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Exercises – Serie 3 – Added mass  
 

Exercise 1 
 
Consider a sphere moving with velocity 𝑼𝑠(𝑡) = 𝑈𝑠(𝑡)𝒆𝑥 in a quiescent fluid. The fluid domain 
is unbounded. 

 
In this case, the velocity potential is given by: 

𝜙 = 𝑈𝑠(𝑡)
𝑅3

2𝑟2
cos 𝜃 

a) Give the expression of the velocity field 𝒖(𝑟, 𝜃, 𝑡)  
Potential flow is defined as an incompressible (∇ ⋅ 𝒖 = 0), irrotational (∇ × 𝒖 = 𝟎) and 
inviscid (𝜇 = 0) flow. 

Since the flow is irrotational we have 𝒖 = ∇𝜙. 

𝒖 = 𝛻𝜙 = (
𝜕𝜙

𝜕𝑟
,
1

𝑟

𝜕𝜙

𝜕𝜃
,
1

𝑟 sin 𝜃

𝜕𝜙

𝜕𝜑
) 

𝜕𝜙

𝜕𝑟
= −𝑈𝑠

𝑅3

𝑟3
cos 𝜃          

1

𝑟

𝜕𝜙

𝜕𝜃
= −𝑈𝑠

𝑅3

2𝑟3
sin 𝜃        

𝜕𝜙

𝜕𝜑
= 0 

The velocity field is then: 

𝒖 = −𝑈𝑠
𝑅3

𝑟3
(cos 𝜃 ,

1

2
sin 𝜃 , 0) 

b) Give the expression of the pressure field 𝑝(𝑟, 𝜃, 𝑡) using the unsteady Bernoulli 

equation 
𝑝

𝜌
+
𝜕𝜙

𝜕𝑡
+
1

2
|𝛻𝜙|2 = C(𝑡).  

From the Bernoulli equation we have: 

𝑝 = C(𝑡) − 𝜌 (
𝜕𝜙

𝜕𝑡
+
1

2
|𝛻𝜙|2) 

𝜕𝜙

𝜕𝑡
= 𝑈̇𝑠

𝑅3

2𝑟2
cos 𝜃 

|∇𝜙|2 = 𝑈𝑠
2
𝑅6

𝑟6
(cos2 𝜃 +

1

4
sin2 𝜃) 
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The pressure field is therefore: 

𝑝(𝑟, 𝜃, 𝑡) = 𝐶(𝑡) − 𝜌 [𝑈̇𝑠
𝑅3

2𝑟2
cos 𝜃 + 𝑈𝑠

2
𝑅6

2𝑟6
(cos2 𝜃 +

1

4
sin2 𝜃)] 

Note: Bernoulli equation can be retrieved from the Navier-stokes equations. For an 
incompressible and inviscid flow, and neglecting gravity, we have: 

𝜌 (
𝜕𝒖

𝜕𝑡
+ 𝒖. 𝛻𝒖) = −𝛻𝑝 

∇ ⋅ 𝒖 = 𝟎 

Using the vector identity: 

𝒖. ∇𝒖 =
1

2
∇|𝒖|2 − 𝒖 × (∇ × 𝒖) 

The Navier-Stokes equations can be rewritten as: 

𝜌 (
𝜕𝒖

𝜕𝑡
+
1

2
∇|𝒖|2 − 𝒖 × (∇ × 𝒖)) = −∇𝑝 

And since the flow is irrotational we have: 

𝜌 (
𝜕𝒖

𝜕𝑡
+
1

2
∇|𝒖|2) = −∇𝑝 

Then, using 𝒖 = 𝛻𝜙 it comes: 

𝜌 (
𝜕∇𝜙

𝜕𝑡
+
1

2
∇|∇𝜙|2) = −∇𝑝 ⟹ ∇ [𝑝 + 𝜌 (

𝜕𝜙

𝜕𝑡
+
1

2
|∇𝜙|2)] = 0 

And therefore, the quantity inside the gradient should be a function of time only, leading to 
the integration constant 𝐶(𝑡). 

