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111 years of Brownian motion

Xin Bian,*a Changho Kimb and George Em Karniadakis*a

We consider the Brownian motion of a particle and present a tutorial review over the last 111 years since

Einstein’s paper in 1905. We describe Einstein’s model, Langevin’s model and the hydrodynamic models,

with increasing sophistication on the hydrodynamic interactions between the particle and the fluid. In

recent years, the effects of interfaces on the nearby Brownian motion have been the focus of several

investigations. We summarize various results and discuss some of the controversies associated with new

findings about the changes in Brownian motion induced by the interface.

1 Introduction

Soon after the invention of the microscope, the incessant and
irregular motion of small grains suspended in a fluid had been
observed. It was believed for a while that such jiggling motion
was due to living organisms. In 1827, the botanist Robert
Brown systematically demonstrated that any small particle
suspended in a fluid has such characteristics, even an
inorganic grain.1 Therefore, the explanation for such motion
should resort to the realm of physics rather than biology. Since
then this phenomenon has been named after the botanist as
‘‘Brownian motion’’.2 In the classical sense, the phenomenon
refers to the random movement of a particle in a medium, e.g.,

dust in a fluid. However today, its theory can be also applied to
describe the fluctuating behavior of a general system interact-
ing with the surroundings, e.g., stock prices.

It was not until 1905 that physicists such as Albert Einstein,3

William Sutherland,4 and Marian von Smoluchowski5 started to
gain deep understanding about Brownian motion. While the
existence of atoms and molecules was still open to objection,
Einstein explained the phenomenon through a microscopic
picture. If heat is due to kinetic fluctuations of atoms, the
particle of interest, that is, a Brownian particle, should undergo
an enormous number of random bombardments by the sur-
rounding fluid particles and its diffusive motion should be
observable. The experimental validation of Einstein’s theory by
Jean Baptiste Perrin unambiguously verified the atomic nature of
matter,6 which was awarded the Nobel Prize in Physics in 1926.
Since the seminal works in the 1900s, this subject has fostered
many fundamental developments on equilibrium and non-
equilibrium statistical physics,7,8 and enriched the applications
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of fluid mechanics such as the rheology of suspensions.9–11

It also motivated mathematically rigorous developments of
probability theory and stochastic differential equations,12–14

which in turn boosted the stochastic modeling of finance. For
example, one of its remarkable achievements is the Black–
Scholes–Merton model for the pricing of options,15 which was
awarded the Nobel Memorial Prize in Economical Sciences in
1997. More recently, Brownian motion has been playing a central
and fundamental role in the studies of soft matter and bio-
physics,16,17 shifting the subject back to the realm of biology.
Other areas of intensive research driven by Brownian motion
include the microrheology of viscoelastic materials,18–21 artificial
Brownian motors22 and self-propelling of active matter,23,24

fluctuation theorems for states far from equilibrium,25–27 and
quantum fluctuations.28,29

In this work, we focus on the classical aspect of Brownian
motion based on selective references from 1905 until 2016,
which spans the last 111 years. More specifically, we attempt to
interpret previous theories from a hydrodynamic perspective.
To this end, we mainly consider a spherical particle of sub-
micrometer size suspended in a fluid and the particle is subject
to free and constrained Brownian motion. Special focus will be
given to the velocity autocorrelation function (VACF) of the
particle, denoted by C(t) = hv(0)�v(t)i with the equilibrium
ensemble average h i. It measures how similar the velocity v
after time t is to the initial velocity.30 In general, due to its
interaction with the surrounding fluid, the particle’s velocity
becomes randomized and the magnitude of hv(0)�v(t)i diminishes
as t increases. Compared to the well-known mean-squared
displacement (MSD), which is denoted by hDr2(t)i with the
displacement Dr(t) = r(t) � r(0), the VACF contains equivalent
dynamical information. This can be clearly seen by the follow-
ing relation:31,32

d

dt
Dr2ðtÞ
� �

¼ 2

ðt
0

CðtÞdt; (1)

which suggests that the VACF can be calculated from the
second derivative of the MSD. Nevertheless, the VACF reveals
the dynamics in a more direct way; over several time scales of
different orders involved, characteristic behaviors of disparate

scales may not be clearly differentiated in the MSD, but easily
distinguished in the VACF, as will be shown in Fig. 3 of
Section 4.

In an order of progressively more accurate hydrodynamic
interactions between the particle and the fluid, we organize
various theoretical models as follows. At first in Section 2 we
introduce the pure diffusion model corresponding to Einstein’s
microscopic picture. Subsequently, we describe the Langevin
model in Section 3, which considers explicitly the inertia of the
Brownian particle. We describe the hydrodynamic model in
Section 4, which further includes the inertia of the fluid and
takes into account the transient hydrodynamic interactions
between the particle and the fluid. The persistent VACF
from this model has far-reaching consequences for physics.
In Section 5, we explore the hydrodynamic model in confine-
ment, with its subtle hydrodynamic interactions among the
particle, the fluid and the confining environment. The results
of the confined Brownian motion are significant, since the
passive microrheology using a Brownian particle to determine
interfacial properties has become more and more popular due
to its non-intrusive properties. Along the presentation, we shall
focus mainly on the analytical results of the theoretical models
and make short excursions to experimental observations and
numerical studies. Controversial results will be highlighted.
Finally, we conclude this work with some perspectives in Section 6.

2 Pure diffusion

In this section, we summarize Einstein’s seminal work in
1905,†3 which has two innovative aspects. The first part
formulates the diffusion equation to relate the mass diffusion
to the MSD, which is a measurable quantity. This relation was
also discovered by von Smoluchowski,5 but with a slightly
different factor. The second part is to connect two transport
processes: the mass diffusion of the particle and the momentum
diffusion of the fluid. Hence, the diffusion coefficient can also be
expressed in terms of the fluid properties. The connection
between the two transport processes was also obtained by
Sutherland independently.4 In the end of this section, we discuss
the validity of the model. By considering the VACF, we demon-
strate the limitations of the model and clarify its underlying
assumptions.

2.1 Diffusion equation and mean-squared displacement

The probability density function (PDF) f (x,t) of a Brownian
particle satisfies the following diffusion equation in the one-
dimensional case:

@f ðx; tÞ
@t

¼ D
@2f ðx; tÞ
@x2

; (2)

where D is the diffusion coefficient of the Brownian particle.
This equation is derived under Einstein’s microscopic picture
by assuming that the difference between f (x,t + Dt) and f (x,t)
results from the position change Dx of the particle due to
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random bombardments. D may be expressed in terms of the
second moment of Dx and higher moments are dropped off.

For a Brownian particle initially located at the origin, the
formal solution to eqn (2) is a Gaussian distribution with mean
zero and variance 2Dt:

f ðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
4pDt
p e�

x2

4Dt: (3)

Eqn (3) represents that the PDF of the particle evolves from a
Dirac delta function d(x) at t = 0 to a Gaussian distribution with
an increasing variance for t 4 0. Accordingly, the MSD of the
particle, which is the second moment of the PDF, increases
linearly with time:

hDx2(t)i = 2Dt. (4)

Here, Dx(t) = x(t) � x(0) and the brackets denote the
ensemble average over the equilibrium distribution. For the
three-dimensional case, we have hDx2i = hDy2i = hDz2i and,
therefore, for r = {x,y,z},

hDr2(t)i = 6Dt. (5)

For a random walk like Brownian motion, both the velocity
and displacement of the particle are averaged to be zero.
Therefore, the simplest but still meaningful measurement is
the MSD, which determines the diffusion coefficient via eqn (4).

