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Materials and Methods
Wing electrode modelling. Fig. S5 shows a diagram of a wing electrode of length L in
bending, along with a section of the electrode of length dx at a distance from the wing
root x. w(x, t) is the displacement of the electrode from its rest position, which varies
with position along the electrode x and time t. M and V are the moment and shear force
acting on the electrode section at that position, respectively. Taking Newton’s 2" Law
F = ma and applying it to the electrode section:
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where p is the wing electrode density and A is wing electrode cross-sectional area. Making

the Euler-Bernoulli beam theory assumption that the second derivative of electrode section
2
angle with respect to time is negligible, % ~ 0, it is assumed that the overall moment on

the wing electrode section is equal to zero. Taking clockwise-positive moments about
point O (Fig. S5B):

M+ (V+dV)dx— (M +dM) =0

«(V+dV)dx —dM =0 )
To simplify these equations, say:
av
AV = —dx (3)
O0x
and:
oM
dM = —dx (4)
dx
Substituting (3) into (1):
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Substituting (3) and (4) into (2):
Vd +an 2 aMd =0
x dx X dx x=
dx is small, .. dx? = 0, so:
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Substituting (6) into (5):

0w 0*M
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Taking the Euler-Bernoulli beam theory assumption that:
0w
— F] —— 8
M = El—— (8)

where E is the Young’s Modulus of the wing electrode, and I is its second moment of area
in the direction of bending. Substituting (8) into (7):

Aazw_ 02 EI(?ZW
PRz = T ax2 \ 7 B2

Making a uniform beam assumption, i.e. p, A, E and [ are constant, leads to:
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This can be solved using separation of variables. Assume that w(x, t) = W, (x)W,(t), i.e.
the deflection of the electrode at a given position x and time t can be described by
multiplying together two independent functions: W, which varies only with x and W,
which only varies with ¢. This assumption leads to:
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Since each side of (9) only varies with t or x respectively, both sides must be constant.
Considering the left side of (9):
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This is the equation for simple harmonic motion, which has the solution W, =
B cos(wt + ¢) where B is amplitude, w is resonant frequency and ¢ is phase. This
implies C = w?, therefore:
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Substituting (10) into (9):
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This can be solved using the solution:
W, = C; cosh fx + C, sinh fx + C5 cos Bx + C, sin Bx (11)

To find the values of C;, C,, C5 and C,, the boundary conditions for the electrode must be
considered. The wing electrode is assumed to be a cantilever beam, built-in at position
x = 0 and free at position x = L. As such, the following four boundary conditions apply:

W,(0) =0 (12)
WO _ (13)
0x
M(L) =0 (14)
V(L) =0 (15)
Combining (8) and (14):
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Combining (6), (8) and (15):
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The first, second and third derivatives of (11) are required:

aw,

axx = B(C, sinh Bx + C, cosh Bx — C5 sin fx + C, cos Bx) (18)
0% W, ) . .

P B?(C; cosh Bx + C, sinh Bx — C5 cos fx — C, sin Bx) 19)
03 W, 3 . .

T B°(C, sinh fx + C, cosh fx + C5 sin fx — C4 cos fx) (20)

Combining (11) and (12):

C,+C3=0

03 =-0 (21)
Combining (13) and (18):

C,+C,=0

aCy=—C, (22)

Combining (16), (19), (21) and (22):
C; coshBL + C,sinh fL + Cycos L+ C,sin L =0
& C1(cosh BL + cos BL) + C,(sinh BL + sin BL) = 0 (23)
Combining (17), (20), (21) and (22):
C; sinh BL + C, coshfL — C; sin BL + C, cos L = 0
& Cy(sinh BL — sin BL) + C,(cosh BL + cos BL) (24)
Rearranging (23):

cosh SL + cos L
!'sinh L + sin L

C,=—C (25)

Substituting (25) into (24):

(cosh BL + cos BL)?

C,(sinh BL — sin L) — C; (inh BL + sin L)

0

= (sinh BL + sin BL)(sinh BL — sin L) — (cosh L + cos BL)? = 0

= sinh? L — sin? BL — cosh? BL — 2 cosh L cos BL — cos? BL = 0



= 2 cosh BL cos BL + sin? BL + cos? BL + cosh? BL — sinh? BL = 0

This can be solved using the trigonometric and hyperbolic identities, sin? x + cos? x = 1
and cosh? x — sinh? x = 1:

s~ 2coshfLcospL+1+1=0
~ coshpBLcosBL = -1 (26)
(26) must be solved numerically, and has infinite solutions:
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T
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Each solution represents a normal mode of vibration of the wing electrode at a resonant
frequency. The general motion of the wing electrode is a superposition of normal modes to
infinity.

