 

Substituting (3) into (1):  

 𝜌𝐴
𝜕2𝑤

𝜕𝑡2
= −

𝜕𝑉

𝜕𝑥
 (5) 

Substituting (3) and (4) into (2): 

 𝑉𝑑𝑥 +
𝜕𝑉

𝜕𝑥
𝑑𝑥2 −

𝜕𝑀

𝜕𝑥
𝑑𝑥 = 0  

𝑑𝑥 is small, ∴ 𝑑𝑥2 ≈ 0, so: 

 𝑉 =
𝜕𝑀

𝜕𝑥
 (6) 



Substituting (6) into (5): 

 𝜌𝐴
𝜕2𝑤

𝜕𝑡2
= −

𝜕2𝑀

𝜕𝑥2
 (7) 

Taking the Euler-Bernoulli beam theory assumption that: 

 𝑀 = 𝐸𝐼
𝜕2𝑤

𝜕𝑥2
 (8) 

where 𝐸 is the Young’s Modulus of the wing electrode, and 𝐼 is its second moment of area 

in the direction of bending. Substituting (8) into (7): 

 𝜌𝐴
𝜕2𝑤

𝜕𝑡2
= −

𝜕2

𝜕𝑥2
(𝐸𝐼

𝜕2𝑤

𝜕𝑥2
)  

Making a uniform beam assumption, i.e. 𝜌, 𝐴, 𝐸 and 𝐼 are constant, leads to: 

 𝜌𝐴
𝜕2𝑤

𝜕𝑡2
= −𝐸𝐼

𝜕4𝑤

𝜕𝑥4
  

   

 ∴
𝜕2𝑤

𝜕𝑡2
+
𝐸𝐼

𝜌𝐴

𝜕4𝑤

𝜕𝑥4
  

This can be solved using separation of variables. Assume that 𝑤(𝑥, 𝑡) = 𝑊𝑥(𝑥)𝑊𝑡(𝑡), i.e. 

the deflection of the electrode at a given position 𝑥 and time 𝑡 can be described by 

multiplying together two independent functions: 𝑊𝑥 which varies only with 𝑥 and 𝑊𝑡 

which only varies with 𝑡. This assumption leads to: 

 
𝜕2𝑊𝑡

𝜕𝑡2
𝑊𝑥 +

𝐸𝐼

𝜌𝐴

𝜕4𝑊𝑥

𝜕𝑥4
𝑊𝑡  

   

 ∴ −
𝜕2𝑊𝑡

𝜕𝑡2
1

𝑊𝑡
=
𝐸𝐼

𝜌𝐴

𝜕4𝑊𝑥

𝜕𝑥4
1

𝑊𝑥
 (9) 

Since each side of (9) only varies with 𝑡 or 𝑥 respectively, both sides must be constant. 

Considering the left side of (9): 

 −
𝜕2𝑊𝑡

𝜕𝑡2
1

𝑊𝑡
= 𝐶  

   

 ∴
𝜕2𝑊𝑡

𝜕𝑡2
+ 𝐶𝑊𝑡 = 0  

This is the equation for simple harmonic motion, which has the solution 𝑊𝑡 =
𝐵 cos(𝜔𝑡 + 𝜑) where 𝐵 is amplitude, 𝜔 is resonant frequency and 𝜑 is phase. This 

implies 𝐶 = 𝜔2, therefore: 



 
𝜕2𝑊𝑡

𝜕𝑡2
+ 𝜔2𝑊𝑡 = 0 (10) 

Substituting (10) into (9): 

 𝜔2 =
𝐸𝐼

𝜌𝐴

𝜕4𝑊𝑥

𝜕𝑥4
1

𝑊𝑥
  

   

 ∴
𝜕4𝑊𝑥

𝜕𝑥4
− 𝛽4𝑊𝑥 = 0  

where 

 𝛽4 =
𝜌𝐴𝜔2

𝐸𝐼
  

This can be solved using the solution: 

 𝑊𝑥 = 𝐶1 cosh𝛽𝑥 + 𝐶2 sinh𝛽𝑥 + 𝐶3 cos 𝛽𝑥 + 𝐶4 sin 𝛽𝑥 (11) 

To find the values of 𝐶1, 𝐶2, 𝐶3 and 𝐶4, the boundary conditions for the electrode must be 

considered. The wing electrode is assumed to be a cantilever beam, built-in at position 

𝑥 = 0 and free at position 𝑥 = 𝐿. As such, the following four boundary conditions apply: 

 𝑊𝑥(0) = 0 (12) 

   

 
𝜕𝑊𝑥(0)

𝜕𝑥
= 0 (13) 

   

 𝑀(𝐿) = 0 (14) 