2.2 Stokes–Einstein–Sutherland equation

In a dilute suspension of Brownian particles, the osmotic
pressure force acting on individual particles is �rV, where V
is a thermodynamic potential. Hence, the steady flux of particles
driven by this force is �fm�1rV, where f is the particle volume
concentration and m is the mobility coefficient of individual
particles. At equilibrium, the flux due to the potential force must
be balanced by a diffusional flux as:

�fm�1rV = �Drf. (6)

Moreover, the concentration should have the form of
f p e�V/kBT at equilibrium, where kB is Boltzmann’s constant
and T is the temperature. By substituting the expression of f
into eqn (6), we obtain Einstein’s relation:

D = mkBT. (7)

The mobility coefficient m is the reciprocal of the friction
coefficient x. Here, the definitions of m and x arise from a
situation where the particle moves at terminal drift velocity vd

in a fluid under a weak external force Fext: m = x�1 = vd/Fext.
According to Stokes’ law,‡34 the mobility of a sphere in an

incompressible fluid at steady state is

m ¼ x�1 ¼ 1

6pZa
1þ 3Z=aa
1þ 2Z=aa

; (8)

where Z is the dynamic viscosity of the fluid, a is the radius of the
particle, and a is the friction coefficient at the solid–fluid interface.
Note that the Navier slip length is defined as b = Z/a.35 For a = 0, it
corresponds to a perfect slip interface, whereas a = N corresponds
to the no-slip boundary condition originally adopted by George
Gabriel Stokes in 1851.36 The mobility of a sphere with partial slip
may also be determined in eqn (8) by the slip length b.

By combining eqn (7) and (8), we arrive at the celebrated
Stokes–Einstein–Sutherland formula3,4

D ¼

kBT

4pZa
; b ¼ 1;

kBT

6pZa
; b ¼ 0:

8>>><
>>>:

(9)

This equation establishes the connection between the mass
transport of the particle and momentum transport of the fluid.
Therefore, one can attain one unknown quantity from the other
available quantities via eqn (9). For example, given the known
values of kBT and Z, and further D from eqn (5), one may
determine the radius a of the Brownian particle.3

Alternatively, if a is known, Avogadro’s number NA can be
determined by using the fact kB = Rg/NA, where Rg is the gas
constant.3 Jean Baptiste Perrin actually followed this proposal
and determined Avogadro’s number (NA = 6.022 � 1023 mol�1)
within 6.3% error,6 which settled the dispute about the theory
on the atomic nature of matter.

2.3 Limitations and underlying assumptions

The main criticism of the diffusion model, as Einstein himself
realized later,38,39 is that the inertia of the particle is neglected.
This implies that an infinite force is required to change the
velocity of the particle to achieve a random walk at each step.
Therefore, its velocity cannot be defined and its trajectories are
fractal, as illustrated on the right in Fig. 1. Since an apparent
velocity is deduced by two consecutive positions, it really
depends on the time-resolution of the observations.40,41 If the
observations are separated by a diffusive time scale as in
Einstein’s model, the particle appears to walk randomly. From
the MSD of the diffusion, we may determine an effective mean

velocity over a time interval as �v ¼
ffiffiffiffiffiffiffiffi
Dx2
p .

Dt ¼
ffiffiffiffiffiffiffi
2D
p � ffiffiffiffiffi

Dt
p

. As

Dt - 0, this effective velocity diverges and cannot represent the
real velocity of the particle. This also explains the early controver-
sial measurements on the actual velocity of the particle.42,43

This unphysical feature can also be seen by calculating the
VACF from eqn (1) and (5): hv(0)�v(t)i = 3Dd(t), where d(t) is the
Dirac delta function. This means that even after an infinitesimal
time, the velocity becomes completely uncorrelated with the
previous one. A mathematical model corresponding to this case
is a Gaussian white noise process for the velocity. Then, x(t)
corresponds to a Wiener process, which is continuous but
nowhere differentiable in time.13

Physically, however, we should be able to find a time scale
t o tb for the ballistic regime,§39 where the velocity does not

‡ Stokes’ law is valid for the Knudsen number Kn = l/a { 1, where l is the mean
free path of fluid particles.37 § In general, the ballistic time scale tb is proportional to the Knudsen number.
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change significantly, that is, Dx(t) E v(0)t, as illustrated on the
left in Fig. 1. In Einstein’s model, tb can be chosen from the time
scale for the duration of successive random bombardments.
From the equipartition theorem, we have hv2i = kBT/m, where
m is the mass of the particle. Hence, we obtain the MSD
expression in the ballistic regime:

Dx2ðtÞ
� �

¼ kBT

m
t2: (10)

In Einstein’s model, the time scale tb is neglected (i.e., assuming
tb - 0) and the MSD is a completely linear function in time.
A century ago, Einstein also did not expect that it would be
possible to observe the ballistic regime in practice due to the
limitation of experimental facilities. Remarkably, such measure-
ments have recently become realistic in rarefied gas,44 normal
gas45 and liquid,46,47 with increasing difficulty for fluids with
elevated density due to the diminishing of tb. However, the
experiment on Brownian particles in a liquid is subtle, as it is
currently still difficult to resolve time below the sonic scale.41

Therefore, the equipartition theorem can only be verified for the
total mass of the particle and entrained liquid, but not at the
single particle level.46,47 We shall further discuss the effect of
the added mass in Section 4.

In summary, Einstein’s pure-diffusion model considers only
the independent random bombardments on the particle, but
nothing else. Although the resulting MSD expression of eqn (4)
or (5) is always valid at a large time, the model has the single
time scale of the mass-diffusion process tD = a2/D, which is
denoted as the diffusive or Smoluchowski time scale.48 More-
over, the model disallows a definition of velocity, possesses no
ballistic regime, and its VACF does not contain any dynamical
information. These issues will be resolved in Langevin’s model.

3 Langevin equation

A remedy for the unphysical feature of Einstein’s model at the
ballistic time scale was proposed by Paul Langevin,49 which

takes into account the inertia of the particle.¶ In Langevin’s
formulation, which was thought to be ‘‘infinitely simpler’’
according to himself, the equation of motion for the Brownian
particle is formally based on Newton’s second law of motion as

m
d2x

dt2
¼ �xdx

dt
þ ~FðtÞ; (11)

where m is the mass of the particle, x is the friction coefficient
defined earlier, and F̃(t) is a random force on the particle. In
this mode, the velocity of the particle v(t) = :

x(t) is well-defined
and it is subject to two different types of forces exerted by the
surrounding fluid: a friction force and a random force. It is
further assumed that the random force is an independent
Gaussian white noise process. Hence, F̃(t) satisfies

hF̃(t)i = 0, hF̃(t)F̃(t0)i = Gd(t � t0), (12)

hF̃(t)x(t0)i = 0, hF̃(t)v(t0)i = 0, (13)

where t Z t0 and the noise strength G is to be determined
below.

From a mathematical point of view, eqn (11) is a stochastic
differential equation. Compared to Einstein’s model, x(t) has
better regularity; x(t) is now differentiable. However, v(t) is
continuous but not differentiable just as x(t) in Einstein’s model.
In general, special care needs to be taken to handle a stochastic
differential equation, as the ordinary calculus may not hold.
However, since eqn (11) is subject to an additive independent
noise F̃(t), we can still legitimately apply the ordinary calculus to
calculate the MSD and the VACF from eqn (11).

