AEROELASTICITY AND
FLUID-STRUCTURE INTERACTION

Chapter 2:

Coupled formulation of fluid
and solid motions
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Fluid dynamics framework

Dimensional Analysis for Flow Characterization

* In fluid mechanics, it is very common to express physical laws
with the help of non-dimensional quantities only

f(xl,xz, ...,xN) =0
where x4, .., Xy are dimensional quantities: [x;] = L*MPFiTY:
(L: length, M: mass and T: time)

The function f may be expressed in non-dimensional form F, such as:
F(Xl,Xz, ...,XP) =0
where X4, .., Xp are dimensionless quantities: [X] = L°M°T?

* Advantages:
» Universality of physical laws (e.g. scale independent)
* Useful to classify the large variety of complex flows
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Fluid dynamics framework

Dimensional Analysis for Flow Characterization

* The Buckingham 7w Theorem:
Any physically meaningful equation involving N physical variables

f(x1,x5,...,x5) =0 [x;] = L*MPiTY:

may be written with a set of P dimensionless parameters, constructed from
the original variables:

F(X{,X,,...Xp)=0 [X;] = L°M°T®
X4 = Foree = Time =
with : a4 . ay
P=N-R and R=rank|B1 .. Bn
Y1 - VN

—
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Fluid dynamics framework

Dimensional Analysis for Flow Characterization

* Rank of a matrix:
In linear algebra, the rank of a matrix A is the dimension of the vector
space generated (or spanned) by its columns (or rows). This corresponds
to the maximal number of linearly independent columns (or rows) of A.

 Examples:

1 0O 1
A=|-2 -3 1| rank(4) =2
3 3 0

2

_ T, _
A= [1_10_2 rank(A) = rank("4) =1
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Fluid dynamics framework

Dimensional Analysis for Flow Characterization

« Example: Drag on a sphere , /\
y7,
f(FD; Uoo;p;ﬂ;D) — O
5 dimensional variables \/

L
R =rank (M)
T

= P=N-R=5-3=2 O0Only2dimensionless variables are required

1 1 -3 -1 1
1 0 1 1 0|=3
-2 -1 O -1 0
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Fluid dynamics framework

Dimensional Analysis for Flow Characterization

« Example: Drag on a sphere

Uy
* dimensionless equation: P A
y7,
Fp pUD
F , =0
pU3D2"

F(CD, Re) =0 -,
10° | ] [ [ [ [ I
C, : Drag Coefficient 104 i
CD
R, : Reynolds Number ' V
10—1 ] 1 ] |1 1 L ]
o' 1 o 10 10 10t 100 10° 10’
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Fluid dynamics framework

Dimensional Analysis for Flow Characterization
e Example:
Vortex shedding from a cylinder (Karman vortices)

* Shedding Frequency f, ?
* Governing equation:

ffs,Us,p,u,D) =0
5 dimensional variables

L
R = rank (M)
T

- P=N-R=5-3=2 0Only2dimensionless variables are required

0 1 -3 -1 1
0 0 1 1 0|=3
-1 -1 O -1 0
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Fluid dynamics framework

Dimensional Analysis for Flow Characterization
e Example:
Vortex shedding from a cylinder (Karman vortices)

* Shedding Frequency f, ?

 Dimensionless equation:

F fsD pU,D
U, n

St : Strouhal Number R, : Reynolds Number
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Fluid dynamics framework

Dimensional Analysis for Flow Characterization

Vortex shedding from a cylinder

p
——c-——- Re < 5 REGIME OF UNSEPARATED FLOW
 Example: —~Z
N

e oo S 5TO 15 < Re < 40 A FIXED PAIR OF FOPPL
VORTICES IN WAKE

* Experimental Observations:

40 < Re < 90 AND 90 < Re < 150
TWO REGIMES IN WHICH VORTEX
STREET IS LAMINAR

150 < Re < 300 TRANSITION RANGE TO TURBU-
Q T LENCE IN VORTEX
U 300 < Re = 3X10% VORTEX STREET IS FULLY

TURBULENT

/\‘\—-——- 3X10% = Re < 35X 106
U LAMINAR BOUNDARY LAYER HAS UNDERGONE
—OO> ‘g TURBULENT TRANSITION AND WAKE IS
\-ﬂ/_v__ NARROWER AND DISORGANIZED
35X 108 < Re
: O 0 RE-ESTABLISHMENT OF TURBU-
Vortex-formation model, Gerrard (1966) @ Q LENT VORTEX STREET
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Fluid dynamics framework