𝑝 + 𝜌 (
𝜕𝜙

𝜕𝑡
+
1

2
|𝛻𝜙|2) = 𝐶(𝑡) 

 

c) Find the force 𝐹𝑥(𝑡) = 𝑭(𝑡) ∙ 𝒆𝑥 exerted by the flow on the sphere 

Since the flow is considered inviscid, the stress tensor reads  𝝈 = −𝑝𝑰.  
The force exerted by the flow on the sphere is then:  

𝑭(𝑡) = ∬𝝈𝒏𝑑𝑆
 

𝑆

= −∬𝑝(𝑅, 𝜃, 𝑡)𝒏𝑑𝑆
 

𝑆

 

The 𝑥-component of the force is: 

𝐹𝑥(𝑡) = 𝑭(𝑡) ⋅ 𝒆𝑥 = −∬𝑝(𝑅, 𝜃, 𝑡)𝒏 ⋅ 𝒆𝑥𝑑𝑆
 

𝑆

 

With 

𝒏 = 𝒆𝑟 = sin 𝜃 cos𝜑 𝒆𝑦 + sin 𝜃 sin 𝜑𝒆𝑧 + cos 𝜃 𝒆𝑥 ⟹  𝒏 ⋅ 𝒆𝑥 = cos 𝜃 

And 



EPFL - ME-435: Aeroelasticity and fluid-structure interaction 
Farhat Mohamed 
A. Sache, T. Berger Autumn 2024 
 
 

EPFL – SCI-STI-MF 3 

𝑑𝑆 = 𝑅2 sin 𝜃 𝑑𝜃𝑑φ 

𝐹𝑥(𝑡) = −∫ ∫ 𝑝(𝑅, 𝜃, 𝑡) cos 𝜃 𝑅2 sin 𝜃𝑑𝜃𝑑𝜑
2𝜋

𝜑=0

𝜋

𝜃=0

= −2𝜋𝑅2∫ 𝑝(𝑅, 𝜃, 𝑡) cos 𝜃 sin 𝜃𝑑𝜃
𝜋

0

 

The pressure on the surface of the sphere 𝑟 = 𝑅 is: 

𝑝(𝑅, 𝜃, 𝑡) = 𝐶(𝑡) − 𝜌 [𝑈̇𝑠
𝑅

2
cos 𝜃 + 𝑈𝑠

2
1

2
(cos2 𝜃 +

1

4
sin2 𝜃)] 

The contribution of the constant 𝐶(𝑡) cancels in the integration since: 

∫ 𝐶(𝑡) cos 𝜃 sin 𝜃𝑑𝜃 = 𝐶(𝑡)∫ cos 𝜃 sin 𝜃𝑑𝜃
𝜋

0

𝜋

0

= 0 

Thus, we have: 

𝐹𝑥(𝑡) = 2𝜋𝑅
2∫ 𝜌 [𝑈̇𝑠

𝑅

2
cos 𝜃 + 𝑈𝑠

2
1

2
(cos2 𝜃 +

1

4
sin2 𝜃)] cos 𝜃 sin 𝜃𝑑𝜃

𝜋

0

 

𝐹𝑥(𝑡) = 2𝜋𝑅
2𝜌 [𝑈̇𝑠

𝑅

2
∫ cos2 𝜃 sin 𝜃 𝑑𝜃 
𝜋

0

+ 𝑈𝑠
2
1

2
∫ cos3 𝜃 sin 𝜃 𝑑𝜃 
𝜋

0

+ 𝑈𝑠
2
1

8
∫ sin3 𝜃 cos 𝜃 𝑑𝜃 
𝜋

0

] 

And since: 

∫ cos2 𝜃 sin 𝜃 𝑑𝜃 
𝜋

0

=
2

3
       ∫ cos3 𝜃 sin 𝜃 𝑑𝜃 

𝜋

0

= 0        ∫ sin3 𝜃 cos 𝜃 𝑑𝜃 
𝜋

0

= 0 

The force is consequently: 

𝐹𝑥(𝑡) = 𝜌
2

3
𝜋𝑅3𝑈̇𝑠 

d) Deduce the expression of the added mass 𝑚𝑎? 

𝑚𝑎 =  𝜌
2

3
𝜋𝑅3 =

1

2
𝜌𝑉𝑠 

The added mass in this case (unbounded domain) is one half the mass of fluid displaced by the 
sphere. 
 