3.1 Two regimes of mean-squared displacement

We first derive an expression for the MSD and obtain from it
two asymptotic limits at both short-time and long-time scales.

Without loss of generality, we take x(0) = 0. After multiplying

eqn (11) by x and using the fact that
dx2

dt
¼ 2x

dx

dt
and

d2x2

dt2
¼ 2

dx

dt

� �2

þ2xd
2x

dt2
, we have

m

2

d2x2

dt2
�mv2 ¼ �x

2

dx2

dt
þ x ~FðtÞ: (14)

By taking the average and using eqn (13), we obtain a differ-

ential equation for z ¼ d

dt
x2
� �

:

m

2

dz

dt
þ x
2
z ¼ kBT ; (15)

where the equipartition theorem, mhv2i = kBT, was applied.
Since hz(0)i = 2 hx(0)v(0)i = 0, the solution to eqn (15) is

zðtÞ ¼ 2kBT

x
1� e�xt=m
� 	

: (16)

Fig. 1 Fractal trajectory of Brownian motion according to Einstein’s
diffusion model in two dimensions. On the left is the actual trajectory of
a particle. On the right are the observed locations of the particle on
diffusive time scales. Arrows indicate the apparent velocities of the particle.

¶ Langevin’s work is translated.50
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By integrating eqn (16), we obtain an expression for the MSD
over the entire time range as:51–53

Dx2ðtÞ
� �

¼ 2kBT

x
t�m

x
þm

x
e�xt=m

� �
: (17)

On the one hand, for t c tB = m/x, the exponential term
becomes negligible, and we retrieve Einstein’s result eqn (4)
from eqn (17):

d

dt
x2ðtÞ
� �

¼ 2kBT

x
¼ 2D: (18)

This may also be directly obtained by dropping off the expo-
nential term in eqn (16).

On the other hand, for t { tB or t - 0, by using the power

series e�t ¼ 1� tþ t2

2!
þO t3

� 	
we obtain from eqn (17)

Dx2ðtÞ
� �

¼ kBT

m
t2; (19)

which is identical to the ballistic regime of eqn (10) discussed
in Section 2.3. Hence, we clearly see that Langevin’s model can
explain the ballistic regime as well as Einstein’s long-time
result of the MSD. The new relevant time scale is the relaxation
time of Brownian motion, tB = m/x.

3.2 Fluctuation-dissipation theorem, velocity autocorrelation
function and diffusion coefficient

Now we turn to the velocity of the Brownian particle, which is
the new element in Langevin’s model. Furthermore, we may
characterize the full dynamics of the particle by the VACF.

Let us rewrite the Langevin equation in terms of velocity:

m
dv

dt
¼ �xvþ ~FðtÞ; (20)

which is a first-order inhomogeneous differential equation and
has the formal solution:53,54

vðtÞ ¼ vð0Þe�xt=m þ 1

m

ðt
0

dt e�xðt�tÞ=m ~FðtÞ: (21)

From this solution, we observe that the average of squared velocity
hv2(t)i has three contributions: the first one is hv2(0)ie�2xt/m and the

second one is the cross term
2

m
e�xt=m

Ð t
0dt e

�xðt�tÞ=m vð0Þ ~FðtÞ
� �

,

which becomes zero due to eqn (13). The third contribution is of
second order in F̃(t) and, by making use of eqn (13), we have

1

m2

ðt
0

dt e�xðt�tÞ=m
ðt
0

dt0 e�xðt�t
0Þ=mGd t� t0ð Þ ¼ G

2xm
1� e�2xt=m
� 	

:

(22)

Therefore, the mean-squared velocity is

v2ðtÞ
� �

¼ v2ð0Þ
� �

e�2xt=m þ G
2xm

1� e�2xt=m
� 	

: (23)

At the long-time limit, we expect the equipartition theorem,
hv2(t)i = kBT/m, to be valid. Hence, the equality

G = 2xkBT (24)

must hold. This represents a fundamental relation named as
the fluctuation-dissipation theorem (FDT).55–57 Roughly speak-
ing, the magnitude of the fluctuation G must be balanced by
the strength of the dissipation x so that temperature is well
defined in Langevin’s model. Therefore, the pair of friction and
random forces acts as a thermostat for a Langevin system. It
should not come as a surprise that the frictional force and the
random force have such a relation, since they both come from
the same origin of interactions between the particle and the
surrounding fluid molecules.

From the solution of velocity in eqn (21), we can also
calculate the VACF of the particle. After multiplying eqn (21)
by v(0), and further taking the average, we obtain

CðtÞ � vð0ÞvðtÞh i ¼ v2ð0Þ
� �

e�xt=m ¼ kBT

m
e�xt=m: (25)

Here, the random force term vanished due to eqn (13) and the
equipartition theorem was also used. It is simple to see that C(t)
decays exponentially and the relevant time scale is the Brownian
relaxation time, tB = m/x.

If we take the time integral of the VACF, we findð1
0

vð0ÞvðtÞh idt ¼ kBT

m

ð1
0

e�xt=mdt ¼ kBT

x
¼ D; (26)

which is just the diffusion coefficient obtained by Einstein.
The relation in eqn (26) is not fortuitous, but known as the
simplest example of the fundamental Green–Kubo relations.58–61

These relate the macroscopic transport coefficients to the correla-
tion functions of the variables fluctuating due to microscopic
processes.62 Such relations were also postulated by the regression
hypothesis of Lars Onsager,63,64 which states that the decay of
the correlations between fluctuating variables follows the
macroscopic law of relaxation due to small nonequilibrium
disturbances.8 The 1968 Nobel Prize in Chemistry was awarded
to Onsager to glorify his reciprocal relations in the irreversible
process, which also formed the basis for further development
of nonequilibrium thermodynamics by Ilya Prigogine and
others.54,65–67

Similarly to the diffusion in the long-time limit, we may
define the time-dependent diffusion coefficient as

DðtÞ �
ðt
0

vð0ÞvðtÞh idt ¼ 1

2

d

dt
Dx2ðtÞ
� �

¼ kBT

x
1� e�xt=m
� 	

: (27)

Note that the equivalence of the two definitions in terms of the
VACF and the MSD also follows from eqn (1). For Langevin’s model,
this equality can be explicitly verified by using eqn (17) and (25).

3.3 Limitations and underlying assumptions

The Langevin model not only recovers the long-time result of
Einstein’s model, but also produces the correct ballistic regime
at a short-time limit. An essential ingredient in the model is
that the Brownian particle has an inertia, that is, mass m. As a
result, the velocity and the VACF become well-defined and

8 Coincidentally, the work of Onsager on Brownian motion and linear response
laws was conducted when he was teaching at Brown University, although the
latter Brown refers to the businessman and philanthropist Nicholas Brown, Jr.
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continuous in time. By considering a very small relaxation time
m/x - 0 in eqn (20), the Langevin dynamics degenerates to be
the overdamped Brownian dynamics of Einstein’s model.