   

 𝑉(𝐿) = 0 (15) 

Combining (8) and (14): 

 𝑀(𝐿) = 𝐸𝐼
𝜕2𝑊𝑥(𝐿)

𝜕𝑥2
𝑊𝑡 = 0  

   

 ∴
𝜕2𝑊𝑥(𝐿)

𝜕𝑥2
= 0 (16) 

Combining (6), (8) and (15): 

 𝑉(𝐿) =
𝜕

𝜕𝑥
𝐸𝐼

𝜕2𝑊𝑥(𝐿)

𝜕𝑥2
𝑊𝑡 = 0  

   

 
𝜕3𝑊𝑥(𝐿)

𝜕𝑥3
= 0 (17) 



The first, second and third derivatives of (11) are required: 

 
𝜕𝑊𝑥

𝜕𝑥
= 𝛽(𝐶1 sinh𝛽𝑥 + 𝐶2 cosh𝛽𝑥 − 𝐶3 sin 𝛽𝑥 + 𝐶4 cos 𝛽𝑥) (18) 

   

 
𝜕2𝑊𝑥

𝜕𝑥2
= 𝛽2(𝐶1 cosh𝛽𝑥 + 𝐶2 sinh 𝛽𝑥 − 𝐶3 cos 𝛽𝑥 − 𝐶4 sin 𝛽𝑥) (19) 

   

 
𝜕3𝑊𝑥

𝜕𝑥3
= 𝛽3(𝐶1 sinh𝛽𝑥 + 𝐶2 cosh𝛽𝑥 + 𝐶3 sin 𝛽𝑥 − 𝐶4 cos 𝛽𝑥) (20) 

Combining (11) and (12): 

 𝐶1 + 𝐶3 = 0  

   

 ∴ 𝐶3 = −𝐶1 (21) 

Combining (13) and (18): 

 𝐶2 + 𝐶4 = 0  

   

 ∴ 𝐶4 = −𝐶2 (22) 

Combining (16), (19), (21) and (22): 

 𝐶1 cosh 𝛽𝐿 + 𝐶2 sinh𝛽𝐿 + 𝐶1 cos 𝛽𝐿 + 𝐶2 sin 𝛽𝐿 = 0  

   

 ∴ 𝐶1(cosh𝛽𝐿 + cos 𝛽𝐿) + 𝐶2(sinh𝛽𝐿 + sin 𝛽𝐿) = 0 (23) 

Combining (17), (20), (21) and (22): 

 𝐶1 sinh 𝛽𝐿 + 𝐶2 cosh𝛽𝐿 − 𝐶1 sin 𝛽𝐿 + 𝐶2 cos 𝛽𝐿 = 0  

   

 ∴ 𝐶1(sinh𝛽𝐿 − sin 𝛽𝐿) + 𝐶2(cosh𝛽𝐿 + cos 𝛽𝐿) (24) 

Rearranging (23): 

 𝐶2 = −𝐶1
cosh𝛽𝐿 + cos 𝛽𝐿

sinh𝛽𝐿 + sin 𝛽𝐿
 (25) 

Substituting (25) into (24): 

 𝐶1(sinh𝛽𝐿 − sin 𝛽𝐿) − 𝐶1
(cosh𝛽𝐿 + cos 𝛽𝐿)2

(sinh𝛽𝐿 + sin 𝛽𝐿)
= 0  

   

 ∴ (sinh𝛽𝐿 + sin 𝛽𝐿)(sinh𝛽𝐿 − sin 𝛽𝐿) − (cosh𝛽𝐿 + cos𝛽𝐿)2 = 0  

   

 ∴ sinh2 𝛽𝐿 − sin2 𝛽𝐿 − cosh2 𝛽𝐿 − 2 cosh𝛽𝐿 cos 𝛽𝐿 − cos2 𝛽𝐿 = 0  

   



 ∴ 2 cosh𝛽𝐿 cos 𝛽𝐿 + sin2 𝛽𝐿 + cos2 𝛽𝐿 + cosh2 𝛽𝐿 − sinh2 𝛽𝐿 = 0  

This can be solved using the trigonometric and hyperbolic identities, sin2 𝑥 + cos2 𝑥 = 1 

and cosh2 𝑥 − sinh2 𝑥 = 1: 

 ∴ 2 cosh𝛽𝐿 cos 𝛽𝐿 + 1 + 1 = 0  

   

 ∴ cosh𝛽𝐿 cos𝛽𝐿 = −1 (26) 

(26) must be solved numerically, and has infinite solutions: 

 𝛽1 ≈
0.5969𝜋

𝐿
  

   

 𝛽2 ≈
1.495𝜋

𝐿
  

   

 𝛽3 ≈
2.500𝜋

𝐿
  

   

 …  

Each solution represents a normal mode of vibration of the wing electrode at a resonant 

frequency. The general motion of the wing electrode is a superposition of normal modes to 

infinity. 

