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Exercises — Serie 3 — Added mass

Exercise 1

Consider a sphere moving with velocity U, (t) = Ug(t)e, in a quiescent fluid. The fluid domain
is unbounded.

In this case, the velocity potential is given by:

R3
¢p=U (t) > cos 6

a) Give the expression of the velocity field u(r, 0,t)
Potential flow is defined as an incompressible (V - u = 0), irrotational (V X u = 0) and
inviscid (u = 0) flow.

Since the flow is irrotational we have u = V¢.

d¢ 16(;[) 1 0d¢
u="e = ( )
or'r ag’ rsinf de
d¢ R3 10¢ R3 ] d¢
WZ_USTCOSH ;%:—Usﬁsmg %:O

b) Give the expression of the pressure field p(r,0,t) using the unsteady Bernoulli
equatlon + ||7<]5|2 = C(b).

From the Bernoulli equation we have:

9
p=CO—p (o0 +3I791)
op . R
EZUSZ 5 cos 6

2 2R6 2 1 P2
V| =U5F<cos 9+Zsm 9)
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The pressure field is therefore:
3 6

R ZR 2 1 2
p(r,6,t) =C(t) —p|U S5 2cos€+U52 6(cos 9+Zsm 9)

Note: Bernoulli equation can be retrieved from the Navier-stokes equations. For an
incompressible and inviscid flow, and neglecting gravity, we have:

<0u+ v )— v
p R ulVu|=-Up
V-u=0
Using the vector identity:
1
u.Vu=§V|u|2—u><(V><u)

The Navier-Stokes equations can be rewritten as:

du
p(6t+ Vlulz—ux(qu)) Vp

And since the flow is irrotational we have:

Ju 1 5
p(a += VIuI) —Vp

Then, using u = V¢ it comes:

p(aav;p +5 V|V¢|2) =-Vp=V [p + p(ad) IV¢|2)]

And therefore, the quantity inside the gradient should be a function of time only, leading to
the integration constant C(t).

a9 1 -
p+o(5e+317017) = )

c) Find the force E (t) = F(t) - e, exerted by the flow on the sphere

Since the flow is considered inviscid, the stress tensor reads o = —pl.
The force exerted by the flow on the sphere is then:

F(t) = f f onds = — f f p(R, 0, )nds
S S

The x-component of the force is:
E.(6) = F(t) - e, = — f j (R, 0,00 - e,dS
S

With
n=e, =sinfcospe, +sinfsinpe, +cosbe, = n-e, =cosb

And
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dS = R?sin 6 dod¢
T 2T s
E(t) =— J J p(R,6,t) cos O R? sin8dOdgp = —2mR? f p(R,6,t) cos 6 sin 6dO
6=07p=0 0

The pressure on the surface of the spherer = R is:

R 1 1
p(R,0,t) =C(t) —p [Usicose + U§E<cosz 0+ Zsm2 9)]

The contribution of the constant C(t) cancels in the integration since:
s s
f C(t) cosBsinfBdO = C(t) f cosBsinfdo =0
0 0
Thus, we have:

™ r. R 1 1
E(t) = Znsz p [Usicosa + UZ E(cos2 0+ Zsin2 6)] cos 6 sin 6d6
0

. R (" 1"
E,(t) = 2nR?p [USEJ cos?0sinfdo + U? EJ cos® 0sinf do
0 0

1 s
+ Usz—f sin39c056del
8 0
And since:
Vs 2 s s
f cos? 0sin O do =3 f cos30sinfdd =0 f sin3@cosfdf =0
0 0 0
The force is consequently:
2 o
F.(t) = p§7TR Us

d) Deduce the expression of the added mass m,?

2 1
mg = P§7TR3 =PV
The added mass in this case (unbounded domain) is one half the mass of fluid displaced by the

sphere.

Hints:
. . . . .. _ (9% 104 1 a_¢)
The gradient operator in spherical coordinates is given by V¢ = (ar )7 36 7em 6 99

The surface element on a sphere of radius R in spherical coordinates is dS = R? sin 6 d0d¢
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Exercise 2

Consider a sphere of radius R = 5 ¢m made of steel (pgee; = 8000 kg/m3). The sphere is
supported by a spring with constant K = 200 N/m and excited by a sinusoidal force of
amplitude A which forces the sphere to oscillate around its equilibrium position at x = 0.
The sphere is then placed in a water tank and the same force is applied to it.

a) Find the ratio of the natural frequencies of both systems.

b) We replace the ball with one made of POM plastic (ppgy = 1410 kg/m3). Recompute the

ratio of the natural frequencies.

(Note: We ignore the viscous damping, this approximation is acceptable for small amplitude
oscillations in which inertial terms (accelerations) dominate.

E &

Figure 1: Spring-mass system in the two configurations.

In the first case, the system oscillates in air (a medium where added mass effects can be
neglected pg,ir K Psteer)- The equation of motion then reads:

mi + kx = Asin(wt) + Fpuoyancy — Mg
And the natural frequency of the system is therefore given by:
k

Wo1 = E

In the second case, however, added mass effects cannot be neglected. From the previous
exercise, we have found the expression of the force exerted by the fluid on a accelerated
sphere:

2 o ,
Fr =,0§T[R X =myXx

The equation of motion therefore now reads:

mi + kx = Asin(wt) + Fpyoyancy — Mg — Fr
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mi + kx = Asin(wt) + Fpyoyancy — Mg — Mgk
(m + my)i + kx = Asin(wt) + Fyyoyancy — Mg
And the natural frequency of the second system is given by:

k

Wy = |[———
0.2 m+my

The ratio of the two frequencies is finally given by:

Woy [Mm+my 4/3Ps+2/3pf_ 1+p_f
Wo,2 m 4/3ps 205

For a ball made of steel we find r = 1.03 and for a ball made of POM we find r = 1.16.
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Exercise 3

If a 3D body has a characteristic length in one direction that is considerably longer than

its length in the other two directions, the slender body approximation can be used to
formulate the added mass associated with its motion. The idea behind this is to consider the

body as a longitudinal stack of thin sections, each having an easily computed added mass, and
to integrate the effects of those sections along the length of the body to find the total added
mass (c.f. Figure 2 and Figure 3).