The limitations of the Langevin model can be revealed by
considering a corresponding microscopic model, that is, the
Rayleigh gas,68 which contains ideal gas particles and a massive
particle. Several attempts were made to derive the Langevin
equation from this microscopic model in the early 1960s.69,70 It
was realized that the derivation is possible if the interaction
between the Brownian particle and any gas particle takes place
only for a short microscopic time.68,70 This condition can be
rigorously verified under the ideal gas assumption and the
infinite mass limit of the Brownian particle (i.e., m - N), and
thus the microscopic justification of the Langevin equation can
be provided through the Rayleigh gas model. For Brownian
motion in a real gas or a liquid, a mathematically rigorous
justification is intractable. One of the reasons is that if the fluid
particles interact among themselves, a collective motion (e.g.,
correlated collisions) of the fluid particles can occur, which
implies that the aforementioned condition may not hold.

We will see in Section 4 that the Langevin description is
valid only if the Brownian particle is sufficiently denser than
the surrounding fluid, where the inertia of the fluid may be
neglected. This fact was exploited in a recent experiment,45

where a silica bead is trapped by a harmonic potential53 in air
and the experimental VACF corroborates well the results of the
Langevin model.71 For a general case of arbitrary density, the
collective motion of the fluid particles and their inertia should
be reconsidered carefully.

4 Hydrodynamic model

Although the VACF of a Brownian particle was never explicitly
measured in the first half of the twentieth century due to
experimental limitation, it was widely believed to decay expo-
nentially. When a new era of computational science began in
the 1950s, this belief was put to the test and it marked the
failure of the molecular chaos assumption.72

4.1 Observation of algebraic decay in VACFs

Using molecular dynamics (MD) simulations, some pioneers
started to realize that the VACF of molecules does not follow
strictly an exponential decay, but has a slowly decreasing
characteristic. This long persistence was found in fluids
described by both the Lennard-Jones potential73,74 and the
hard-core potential.75,76 A milestone took place in 1970 when
Alder and Wainwright77 delivered a definite answer for the
long persistence of the VACF as an algebraic decay, that is,
C(t) B t�d/2 for t -N. Here d is the dimension of the problem.
Meanwhile this scaling was confirmed by independent numerical
simulations of Navier–Stokes equations, which indicate that a
(transient) vortex flow pattern forms around a tagged particle.76,77

These observations from computer simulations led to many
intriguing questions as to what is missing in the Langevin
model. The most suspicious assumption of the Langevin model

(and also of the Einstein model) is probably that the friction
coefficient x is taken as the solution of the steady Stokes flow,
whereas a Brownian particle undergoes erratic movements
constantly. Therefore, the steady friction may be valid only if
the surrounding fluid becomes quasi-steady immediately after
each movement, or less strictly, before the relaxation time
tB = m/x of the Brownian particle. This deficiency was already
pointed out in the early lectures of Hendrik Lorentz:**78

x = 6pZa is a good approximation only when the mass density
ratio r/rB of the fluid and the Brownian particle is so small that the
fluid inertia is negligible. We shall discuss later why this is true.

Since the seminal work of Alder and Wainwright, it was very
soon widely acknowledged that unsteady hydrodynamics plays
a significant role in the dynamics of the Brownian particle. This
motivated many theoretical physicists to work on this subject
from various perspectives, and so the algebraic decay was
understood by several approaches: a purely hydrodynamic
approach based on the linearized Navier–Stokes equations,80,81 a
generalized Langevin equation approach based on the fluctuating
hydrodynamics,82–84 the mode-coupling theory,85–87 and the
kinetic theory.88 Although these methodologies have different
perspectives and mathematical sophistication, all of them respect
the inertia of the surrounding fluid and corroborated the same
scaling of the asymptotic decay on the VACF.89

The bold assumption of quasi-steady state in the Langevin
model can be examined only if we consider the unsteady solution
of the hydrodynamics, which has been available for more than a
century from the independent works of Basset and Boussinesq.

4.2 Boussinesq–Basset force

For a spherical particle undergoing unsteady motion influenced
by the inertia of the surrounding fluid, its resistant force was
known to Boussinesq and Basset:90–93

FðtÞ ¼ �6pZavðtÞ �M

2
_vðtÞ � 6a2

ffiffiffiffiffiffiffiffi
pZr
p ðt

0

_vðtÞffiffiffiffiffiffiffiffiffiffi
t� t
p dt; (28)

where M ¼ 4

3
pa3r is the mass of the fluid displaced by the

particle. Note that eqn (28) is obtained by linearizing (dropping
the v�rv term) the incompressible Navier–Stokes equations together
with the no-slip boundary condition on the particle. For a stationary
motion :v(t) = 0, only the first term on the right-hand side remains,
which is just the Stokes friction in eqn (11). The second term is due
to the added mass of an inviscid incompressible origin, while the
third term is the memory effect of the viscous force from the
retarding fluid, which is referred to as the Bousinesq–Basset force.

Now let us discuss when the Bousinesq–Basset force
becomes as important as the Stokes friction. Since the former
is expressed as a convolution integral, we may understand it
better in the frequency domain. By taking the Laplace trans-
form of eqn (28), that is, FðoÞ ¼

Ð1
0 e�otFðtÞdt, we obtain

F(o) = �x(o)v(o) with82

xðoÞ ¼ 6pZaþM

2
oþ 6pa2

ffiffiffiffiffiffiffiffiffi
Zro
p

: (29)

** Lorentz’s lectures are translated,79 see page 93 of the translation.
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From the transformation, we note that any model with only the
steady friction should be considered to be a zero-frequency
theory.80 If we compare the first and third terms on the right-
hand side of eqn (29), the latter becomes larger than the former
for frequency o 4 Z/ra2, or equivalently for time t o ra2/Z.
Since the relaxation time in Langevin eqn (11) is tB = m/x =
2rBa2/9Z, the fluid inertia has non-negligible effects on the
dynamics of the Brownian particle for t o (9r/2rB)tB. Hence, if
9r/2rB { 1, the fluid inertia is negligible, which also confirms
the insightful remark made earlier by Lorentz.

Alternatively, we may realize the significance of the fluid
inertia more directly by considering the vorticity o = r � u,
which satisfies the diffusion equation qo/qt = nr2o,94 where
the kinematic viscosity n = Z/r. The time scale for the vorticity to
travel a distance of the radius of the Brownian particle is
tn = a2/n. For the Langevin model to be valid, it must be
tn { tB or 9r/2rB { 1 so that the transient behavior of the
fluid plays a negligible role in the particle dynamics. This
hydrodynamic argument is also in agreement with the analysis
of the molecular theory.70

In summary, while the Langevin equation provides a fair
approximation for 9r/2rB { 1, e.g., a dense particle in gas, it
does not apply well to the case of 9r/2rB B 1, for example, a
pollen particle in water, that is the historic observation
recorded by Robert Brown.

4.3 Generalized Langevin equation

Now that the importance of the fluid inertia is recognized, we
may discuss the equation of motion for the Brownian particle.
For a rigid particle suspended in a continuum fluid described
by the fluctuating hydrodynamics,93 the following generalized
Langevin equation can be formulated:83,84

m
dv

dt
¼ �

ðt
0

xðt� tÞvðtÞdtþ ~FðtÞ: (30)

Compared to the original Langevin eqn (20), eqn (30) is non-
Markovian as the friction force is history-dependent. The memory
kernel x(t) is the inverse Laplace transform of eqn (29). In
addition, the random force F̃(t) is non-white or colored, which
can be observed via the fluctuation-dissipation relation57

hF̃(0)�F̃(t)i = 3kBTx(t). (31)

At first glance, eqn (30) seems to be simple. We note,
however, that the form is quite general and all the complicated
information is hidden in the memory kernel x(t) or in the
statistics of the random force F̃(t).