Combining (11), (21), (22) and (25):

cosh BL + cos SL
Wy = Cy cosh fx = G sinh BL + sin BL

cosh BL + cos L .
1'sinh BL + sin L 3t

sinh fx — C; cos Bx

nfx
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sinh fL + sin fL

(sinh Bx — sin ﬁx))

Recall that w(x, t) = W, (x)W,(t) and W, = B cos(wt + ¢). B represents the amplitude
of flapping. As such, we want to choose C; such that W, (L) = 1 and B represents the
maximum amplitude of the wing electrode tip (i.e., W, varies between 0 and 1, and is
multiplied by B, which is the maximum amplitude of flapping). Numerically evaluating

W, (L) with g = B, results in W, (L) = 2C,, therefore C, is chosen as %:
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~ W, = 5 (cosh Bx — cos fx

(27)
cosh BL + cos SL

~ sinh BL + sin BL

(sinh Bx — sin ﬁx))

These are the mode shapes of the wing electrode. Recall again that w(x, t) = W, (x)W,(t)
and W; = B cos(wt + ¢). As mentioned, the general solution for the equation of motion
of the wing electrode is the superposition of all normal modes to infinity:

o 1
w(x,t) = z EBn cos(wpt + @) (cosh PBnx — cos fBpx
n=1
cosh B,L + cos 3,,L

~ sinh PnL + sin B, L

(28)

(sinh B,,x — sin an)>

where each value of ,, may be found numerically using (26). Each resonant frequency

2
can also be found, recalling that g* = pdar,

S wp = ﬁnz\/j:jl (@9)

In the case of the Liquid-amplified Zipping Actuator (LAZA), flapping occurs almost
entirely in the first mode. Furthermore, we choose ¢t = 0 to occur at maximum
displacement (the wing electrode is fully deflected, and its speed is zero), such that ¢ = 0.
The equation of motion of the wing electrode thus becomes:

1
w(x,t) = EBl cos(w4t) (cosh B1x — cos fB1x (30)
— Cinode (Sinh P1x — sin ﬁlx))
where

C _coshpyL + cos B, L
mede ™ sinh B,L + sin B, L

0.59691

and f3; is the first solution to cosh fL cos BL = —1, B, = ;

The flapping angle can be calculated using the slope of the wing electrode, Z—:’:

adw 1
F (x,t) = E'BlBl cos(wqt) (sinh B1x + sin f1x
~ Crode(cosh Byx — cos 1))

(31)

Flapping angle, 6(t), the angle of the wing electrode at its tip (x = L), may then be
calculated using:



Maximum thrust (mN)

0
8(t) = tan~! = (L, t) (32)
0x
The kinetic energy of the wing electrode, E;,, may be calculated using:
£ = fL 1 (6w>2 p
k=) 2Hae)

where p is mass per unit length, i.e. u = pA:

1 L owy?
=— — 33
Ei szfO (6t> dx (33)

‘;—Vtv may be calculated by differentiating (30) with respect to time:

aw 1 _
> (x,t) = — 5B sin(w,t) (cosh Bx — cos By x

(34)
- Cmode(Sinh B1x — sin ﬁlx))
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Fig. S1. Maximum thrust and thrust-to-power ratio for passively pitching wing
Liquid-amplified Zipping Actuators systems. (A) Maximum thrust generated for
a subset of tested systems. Points are labelled with the radius of curvature of the
chassis electrodes, r, wing electrode thickness, t, and the maximum swept pitching
angle of the wing, ¥. All wings had a wing length, [ = 50 mm and wing chord
length, ¢ = 20 mm. (B) Thrust-to-power ratio plotted against disk loading for the
highest thrust system. As frequency increases, thrust first increases as the system
approaches resonance, and then decreases as frequency is further increased. This
variation in thrust first increases and then reduces both thrust-to-power ratio and
disk loading, resulting in the observed positive correlation. Future systems that
achieve hovering flight will be subject to further investigations into the
relationship between thrust-to-power ratio and disk loading.



Fig. S2. Path of a horizontally moving LAZA system’s wing tip. (A) Image from video
of a horizontally moving LAZA system filmed at 25 frames per second (FPS). (B)
Long exposure (1 second) photograph of a horizontally moving LAZA system with
a red LED mounted on its wing tip. (A) and (B) were combined to Produce Fig.
6C. (C) 12 frames taken from a 25 FPS video of a horizontally moving LAZA
system with a red LED mounted on its wing tip.
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Fig. S3. Attitude control strategies for flapping MAVs. (A) Pitch control can be
achieved by altering the relative amplitude of upstroke compared with downstroke.
(B) Roll control is achieved by controlling the relative amplitude of opposing
wings. (C) Yaw control requires modulation of the velocity of upstroke compared

with downstroke.
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Fig. S4. Experimental setup for LAZA characterization. (A) Displacement
characterization. High voltage was provided by two high-voltage amplifiers
(10HVA24-BP1, UltraVolt, USA), and the movement of the wing electrode was
recorded using a laser displacement meter ((LK-G402, Keyence, Japan). The laser
beam was pointed directly downwards and was targeted 10 mm from the end of the
flapping beam such that displacement could be reliably recorded even during
flapping (whereby the horizontal position of the wing tip moves sideways as the
wing moves up and down). (B) Thrust characterization. High voltage is provided
by high-voltage amplifiers (not drawn) as in (A), and the flapping MAV is
mounted to a load cell (TAL221, HT Sensor Technology Co., Ltd., China) to
record thrust.
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Fig S5. Wing electrode modelling. (A) Diagram of wing electrode of length L in
bending. At position x and time ¢, the displacement from the rest position is
w(x, t). (B) A section of the wing electrode of length dx at position x. The
moments (red) and shear forces (green) acting on the section are shown. Also
shown is a chosen point O, about which moments are taken.