By using this approximation, it is possible to estimate the added mass tensor for a 6 degrees
of freedom body, m;;, withi, j=1,2,3,4, 5,6, moving in a fluid as follow:

l_])(t) = (Ull Uz, U3, W1, W2, (1)3) = (Ull UZ: U3' U4-1 US' U6)

A good way to think about those components m;; is to consider them as the mass associated
with a force/moment in the it" direction due to a unit acceleration in thejth direction. Note,
however, that the added mass coefficients related to the x; axis (c.f. Figure 2) cannot be
obtained with the slender body approach. Additionally, the tensor is symmetric: m;; = my;.
Given the symmetries of the 3D body depicted on Figure 2, the added mass tensor is given by:

My My Mz Mgy My Mg myq 0 0 0 0 0
\ 0 my, 0 0 0 0

0 0 0

c:c>c>wE
w
3
o
S
o
coo

0
0
0

1/2 1/2

Figure 2: Slender-body approximation. 3D body made of circular 2D sections.
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Qzp = A3z = PTT 2

a4 =0

Figure 3: Added mass coefficients of a 2D circular section.

EPFL — SCI-STI-MF 6



EPFL - ME-435: Aeroelasticity and fluid-structure interaction E P I- I

Farhat Mohamed
A. Sache, T. Berger Autumn 2024

2
a) Assuming a solid with the shape d(x;) = hyax (1 —l:ﬁ). Calculate the different
added masses as a function of [ and h,, ;-

l

2 2 2
myp, = flazzdx1 ms3 =fla33dx1 Myy = f la44dx1

l l

2 2
_ 2 _ 2
Mgg = f lx1a33dx1 Meg —f X7 az,dxq

The 2D added mass coefficients are given by:

d(x)\
)

ap; = Q33 = pT[(
a4_4 = 0
The different added masses are:

1/2 1/2 2 \?2
pTt pTt X1
My, = —d(xy)?dx; = —h? f <1——> dx

=P jl/z P S W PP SN
Ty tmex )\ T 274 13716) 7 T 15 P max
M33 = My
TH44 == O
/2 /2 2\ 2
- , PTC _pm ) Xi
m55 = J-_l/z x1 Td('xl)zd'xl = Th.%nax s Xl 1 — l2/4- dx1
/2 4 6
pTt 2x3 X1 1
=-—h2 f 2 _ 1 4 V. = —omh2 13
Mgg = Mgy

The effects of added mass on a body can be represented by forces and moments acting on it.
In the case of a body evolving in an unbounded and inviscid fluid, they can be evaluated as
follow:

F; = =Uymy; — €jqUswiemy;
M; = —Uimjiz; — € Uiwpmyys; — €U Uimy;
wherei =1,2,3,4,5,6and j, k,l = 1,2, 3 and € is the Levi-Cavita symbol with:

0 if any j, k,l are equal
ikl = 1 ifj,klareincyclic order
-1 if j,k,lareinanti — cyclic order

Consider the 3D object moving in the fluid as follow:
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U= (U1,U,,U3,U,,Us,Ug) = (U cos(a),0,—U sin(a), 0,0,0)

U= (U cos(a),0,—U sin(a),0,0,0)

b) Calculate the forces and the moments in terms of m;;.

Figure 4: UAV moving in an inviscid and unbounded fluid.

For the forces:

U4=U5=U6=O = (1)1=(1)2=(L)3=0

F = =Uimyj — €qUswmy; = =Uimy;
So we have:
F; = —U cos(a) mq4
F,=0

F; = U sin(a) ms3

For the moments, we can make the same simplifications as for the forces:

Mj = —Umj,z; — € Uiwpmyis; — €qUUimy; = —Uimyyz; — €U Uimy;
Which yields:
M, =0
M, = —U? cos(a) sin(a) (m33 — my;)
M; = 0

The moment M, is known as the Munk moment. It arises from the asymmetric location of the
stagnation points, where the flow decelerates at the front of the body (the pressure increases)
and accelerates at the back (the pressure decreases). This moment has a destabilizing effect
on the body as it tends to turn it perpendicular to the flow. The Munk moment only appears
in its full form in the inviscid fluid case. In the viscous case, the flow around the body is
modified and so is the value of the moment.

c) Given l=1m,hyg =0.1mU=5m/s,U=1m/s? and a =5°, compute the
various forces and moments derived in (b). The added mass coefficient m;; can be
approximated in this specific case as follow:

4 1,
my, = 0.057§7Tp§hmax
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Given the numerical data and considering that the body is moving in water, we have:

my; = 1.194 kg
ms3; = 4.189 kg
And therefore,
F, =-1189N
F; =0.365N

M, = —6.501 Nm

d) What becomes the moment M, if we consider a sphere instead of the body depicted
on Figure 2?

If we consider a sphere, we have m;; = ms5 (due to the symmetry of the body). In that case,
MZ = O
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