Although theoretically well known, the colored power spectral
density of the thermal noise, which is the Fourier transform of
eqn (31), has been confirmed by experiments only recently.95,96 We
also note that the same form of equation as eqn (30) can be
obtained from microscopic equations of motion for a Hamiltonian
fluid through the Mori–Zwanzig formalism.97–102 In fact, the
emergence of a non-Markovian process is a typical scenario when
insignificant variables (fast fluid variables in our case) are elimi-
nated in a Markovian process under coarse-graining.54

4.4 Heuristic derivations of the algebraic decay

Here, we discuss how the algebraic decay appears in the
generalized Langevin eqn (30), and how it can be explained
from a hydrodynamic perspective. The first question can be
answered by deriving a differential equation that the VACF
C(t) = hv(0)�v(t)i satisfies. After multiplying eqn (30) by v(0) and
taking averages, we obtain the Volterra equation (also known as
the memory function equation103)

m _CðtÞ ¼ �
ðt
0

xðt� tÞCðtÞdt: (32)

It is known that if either C(t) or x(t) decays algebraically, then
the other also decays algebraically with the same power law and
the opposite sign.104 From the

ffiffiffiffi
o
p

term of x(o) in eqn (29), we
know that x(t) decays like t�3/2 with negative values at large time
t. Therefore, it is expected that C(t) also decays like t�3/2 but
with positive values at large time t. This mathematical argu-
ment shows that no matter how small r/rB is, the asymptotic
decay of the VACF is always algebraic rather than exponential.
However, for smaller r/rB, the exponential decay yields to
algebraic decay later in time and the Langevin model becomes
a better approximation.

The persistent scaling of the VACF can also be easily under-
stood by a heuristic hydrodynamic argument. Suppose a parti-
cle has initial velocity v0, due to viscous diffusion, after time t, a

vortex ring (d = 2) or shell (d = 3) with radius r �
ffiffiffiffiffi
nt
p

develops.
The total mass within the influenced zone is M* B rrd. If the
surrounding fluid is entrained and moves with the particle at time

t, by momentum conservation we have vðtÞ ¼ mv0

M� �
mv0

r
ðntÞ�d=2.

Then, it is simple to see that C(t) B (nt)�d/2. The argument above
assumes that the particle does not move when the vortex forms. If
the particle moves evidently as the vortex develops, we may still
extend this hydrodynamic argument by adding in the self-
diffusion constant D of the tagged particle into the scaling so
that we have C(t) B [(n + D)t]�d/2. In fact, by introducing the
evolution of the probability distribution function of the tagged
particle, the following expression was derived rigorously (one-
dimensional case):87

lim
t!1

CðtÞ ¼ 2kBT

3r
4pðDþ nÞt½ ��3=2: (33)

This power law scaling is demonstrated by dissipative particle
dynamics simulations in Fig. 2.

If the momentum diffusion is much stronger than the mass
diffusion or if the Schmidt number Sc = n/D is very large (e.g., a
solid particle suspended in a liquid), we can ignore the con-
tribution of D. Under this condition, which is favored by the
linearized hydrodynamics, the full expression of C(t) was
derived from the fluctuating hydrodynamics of an incompres-
sible fluid for a neutrally buoyant particle:83,107

CðtÞ ¼ 2kBT

3m

1

3p

ð1
0

dx

ffiffiffi
x
p

e�xnt=a
2

1þ x=3þ x2=9

" #
: (34)
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Other than the integral form of eqn (34), an alternative closed
form of C(t) is also available.82,108,109

We compare the VACF from the hydrodynamics theory with
that of Langevin’s model in Fig. 3(a). We observe that the
Langevin model underestimates the decay rate of the VACF at
short time (t t tn) while overestimates it at long time (t \ tn).

4.5 Diffusion coefficient and mean-squared displacement

The time-dependent diffusion coefficient D(t) of a Brownian
particle can be obtained directly by integrating eqn (34) as
shown in eqn (27). Furthermore, the MSD may also be obtained
by further integrating D(t) or directly from the VACF as110,111

Dr2ðtÞ
� �

¼ 2

ðt
0

ðt� tÞCðtÞdt: (35)

The non-diffusive signatures of the MSD and the time-
dependent diffusion coefficient due to hydrodynamic memory
have been validated for Brownian particles in a suspension
probed by dynamic light scattering.††107,111 More recently, to
avoid any (weak) hydrodynamic interactions between particles,
optical trapping interferometry has been applied to a single
micrometer particle112 which is trapped in a weakly harmonic
potential.113 Consequently, the hydrodynamic theory for the
non-diffusive regime has been explicitly confirmed with excel-
lent accuracy.112 We compare the time-dependent diffusion
coefficients and MSDs from different theoretical models in
Fig. 3(b) and (c). We observe that the D(t) from Langevin’s
model approaches exponentially fast to Einstein’s diffusion
coefficient, whereas it takes a substantially longer time for
the hydrodynamic model to reach a plateau value.

Fig. 2 Asymptotic limit of the velocity autocorrelation function for a
diffusive particle. Eqn (33) with or without diffusion coefficient D is
compared with the results of tagged fluid particles in dissipative particle
dynamics (DPD) simulations. The inset shows the long-time limit in the
logarithmic scale. Input parameters of DPD are taken from a previous
work,105,106 which correspond to a fluid with kBT = 1, r = 3, n = 0.54, and
D = 0.15 in DPD units.

Fig. 3 C(t), D(t), and hDx2(t)i of a Brownian particle (1D) according to the
Langevin model, incompressible viscous hydrodynamics, and its correc-
tion due to compressible effects at the short time scale. Relevant time
scales are sonic time tcs

= a/cs, viscous time tn = a2/n, Brownian relaxation
time tB = m/x, and diffusive time tD = a2/DN. The definitions of variables
are in the text. For a demonstrative purpose their values are a = 1, cs = 50,
r = rB = 1, n = 1, and kBT = 1 in reduced units. Hence tcs

= 0.02, tB = 0.22,
tn = 1.0, and tD = 18.85.

†† An analytical work on the non-diffusive MSD from the physics community of
the former Soviet Union seems to predate other relevant works,114 and it has been
recently translated.115
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It is worth noting that even when the fluid inertia is
important for the dynamics such as the asymptotic decay of
C(t) of the Brownian particle, the equation for the diffusion
coefficient D1 ¼

Ð1
0 CðtÞdt ¼ kBT=x always holds. This means

that the steady motion or the zero-frequency mobility compo-
nent provides the largest displacement and dominates the
diffusive process.83,109 Therefore, the Stokes–Einstein–Sutherland
formula in eqn (9) is still correct for a diffusive process, which is
universally captured by Einstein’s model, Langevin’s model and
the hydrodynamic model.

4.6 Limitations and underlying assumptions

The heuristic approach above assumes that the long-time decay
of the VACF for the particle is solely affected by the dynamics of
vortex formation driven by the transversal component of the
hydrodynamic equations.89,116 The longitudinal component
drives compressibility effects, which vanish in a sonic time
scale, and therefore, they do not contribute to the long-time
behavior of the dynamics.87 If the short-time dynamics is of
interest, the compressibility should be reconsidered.