Combining (11), (21), (22) and (25): 

 

𝑊𝑥 = 𝐶1 cosh𝛽𝑥 − 𝐶1
cosh𝛽𝐿 + cos 𝛽𝐿

sinh𝛽𝐿 + sin 𝛽𝐿
sinh𝛽𝑥 − 𝐶1 cos 𝛽𝑥

+ 𝐶1
cosh𝛽𝐿 + cos 𝛽𝐿

sinh𝛽𝐿 + sin 𝛽𝐿
sin 𝛽𝑥 

 

   

 

∴ 𝑊𝑥 = 𝐶1 (cosh𝛽𝑥 − cos 𝛽𝑥

−
cosh𝛽𝐿 + cos𝛽𝐿

sinh𝛽𝐿 + sin 𝛽𝐿
(sinh𝛽𝑥 − sin 𝛽𝑥)) 

 

Recall that 𝑤(𝑥, 𝑡) = 𝑊𝑥(𝑥)𝑊𝑡(𝑡) and 𝑊𝑡 = 𝐵 cos(𝜔𝑡 + 𝜑). 𝐵 represents the amplitude 

of flapping. As such, we want to choose 𝐶1 such that 𝑊𝑥(𝐿) = 1 and 𝐵 represents the 

maximum amplitude of the wing electrode tip (i.e., 𝑊𝑥 varies between 0 and 1, and is 

multiplied by 𝐵, which is the maximum amplitude of flapping). Numerically evaluating 

𝑊𝑥(𝐿) with 𝛽 = 𝛽1 results in 𝑊𝑥(𝐿) = 2𝐶1, therefore 𝐶1 is chosen as 
1

2
: 



 

∴ 𝑊𝑥 =
1

2
(cosh𝛽𝑥 − cos 𝛽𝑥

−
cosh𝛽𝐿 + cos𝛽𝐿

sinh𝛽𝐿 + sin 𝛽𝐿
(sinh𝛽𝑥 − sin 𝛽𝑥)) 

(27) 

These are the mode shapes of the wing electrode. Recall again that 𝑤(𝑥, 𝑡) = 𝑊𝑥(𝑥)𝑊𝑡(𝑡) 
and 𝑊𝑡 = 𝐵 cos(𝜔𝑡 + 𝜑). As mentioned, the general solution for the equation of motion 

of the wing electrode is the superposition of all normal modes to infinity: 

 

𝑤(𝑥, 𝑡) = ∑
1

2
𝐵𝑛 cos(𝜔𝑛𝑡 + 𝜑𝑛) (cosh𝛽𝑛𝑥 − cos 𝛽𝑛𝑥

∞

𝑛=1

−
cosh𝛽𝑛𝐿 + cos𝛽𝑛𝐿

sinh𝛽𝑛𝐿 + sin 𝛽𝑛𝐿
(sinh𝛽𝑛𝑥 − sin 𝛽𝑛𝑥)) 

(28) 

where each value of 𝛽𝑛 may be found numerically using (26). Each resonant frequency 

can also be found, recalling that 𝛽4 =
𝜌𝐴𝜔2

𝐸𝐼
: 

 ∴ 𝜔𝑛 = 𝛽𝑛
2√

𝐸𝐼

𝜌𝐴
 (29) 

In the case of the Liquid-amplified Zipping Actuator (LAZA), flapping occurs almost 

entirely in the first mode. Furthermore, we choose 𝑡 = 0 to occur at maximum 

displacement (the wing electrode is fully deflected, and its speed is zero), such that 𝜑 = 0. 

The equation of motion of the wing electrode thus becomes: 

 
𝑤(𝑥, 𝑡) ≈

1

2
𝐵1 cos(𝜔1𝑡) (cosh 𝛽1𝑥 − cos 𝛽1𝑥

− 𝐶𝑚𝑜𝑑𝑒(sinh𝛽1𝑥 − sin 𝛽1𝑥)) 
(30) 

where 

 𝐶𝑚𝑜𝑑𝑒 =
cosh𝛽1𝐿 + cos𝛽1𝐿

sinh𝛽1𝐿 + sin 𝛽1𝐿
  

and 𝛽1 is the first solution to cosh𝛽𝐿 cos 𝛽𝐿 = −1, 𝛽1 ≈
0.5969𝜋

𝐿
. 