Hints:  

The gradient operator in spherical coordinates is given by  ∇𝜙 = (
𝜕𝜙

𝜕𝑟
,
1

𝑟

𝜕𝜙

𝜕𝜃
,

1

𝑟 sin𝜃

𝜕𝜙

𝜕𝜑
) 

The surface element on a sphere of radius 𝑅 in spherical coordinates is 𝑑𝑆 = 𝑅2 sin 𝜃 𝑑𝜃𝑑φ 
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Exercise 2 
 
Consider a sphere of radius 𝑅 =  5 𝑐𝑚 made of steel (𝜌𝑠𝑡𝑒𝑒𝑙 = 8000 𝑘𝑔/𝑚3). The sphere is 
supported by a spring with constant 𝐾 =  200 𝑁/𝑚 and excited by a sinusoidal force of 
amplitude 𝐴 which forces the sphere to oscillate around its equilibrium position at 𝑥 =  0. 
The sphere is then placed in a water tank and the same force is applied to it.   
 
a) Find the ratio of the natural frequencies of both systems. 
b) We replace the ball with one made of POM plastic (𝜌𝑃𝑂𝑀 = 1410 𝑘𝑔/𝑚3). Recompute the 

ratio of the natural frequencies. 
 
(Note: We ignore the viscous damping, this approximation is acceptable for small amplitude 
oscillations in which inertial terms (accelerations) dominate. 

 
Figure 1: Spring-mass system in the two configurations. 

In the first case, the system oscillates in air (a medium where added mass effects can be 
neglected 𝜌𝑎𝑖𝑟 ≪ 𝜌𝑠𝑡𝑒𝑒𝑙). The equation of motion then reads: 

𝑚𝑥̈ + 𝑘𝑥 = 𝐴 𝑠𝑖𝑛(𝜔𝑡) + 𝐹𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦 −𝑚𝑔 

And the natural frequency of the system is therefore given by: 

ω0,1 = √
𝑘

𝑚
 

In the second case, however, added mass effects cannot be neglected. From the previous 
exercise, we have found the expression of the force exerted by the fluid on a accelerated 
sphere: 

𝐹𝑓 = 𝜌
2

3
𝜋𝑅3𝑥̈ = 𝑚𝑎𝑥̈ 

The equation of motion therefore now reads: 

𝑚𝑥̈ + 𝑘𝑥 = 𝐴 sin(ω𝑡) + 𝐹𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦 −𝑚𝑔 − 𝐹𝑓 
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𝑚𝑥̈ + 𝑘𝑥 = 𝐴 sin(ω𝑡) + 𝐹𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦 −𝑚𝑔 −𝑚𝑎𝑥̈ 

(𝑚 +𝑚𝑎)𝑥̈ + 𝑘𝑥 = 𝐴 sin(ω𝑡) + 𝐹𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦 −𝑚𝑔 

And the natural frequency of the second system is given by: 

ω0,2 = √
𝑘

𝑚 +𝑚𝐴
 

The ratio of the two frequencies is finally given by: 

𝑟 =
ω0,1
ω0,2

= √
𝑚 +𝑚𝐴
𝑚

= √
4
3⁄ 𝜌𝑠 +

2
3⁄ 𝜌𝑓

4
3⁄ 𝜌𝑠

= √1 +
𝜌𝑓

2𝜌𝑠
 

For a ball made of steel we find 𝑟 =  1.03 and for a ball made of POM we find 𝑟 =  1.16. 
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Exercise 3 
 
If a 3D body has a characteristic length in one direction that is considerably longer than 
its length in the other two directions, the slender body approximation can be used to 
formulate the added mass associated with its motion. The idea behind this is to consider the 
body as a longitudinal stack of thin sections, each having an easily computed added mass, and 
to integrate the effects of those sections along the length of the body to find the total added 
mass (c.f. Figure 2 and Figure 3). 
By using this approximation, it is possible to estimate the added mass tensor for a 6 degrees 
of freedom body, 𝑚𝑖𝑗 , with 𝑖, 𝑗 = 1, 2, 3, 4, 5, 6, moving in a fluid as follow: 

𝑈⃗⃗ (𝑡) = (𝑈1, 𝑈2, 𝑈3, 𝜔1, 𝜔2, 𝜔3) =  (𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6) 

A good way to think about those components 𝑚𝑖𝑗 is to consider them as the mass associated 

with a force/moment in the 𝑖𝑡ℎ direction due to a unit acceleration in the 𝑗𝑡ℎ direction. Note, 
however, that the added mass coefficients related to the 𝑥1 axis (c.f. Figure 2) cannot be 
obtained with the slender body approach. Additionally, the tensor is symmetric: 𝑚𝑖𝑗 = 𝑚𝑗𝑖. 