When the fluid is considered mathematically to be incom-
pressible, the particle mass m is augmented by an induced
mass M/2, where M is the mass of the fluid displaced by the
particle.93 Due to this mathematical treatment, for any infini-
tesimal time dt, C(dt) = kBT/(m + M/2). However, the equiparti-
tion theorem requires that C(t) starts with C(0) = kBT/m.
Therefore, the incompressible assumption generates a discon-
tinuity of C(t) at short time and violates the equipartition
theorem of statistical physics.‡‡117,118 A similar paradox was
recognized when inverse-transforming eqn (29) to get x(t),
which is singular at t = 0 and leads to a substantial difference
between v(0) and v(dt) in the case of impulsive particle
motion.89,93 The unphysical consequences at short time may
be alleviated by realizing that every fluid is (slightly) compres-
sible. Therefore, we may find a reconciliation of the dynamics
from short to long time by considering the propagation of
sound waves and incorporating a frequency dependent friction
at a frequency similar to the inverse of the sound speed
cs.

80,117,118 For a neutrally buoyant particle, the sound wave
dissipates 1/3 of the total energy and the contribution on the
VACF from the compressibility effects reads109,117,118

CsðtÞ ¼ kBT

3m
e�

3cst
2a cos

ffiffiffi
3
p

cst

2a

 !
�

ffiffiffi
3
p

sin

ffiffiffi
3
p

cst

2a

 !" #
: (36)

We may see in Fig. 3(a) that adding the compressible correction
of eqn (36) to the incompressible VACF of eqn (34) indeed
respects the equipartition theorem at short time. The effects of
the compressibility are not so apparent for the diffusion
coefficient or MSD, as indicated in Fig. 3(b) and (c).

Another interesting phenomenon at the short-time scale due
to sound propagation is the ‘‘backtracking’’, which may con-
tribute negatively to the overall friction experienced by the

particle.120,121 From the ratio of the added mass and the

particle mass
M

2m
¼ r

2rB
, it is simple to see that for a lighter

fluid the compressibility becomes less important for the parti-
cle dynamics.

Similarly any viscoelasticity effects may be incorporated into
the generalized friction at a different frequency after introdu-
cing a new relaxation time scale.80 Moreover, one would need to
select a suitable viscoelastic model and also determine its
relaxation time by other means. The problem is that viscoelas-
ticity includes a vast range of time scales, but most models
do not.

The hydrodynamic theory is based on continuum-fluid
mechanics, which necessarily cannot resolve the ballistic
motion over dt 4 0 accurately. This fact is indicated in the
inset of Fig. 3(c), where the Langevin model shows a finite
period for the ballistic regime, whereas the hydrodynamic
model deviates from it quickly. In the hydrodynamic model
(also in Langevin and Einstein models), we consider only the
continuous friction such as the Stokes or Bousinesq–Basset drag
on the particle, but ignore the Enskog friction on the Brownian
particle due to molecular collisions with the solvent.122,123

Here we focused on the translational motion of a single
spherical particle with the no-slip boundary condition. There
are various extensions based on this simple scenario. For
example, for a sphere with the slip or partial-slip boundary
condition, the magnitude but not the scaling of the asymptotic
decay changes.80 The dynamics for a particle with an arbitrary
shape can be formulated as a similar problem.83,108,124

The VACF of the angular velocity for a rotating particle may
also be calculated with an asymptotic behavior as CR(t) p

t�5/2,§§83,125,126 and the non-spherical shape alters only its
magnitude but not the power law.127 For a test particle immersed
in a suspension of particles, the asymptotic power law does not
change and its magnitude is obtained by replacing the fluid
viscosity with the suspension viscosity.128,129 The unsteady equa-
tion of motion for a sphere in a nonuniform flow is also
available.130 For a Brownian particle of molecular size, the value
of its radius or slip length on the surface is always conceptually
subtle in a continuum description131 and needs extra care.

5 Effects of confinement

In the past few decades, the effects of an interface on a nearby
Brownian particle have been attracting a lot of attention. On the
one hand, it is physically interesting to study the dynamics of
the Brownian particle in a confined environment, where the
momentum relaxation of the fluid is influenced by the inter-
face. On the other hand, it is practically beneficial to deduce
the interfacial properties from the observed dynamics of the
Brownian particle, which is analogous to the passive micro-
rheology technique for unbounded viscoelastic characterization.18

Different from the unbounded case, the motion of a Brownian

‡‡ Another contemporary work by Giterman and Gertsenshteǐn119 was recently
brought to attention.115

§§ A slightly earlier work132 on the rotating motion from the physics community
of the former Soviet Union has been recently translated.115
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particle near an interface is strongly influenced by its hydrody-
namic interactions with the interface, and its studies date back as
early as Hendrik Lorentz’s reciprocal theorem.133,134

From the unbounded motion of a Brownian particle, we
learnt that the diffusive process is dominated by the steady or
zero-frequency mobility. This is still true in the confined case.
Therefore, at first we may ignore the thermal agitations of the
fluid and describe the mobility of a spherical particle immersed
in Stokes flow bounded by a plane wall in Sections 5.1 and 5.2.
Due to the linearity of Stokes flow, the particle’s parallel and
perpendicular motions to the wall can be decomposed and
handled separately. Subsequently, we will discuss the diffusion
and VACFs of a Brownian particle near a wall in Section 5.3,
followed by other more sophisticated scenarios revealed in
Section 5.4.

5.1 Mobility with no-slip interface

When no-slip boundary conditions are assumed on the surfaces
of both the particle and the wall, Hiding Faxén derived an
expression for the mobility coefficient mJ of the parallel motion
using the method of reflection in his PhD dissertation135–137

mk
a

h


 �
	 m1 1� 9

16

a

h


 �
þ 1

8

a

h


 �3
� 45

256

a

h


 �4
� 1

16

a

h


 �5� 

; (37)

which includes the effects of a second reflection; mN is the
Stokes mobility coefficient (denoted above as m) and h is the
distance from the center of the sphere to the wall surface.
Following the method of reflection applied by Shōichi Wakiya,138

the mobility coefficient m> of the perpendicular motion can also
be obtained as139

m?
a

h


 �
	 m1 1� 9

8

a

h


 �
þ 1

2

a

h


 �3� 

: (38)

Eqn (37) and (38) represent a hindered motion due to the presence
of the wall compared to the mobility coefficient mN in the
unbounded case. If we truncate eqn (37) and (38) at the first order
of a/h, we recover the earlier approximations obtained by the
Lorentz’s image technique.134 From these first-order approxima-
tions, it is simple to deduce that the perpendicular motion is
impeded more strongly than the parallel one. Both the image
technique and the method of reflection are only accurate for a { h.

For the parallel motion, there is no closed form for the
solution of mobility over the entire range of h. Instead, Perkin
and Jones started out with the Green tensor for a semi-infinite
fluid and matched a series result (at large h) with an asymptotic
one derived from lubrication theory (at small h) to get the
mobility valid for a wide range of h140,141

m�1k
a

h


 �
	1� 8

15
ln 1� a

h


 �
þ 0:029

a

h


 �

þ 0:04973
a

h


 �2
�0:1249 a

h


 �3
;

(39)

which is more accurate than eqn (37) for small h.