The flapping angle can be calculated using the slope of the wing electrode, 
𝜕𝑤

𝜕𝑥
: 

 

𝜕𝑤

𝜕𝑥
(𝑥, 𝑡) =

1

2
𝛽1𝐵1 cos(𝜔1𝑡) (sinh𝛽1𝑥 + sin 𝛽1𝑥

− 𝐶𝑚𝑜𝑑𝑒(cosh𝛽1𝑥 − cos𝛽1𝑥)) 
(31) 

Flapping angle, 𝜃(𝑡), the angle of the wing electrode at its tip (𝑥 = 𝐿), may then be 

calculated using: 



 𝜃(𝑡) = tan−1
𝜕𝑤

𝜕𝑥
(𝐿, 𝑡) (32) 

The kinetic energy of the wing electrode, 𝐸𝑘, may be calculated using: 

 𝐸𝑘 = ∫
1

2
𝜇 (

𝜕𝑤

𝜕𝑡
)
2

𝑑𝑥
𝐿

0

  

where 𝜇 is mass per unit length, i.e. 𝜇 = 𝜌𝐴: 

 ∴ 𝐸𝑘 =
1

2
𝜌𝐴∫ (

𝜕𝑤

𝜕𝑡
)
2

𝑑𝑥
𝐿

0

 (33) 

𝜕𝑤

𝜕𝑡
 may be calculated by differentiating (30) with respect to time: 

 

𝜕𝑤

𝜕𝑡
(𝑥, 𝑡) = −

1

2
𝐵1𝜔1 sin(𝜔1𝑡) (cosh𝛽1𝑥 − cos𝛽1𝑥

− 𝐶𝑚𝑜𝑑𝑒(sinh𝛽1𝑥 − sin 𝛽1𝑥)) 
(34) 

 

 

Fig. S1. Maximum thrust and thrust-to-power ratio for passively pitching wing 

Liquid-amplified Zipping Actuators systems. (A) Maximum thrust generated for 

a subset of tested systems. Points are labelled with the radius of curvature of the 

chassis electrodes, 𝑟, wing electrode thickness, 𝑡, and the maximum swept pitching 

angle of the wing, 𝜓. All wings had a wing length, 𝑙 = 50 mm and wing chord 

length, 𝑐 = 20 mm. (B) Thrust-to-power ratio plotted against disk loading for the 

highest thrust system. As frequency increases, thrust first increases as the system 

approaches resonance, and then decreases as frequency is further increased. This 

variation in thrust first increases and then reduces both thrust-to-power ratio and 

disk loading, resulting in the observed positive correlation. Future systems that 

achieve hovering flight will be subject to further investigations into the 

relationship between thrust-to-power ratio and disk loading. 

 



 
Fig. S2. Path of a horizontally moving LAZA system’s wing tip. (A) Image from video 

of a horizontally moving LAZA system filmed at 25 frames per second (FPS). (B) 

Long exposure (1 second) photograph of a horizontally moving LAZA system with 

a red LED mounted on its wing tip. (A) and (B) were combined to Produce Fig. 

6C. (C) 12 frames taken from a 25 FPS video of a horizontally moving LAZA 

system with a red LED mounted on its wing tip. 

 

 
Fig. S3. Attitude control strategies for flapping MAVs. (A) Pitch control can be 

achieved by altering the relative amplitude of upstroke compared with downstroke. 

(B) Roll control is achieved by controlling the relative amplitude of opposing 

wings. (C) Yaw control requires modulation of the velocity of upstroke compared 

with downstroke. 

 



 
Fig. S4. Experimental setup for LAZA characterization. (A) Displacement 

characterization. High voltage was provided by two high-voltage amplifiers 

(10HVA24-BP1, UltraVolt, USA), and the movement of the wing electrode was 

recorded using a laser displacement meter ((LK-G402, Keyence, Japan). The laser 

beam was pointed directly downwards and was targeted 10 mm from the end of the 

flapping beam such that displacement could be reliably recorded even during 

flapping (whereby the horizontal position of the wing tip moves sideways as the 

wing moves up and down). (B) Thrust characterization. High voltage is provided 

by high-voltage amplifiers (not drawn) as in (A), and the flapping MAV is 

mounted to a load cell (TAL221, HT Sensor Technology Co., Ltd., China) to 

record thrust. 

 

 
Fig S5. Wing electrode modelling. (A) Diagram of wing electrode of length 𝐿 in 

bending. At position 𝑥 and time 𝑡, the displacement from the rest position is 

𝑤(𝑥, 𝑡). (B) A section of the wing electrode of length 𝑑𝑥 at position 𝑥. The 

moments (red) and shear forces (green) acting on the section are shown. Also 

shown is a chosen point O, about which moments are taken. 