Given the symmetries of the 3D body depicted on Figure 2, the added mass tensor is given by: 

𝒎 =

(

  
 

𝑚11 𝑚12 𝑚13 𝑚14 𝑚15 𝑚16
𝑚21 𝑚22 𝑚23 𝑚24 𝑚25 𝑚26
𝑚31 𝑚32 𝑚33 𝑚34 𝑚35 𝑚36
𝑚41 𝑚42 𝑚43 𝑚44 𝑚45 𝑚46
𝑚51 𝑚52 𝑚53 𝑚54 𝑚55 𝑚56
𝑚61 𝑚62 𝑚63 𝑚64 𝑚65 𝑚66)

  
 
=

(

 
 
 

𝑚11 0 0 0 0 0
0 𝑚22 0 0 0 0
0 0 𝑚33 0 0 0
0 0 0 𝑚44 0 0
0 0 0 0 𝑚55 0
0 0 0 0 0 𝑚66)

 
 
 

 

 
Figure 2: Slender-body approximation. 3D body made of circular 2D sections. 

 
Figure 3: Added mass coefficients of a 2D circular section. 
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a) Assuming a solid with the shape 𝑑(𝑥1) = ℎ𝑚𝑎𝑥 (1 −
𝑥1
2

𝑙2/4
). Calculate the different 

added masses as a function of 𝑙 and ℎ𝑚𝑎𝑥. 

𝑚22 = ∫ 𝑎22𝑑𝑥1

𝑙
2

−
𝑙
2

    𝑚33 = ∫ 𝑎33𝑑𝑥1

𝑙
2

−
𝑙
2

     𝑚44 = ∫ 𝑎44𝑑𝑥1

𝑙
2

−
𝑙
2

 

𝑚55 = ∫ 𝑥1
2𝑎33𝑑𝑥1

𝑙
2

−
𝑙
2

 𝑚66 = ∫ 𝑥1
2𝑎22𝑑𝑥1

𝑙
2

−
𝑙
2

 

The 2D added mass coefficients are given by: 

𝑎22 = 𝑎33 = ρπ (
𝑑(𝑥1)

2
)

2

 

𝑎44 = 0 

The different added masses are: 

𝑚22 = ∫
ρπ

4

𝑙/2

−𝑙/2

𝑑(𝑥1)
2𝑑𝑥1 =

ρπ

4
ℎ𝑚𝑎𝑥
2 ∫ (1 −

𝑥1
2

𝑙2/4
)

2

𝑑𝑥1

𝑙/2

−𝑙/2

=
ρπ

4
ℎ𝑚𝑎𝑥
2 ∫ (1 −

2𝑥1
2

𝑙2/4
+

𝑥1
4

𝑙4/16
)𝑑𝑥1

𝑙/2

−𝑙/2

 =
2

15
ρπℎ𝑚𝑎𝑥

2 𝑙 

𝑚33 = 𝑚22 

𝑚44 = 0 

𝑚55 = ∫ 𝑥1
2
ρπ

4

𝑙/2

−𝑙/2

𝑑(𝑥1)
2𝑑𝑥1 =

ρπ

4
ℎ𝑚𝑎𝑥
2 ∫ 𝑥1

2 (1 −
𝑥1
2

𝑙2/4
)

2

𝑑𝑥1

𝑙/2

−𝑙/2

=
ρπ

4
ℎ𝑚𝑎𝑥
2 ∫ (𝑥1

2 −
2𝑥1

4

𝑙2/4
+

𝑥1
6

𝑙4/16
)𝑑𝑥1

𝑙/2

−𝑙/2

=
1

210
ρπℎ𝑚𝑎𝑥

2 𝑙3    

𝑚66 = 𝑚55 

The effects of added mass on a body can be represented by forces and moments acting on it. 
In the case of a body evolving in an unbounded and inviscid fluid, they can be evaluated as 
follow: 

𝐹𝑗 = −𝑈̇𝑖𝑚𝑖𝑗 − 𝜖𝑗𝑘𝑙𝑈𝑖𝜔𝑘𝑚𝑙𝑖  

𝑀𝑗 = −𝑈̇𝑖𝑚𝑗+3,𝑖 − ϵ𝑗𝑘𝑙𝑈𝑖ω𝑘𝑚𝑙+3,𝑖 − ϵ𝑗𝑘𝑙𝑈𝑘𝑈𝑖𝑚𝑙𝑖  

where 𝑖 = 1, 2, 3, 4, 5, 6 and 𝑗, 𝑘, 𝑙 =  1, 2, 3 and 𝜖 is the Levi-Cavita symbol with: 