For the perpendicular motion, an exact solution can be
obtained using the bi-polar coordinates142,143

m�1?
a

h


 �
¼ 1

m1
� 4

3
sinh a

X1
n¼1

nðnþ 1Þ
ð2n� 1Þð2nþ 3Þ

� 2 sinhð2nþ 1Þaþ ð2nþ 1Þ sinh 2a

4 sinh 2 nþ 1

2

� �
a� ð2nþ 1Þ2 sinh 2a

� 1

2
664

3
775;
(40)

where a = cosh�1(h/a). Although eqn (40) was immediately
validated by experiments,144 it is expressed as an infinite series,
which is inconvenient as a reference solution. An appropriate
form as a good approximation to eqn (40) may be obtained by
the regression method145,146

m?
a

h


 �
	 6� 10ða=hÞ þ 4ða=hÞ2

6� 3ða=hÞ � ða=hÞ2 : (41)

We summarize different approximations for the mobility
hampered by a no-slip plane wall in Fig. 4. The results from
different methods agree with each other at the intermediate
and large distance, that is, mJ with h/a \ 1.5 and m> with h/a \ 3.
Differences appear only at the short distance; Lorentz’s image
technique is not accurate for either mJ or m>. The method of
reflection improves the accuracy of mJ, but fails at the lubrication
regime (h/a o 1.1), which is covered by eqn (39) of Perkins and
Jones. The method of reflection in eqn (38) overcompensates the
deviation on m> from Lorentz’s image technique. Adding only a
few terms of the series in eqn (40) already provides a convergent
value for m>, which is readily represented by the regression form
of eqn (41).

Fig. 4 Mobility of a sphere near a no-slip wall. The results from Lorentz’s
image technique are taken up to the first order of a/h in eqn (37) and (38);
the results from the method of reflection are the complete expressions in
eqn (37) and (38). The prediction of mJ in eqn (39) from Perkins and Jones is
shown to be more accurate at the short distance, as indicated in the inset.
The prediction of m> with series solution is taken from eqn (40) up to
n = 10 and including higher n does not change the sum of series
significantly. The regression approximation for m> in eqn (41) is almost
identical to the series solution.
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5.2 Mobility with slip interface

Although the no-slip boundary condition on the fluid–solid
interface cannot be justified from first principles, classical
experiments over several decades indeed support its validity,
and the no-slip boundary condition has become a cornerstone
of continuum-fluid mechanics.31,37,147,148 However, many recent
experiments indicate violations of the no-slip boundary condi-
tion in micro-channels even of the micrometer scale.149–152 Since
the slip length of the interface may depend on the shear rate153

and dynamic response of gas bubbles,154 any external perturba-
tion from measurements, such as shear flow, could affect the
intrinsic properties of the interface. A passive Brownian particle
may be an effective probe to sense the interfacial properties
locally, as it only leads to a minimal intrusion to the natural
environment near the interface.

We again start with a spherical particle immersed in Stokes
flow bounded by a single plane wall. The no-slip boundary
condition still applies to the particle surface, whereas for the
plane wall we define the slip-length b from its boundary
condition as35,148

u? ¼ 0; uk ¼ b
@uk
@n
; (42)

where n is the normal direction to the wall. This is the same
definition as for the slip length of a particle in eqn (8); the normal
component of the velocity vanishes at the interface, whereas the
tangential component extrapolates linearly to vanish at distance b
inside the solid. For a small slip length b { h, Lauga and Squires
applied the image technique (a { h) to obtain155

mk
a

h
;
b

h

� �
	 m1 1� 9

16

a

h


 �
1� b

h

� �� 

; (43)

m?
a

h
;
b

h

� �
	 m1 1� 9

8

a

h


 �
1� b

h

� �� 

; (44)

where the mobility coefficients are now functions of both a/h and
b/h. For a no-slip wall b = 0, eqn (43) and (44) reduce to eqn (37)
and (38) to the first order of a/h.

For a large slip length b c h (and a { h), another
asymptotic limit is obtained155

mk
a

h
;
b

h

� �
	 m1 1þ 3

8

a

h


 �
1þ 5h

b
ln
h

b

� �� 

; (45)

m?
a

h
;
b

h

� �
	 m1 1� 3

4

a

h


 �
1þ h

4b

� �� 

: (46)

For b -N, the terms of h/b disappear in eqn (45) and (46) and
the mobility for a perfect slip wall is recovered. In this case,
eqn (46) corroborates the pioneering work of Brenner.142

The higher-order terms are not included in these solutions
and the results are accurate only to the first order of a/h and b/h
(small slip length) or h/b (large slip length). We summarize the
first-order modifications for the mobility of a particle near a
wall with a slip boundary condition in Fig. 5. Due to the image
technique, the further away from the wall the particle is located
(larger h/a), the more accurate are the solutions. In general, the

larger the slip length of the wall is, the stronger mobility a nearby
particle has. It is worthwhile to note that a large slip length
b/h 4 1 (e.g., b/h = 50 or N) may cause the parallel mobility
coefficient to be even greater than that of the unbounded case as
shown in Fig. 5(a), whereas it does not affect the perpendicular
mobility significantly as indicated in Fig. 5(b). Therefore, we
suggest that the parallel motion of the particle should be probed
preferably to determine the interfacial properties, as it is more
sensitive to the slip length of the interface and provides a much
wider range of mobility coefficients for measurements.

So far, we have assumed that the particle surface has a no-
slip boundary condition. Even if the particle–fluid interface
also possesses a slip length, the Stokeslet (Green’s function) in
the image technique does not change.155 Therefore, the mobi-
lity modifications due to the slip wall in eqn (43)–(46) still hold.
In this case, we only need to replace mN in these equations by
the one presented in eqn (8), which takes into account the
modifications induced by the slip length at the particle surface.

5.3 Diffusion coefficient and asymptotic decay of VACFs

From the mobility coefficients we may write down the diffusion
coefficients for a particle in the vicinity of a plane wall as

Dk
a

h


 �
¼ mk

a

h


 �
kBT ; (47)

Fig. 5 Mobility of a sphere near a slip wall.
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D?
a

h


 �
¼ m?

a

h


 �
kBT : (48)

For the diffusion coefficients of a spherical particle near a plane
wall with the no-slip boundary condition, these analytical
expressions have been corroborated by experiments,141,156,157

and fluctuating-hydrodynamics simulations.158 For a partial-
slip wall, the analytical results on parallel mobility are also
verified by deterministic continuum simulations.159

In Section 4, we have seen that the friction due to the
transient dynamics of the fluid plays a significant role in the
VACF of the Brownian motion. This is still true in the confined
case but more involved. For the unsteady motion of a sphere in
viscous flow bounded by a plane wall, where the no-slip
boundary condition applies to both solid interfaces, Wakiya
calculated the parallel mobility160,161 and Gotoh and Kaneda
worked out the mobility perpendicular to the wall.162 Further
extending the work of Hauge and Martin-Löf83 based on
fluctuating hydrodynamics of the unbounded case, Gotoh and
Kaneda obtained the asymptotic VACFs in the confined case
with dominant terms as162

CkðtÞ 	
kBTh

2

8rp
ffiffiffi
p
p ðntÞ�5=2; (49)

C?ðtÞ 	
kBTh

4

32rp
ffiffiffi
p
p ðntÞ�7=2: (50)

These solutions are valid for t c th = h2/n, which is the time for
the vorticity propagation between the sphere and the wall.