𝜖𝑗𝑘𝑙 = {

0          𝑖𝑓 𝑎𝑛𝑦 𝑗, 𝑘, 𝑙 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙
     1      𝑖𝑓 𝑗, 𝑘, 𝑙 𝑎𝑟𝑒 𝑖𝑛 𝑐𝑦𝑐𝑙𝑖𝑐 𝑜𝑟𝑑𝑒𝑟

             −1      𝑖𝑓 𝑗, 𝑘, 𝑙 𝑎𝑟𝑒 𝑖𝑛 𝑎𝑛𝑡𝑖 − 𝑐𝑦𝑐𝑙𝑖𝑐 𝑜𝑟𝑑𝑒𝑟
 

Consider the 3D object moving in the fluid as follow: 
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𝑈⃗⃗ = (𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6) = (𝑈 cos(α) , 0, −𝑈 sin(α) , 0,0,0) 

𝑈⃗⃗ ̇ = (𝑈̇ 𝑐𝑜𝑠(𝛼) , 0, −𝑈̇ 𝑠𝑖𝑛(𝛼) , 0,0,0) 

b) Calculate the forces and the moments in terms of 𝑚𝑖𝑗 . 

 
Figure 4: UAV moving in an inviscid and unbounded fluid. 

 
For the forces: 

𝑈4 = 𝑈5 = 𝑈6 = 0 ⇔  ω1 = ω2 = ω3 = 0 

𝐹𝑗 = −𝑈̇𝑖𝑚𝑖𝑗 − 𝜖𝑗𝑘𝑙𝑈𝑖𝜔𝑘𝑚𝑙𝑖 = −𝑈̇𝑖𝑚𝑖𝑗 

So we have: 

𝐹1 = −𝑈̇ cos(α)𝑚11 

𝐹2 = 0 

𝐹3 = 𝑈̇ sin(α)𝑚33 

For the moments, we can make the same simplifications as for the forces: 

𝑀𝑗 = −𝑈̇𝑖𝑚𝑗+3,𝑖 − ϵ𝑗𝑘𝑙𝑈𝑖ω𝑘𝑚𝑙+3,𝑖 − ϵ𝑗𝑘𝑙𝑈𝑘𝑈𝑖𝑚𝑙𝑖 = −𝑈̇𝑖𝑚𝑗+3,𝑖 − ϵ𝑗𝑘𝑙𝑈𝑘𝑈𝑖𝑚𝑙𝑖 

Which yields: 

𝑀1 = 0 

𝑀2 = −𝑈
2 cos(α) sin(α) (𝑚33 −𝑚11) 

𝑀3  =  0 

The moment 𝑀2 is known as the Munk moment. It arises from the asymmetric location of the 
stagnation points, where the flow decelerates at the front of the body (the pressure increases) 
and accelerates at the back (the pressure decreases). This moment has a destabilizing effect 
on the body as it tends to turn it perpendicular to the flow. The Munk moment only appears 
in its full form in the inviscid fluid case. In the viscous case, the flow around the body is 
modified and so is the value of the moment. 

c) Given 𝑙 = 1 𝑚 , ℎ𝑚𝑎𝑥 = 0.1 𝑚, 𝑈 = 5 𝑚/𝑠 , 𝑈̇ = 1 𝑚/𝑠
2 and α = 5∘, compute the 

various forces and moments derived in (b). The added mass coefficient 𝑚11 can be 
approximated in this specific case as follow: 

𝑚11 ≈ 0.057
4

3
𝜋𝜌
𝑙

2
ℎ𝑚𝑎𝑥
2  
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Given the numerical data and considering that the body is moving in water, we have: 

𝑚11 = 1.194 𝑘𝑔 

𝑚33 = 4.189 𝑘𝑔 

And therefore, 

𝐹1 = −1.189 𝑁 

𝐹3 = 0.365 𝑁  

𝑀2 = −6.501 𝑁𝑚 

d) What becomes the moment 𝑀2 if we consider a sphere instead of the body depicted 
on Figure 2? 

If we consider a sphere, we have 𝑚11 = 𝑚33 (due to the symmetry of the body). In that case, 
𝑀2 = 0. 