The power laws of t�5/2 and t�7/2 for the confined VACFs
were verified by lattice Boltzmann simulations.163 However,
Felderhof recently claimed that these analytical results are
erroneous and the simulations are also too short to achieve
an asymptotic limit.164 Instead, Felderhof performed the calcu-
lation himself and found that VACFs behave asymptotically at
large t as164

CkðtÞ 	
kBT 3h2 � a2

� 	
24rp

ffiffiffi
p
p ðntÞ�5=2; (51)

C?ðtÞ 	 �
kBTa

2

24rp
ffiffiffi
p
p ðntÞ�5=2 þ kBTh

4

32rp
ffiffiffi
p
p ðntÞ�7=2: (52)

For the parallel motion, the magnitude is slightly different from
that of eqn (49). For the perpendicular motion, however, it is
even qualitatively different; the long-tail is dominated by a
scaling of t�5/2 with negative values as in eqn (52) rather than
t�7/2 with positive values as in eqn (50).

In a recent ms-long molecular dynamics (MD) simulation
with Lennard-Jones interactions, the asymptotic scaling of the
parallel motion is again confirmed to be t�5/2.165 Furthermore,
Huang and Szlufarska utilized a more general result than
eqn (51) for a denser particle to validate the magnitude of the
asymptotic decay.165 However, there was still no direct evidence
to confirm whether the magnitude in eqn (49) or eqn (51) is
more accurate. The Brownian motion was also employed by
Huang and Szlufarska to detect a breakdown of the no-slip
boundary condition at short time, which demonstrates the

capability of a Brownian particle as a probe for the wettability
at a liquid–solid interface.

It is still quite challenging to obtain the confined VACFs
with a great accuracy from experiments. Available experimental
results157,166 exhibit non-negligible noises, from which neither
the scaling nor the magnitude of the VACFs could be conclu-
sive. Therefore, this dispute is yet to be settled.

5.4 Limitations and underlying assumptions

We focused on the mobility of a particle due to a single nearby
wall. Effects due to two-wall confinements or two-particle inter-
actions are more involved, but can be tackled.139,156,159,167–170 We
have assumed an incompressible fluid and ignored any com-
pressible behavior of the fluid. For the short-time dynamics,
however, sound propagation also plays a decisive role for the
Brownian motion in a confined environment,171–175 just as in the
unbounded case.

The random force on a Brownian particle in confinement is
also non-white as in the unbounded case. Moreover, the
intensity of the power spectral density on position fluctua-
tion or thermal noise is shifted by the wall, as measured
experimentally.96 However, a recent analytical calculation from
Felderhof176 on the spectrum of position fluctuations, where a
static wall-slip length is assumed, does not agree with the
experimental results. This disagreement suggests that the slip
length on the wall is dynamic and introducing a frequency-
dependent slip length could potentially improve the modeling
based on the continuum fluid mechanics.153,154,177–181 Never-
theless, it is not certain that this hypothesized continuum
boundary condition may faithfully reflect the Brownian motion
in a confined fluid at molecular length-time scales, where lock-
ing and delayed relaxation caused by the epitaxial ordering of
the fluid structure near the interface may be significant.165,182

Furthermore, the mobility of a Brownian particle due to the
atomistic collisions confined in a microscale channel183 may not
always be described by the linearized hydrodynamic equations.

6 Summary and perspectives

We summarized three theoretical models for a Brownian par-
ticle suspended in a fluid: Einstein’s model, Langevin’s model,
and the hydrodynamic model and its extensions near a con-
fined interface. From the perspective of hydrodynamic inter-
actions between the particle and the fluid, each model is more
elaborate than its preceding one.

It is simple to differentiate the capability of different models
by taking into account the disparate time scales involved.
Einstein’s model considers only the diffusive time scale
tD = a2/D, when the particle undergoes a random walk, and
thus a statistical description of its displacements is feasible
without involving the momentum coordinates of either the
particle or the fluid. Langevin’s model introduces the inertia
of the particle, and therefore an extra time scale is introduced,
tB = m/x, where x is the friction coefficient due to the viscous
fluid at steady state. Hence, the model separates two asymptotic
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regimes, that is, the ballistic regime t { tB and the diffusive
regime t c tB. Moreover, due to the particle inertia its velocity
is well-defined and the velocity autocorrelation function (VACF)
encodes the full dynamics of the particle with an exponential
decay. If the relaxation time of the viscous fluid tn = a2/n is
comparable to or larger than tB, that is 9r/2rB \ 1, which is a
typical scenario for a colloidal suspension (e.g., a pollen particle
in water), the inertia of the fluid must be explicitly taken into
account. The hydrodynamic model is based on the solution of
the linearized Navier–Stokes or unsteady Stokes equations,
which is employed to calculate the full dynamics (signified by
the VACF) of a Brownian particle. The coupling between the
inertias of the particle and the fluid is mediated by their transient
hydrodynamic interactions, and this leads to an algebraic decay of
the particle’s VACF. The power law scaling indicates significant
implications, such as the failure of the molecular chaos assump-
tion, which is expected from Langevin’s model.

When a Brownian particle jiggles near an interface, the
relaxation of the fluid due to vortex development is affected
by its encounter with the interface. Naturally, this introduces a
new time scale th = h2/n, which indicates the time of vorticity
propagation between the particle and the wall. For t c th, the
asymptotic limit of the VACFs (including parallel and perpendi-
cular components) for the particle may be calculated and they
still follow the power law scalings. However, the actual magni-
tude and power law from analytical approaches remain con-
troversial. Existing results from experiments are also imperfect
for a consensus. Perhaps new experimental techniques illu-
strated by Raizen’s and Florin’s groups46,47 may provide a
definite answer for the asymptotic limit in the near future.
Furthermore, if the sonic time scales in a liquid such as
tcs

= a/cs and t0cs
= h/cs are to be considered for the dynamics

of a Brownian particle, perhaps extra innovations in experi-
mental facilities are yet to be developed.

Besides the analytical and experimental works, we also wish
to emphasize the effectiveness of various numerical methods
on the study of Brownian motion. Some popular methods to
study the dynamics of a (non-)Brownian suspension include
Brownian dynamics,184 Stokesian dynamics,185,186 and the
force-coupling method,187–189 which are very efficient for the
bulk rheology at quasi-steady state. However, these methods
are semi-analytical and rely on the solutions of steady Stokes
flow. Therefore, they may not be appropriate for studying
the dynamics of Brownian motion involving time scales tn or tcs

.
An alternative numerical method being able to consider tn
explicitly is the boundary integral method,94 which solves the
unsteady Stokes equations. Nevertheless, it is generally difficult to
include the compressibility (related dynamics at the sonic time
scale tcs

) and Brownian motion into a boundary integral imple-
mentation. With the increasing capacity of parallel computing, it
might be tempting to simulate the Brownian motion of a particle
by molecular dynamics (MD),190,191 which may cover the ballistic
regime, the sonic time scale as well as the momentum relaxation
time of the fluid. A typical colloid of radius 1 mm in water at room
temperature diffuses over its own radius distance in about 5 s. To
resolve the stiff vibrations of water molecules in a MD simulation,

a numerical time step must be about 10�15 s for stability.
Therefore, it is still impractical to simulate such a simple
scenario with a full atomistic description. The most realistic
class of numerical methods to study the Brownian motion and
its relevant areas seems to be the mesoscopic methods, which
may cover a wide range of spatial-temporal scales. This category
includes the mesh-based methods, such as finite difference,192

finite volume,193–195 and lattice Boltzmann,196,197 and also the
particle-based methods, such as dissipative particle dynamics,198

smoothed particle hydrodynamics,158,199 and stochastic rotation
dynamics/multiple-particle collision dynamics.200–202
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