047

Dimensional Analysis for Flow Characterization

Example:
Vortex shedding from a cylinder

Experimental Observations:

03 -

STROUHAL NUMBER (S)

0.1 -

!
"y

”
o

Vortex-formation model, Gerrard (1966)

Karman VorTEX STREET: SimERics PReDICTION

ri -
-__/
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Fluid-Solid Interaction: General Formulation

Uncoupled formulation of fluid-solid interaction:

*  We consider a flow interacting with a moving/deforming solid:

 The fluid and the solid are treated separately
*  Relevant variables for the fluid motion:

U

X

—t

cm O E

Velocity field
Coordinates

Time

Viscosity

Density

Gravity

Reference Velocity

Reference Length

Solid
Fluid

E P F L Aeroelasticity & FSI: Chap 2

6th & 8t Semester Fall 2024

Page 11

EPFL - LMH - M. Farhat



Fluid-Solid Interaction: General Formulation

Uncoupled formulation of fluid-solid interaction:

*  We consider a flow interacting with a moving/deforming solid:
 The fluid and the solid are treated separately
* Dimensional form of the equation of fluid motion :

fx,t,U,pu L g,p Uy =0

Solid

Fluid
* Dimensionless form of the equation of motion:
INf1 0 1 -1:/1 1 -3 1
R=rank\M|)|O O 0 1:0 O 1 0[=3
Tr/10 1 -1 -1:0 -2 0 -1

- Problem dimension = 8-3=5

—
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Fluid-Solid Interaction: General Formulation

Uncoupled formulation of fluid-solid interaction:

* We consider a flow interacting with a moving/deforming solid:
* The fluid and the solid are treated separately
* Dimensionless form of the equation of fluid motion:

Solid
Fluid

F x U t pUOL UO
L'Uy'L/Uy" un " [gL

pUoL/u : Reynolds Number (Ratio of inertia to the viscous forces)

Upt_ t
L Truid

:Time t is normalized by the time required for a particle moving
at the reference velocity U, to travel the reference distance L

Uy//gL :Froude Number (Ratio of inertia to the gravity forces)
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Fluid-Solid Interaction: General Formulation

lllustration of the role of Froude Number

 Sloshing phenomena in an orbitally shaken reservoir:
 The gentle motion enhances mixing and oxygenation
(Used in cell cultivation)
 The sloshing is mainly governed by the Froude number

Link to video on Youtube
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Fluid-Solid Interaction: General Formulation

Uncoupled formulation of fluid-solid interaction:

*  We consider a flow interacting with a moving/deforming solid:

*  The fluid and the solid are treated separately
*  Relevant variables for the solid motion:

O — M e~ X Jxt

Ps
So

Displacement field
Coordinates

Time

Stiffness
Reference Length
Gravity

Density

Reference
Displacement
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Fluid-Solid Interaction: General Formulation

Uncoupled formulation of fluid-solid interaction:

We consider a flow interacting with a moving/deforming solid:
* The fluid and the solid are treated separately
 Dimensional form of the equation of solid motion:

f(xr tr f) E;L;g;psyf()) =0

 Dimensionless form of the equation of solid motion:

L\N[1'0 111 1 -3 1
R = rank M)O 0 0O 10 0 1 0|=3
T/10:1 —-1-1:0 -2 0 -1

- Problem dimension = 8-3=5

—
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Fluid-Solid Interaction: General Formulation

Uncoupled formulation of fluid-solid interaction:

*  We consider a flow interacting with a moving/deforming solid:
 The fluid and the solid are treated separately
 Dimensionless form of the equation of solid motion:

F(f § tJE/ps o psgL> _ 0o
L'L ’ -

L 'L’ E

% : Displacement number (Displacement scaled by the reference length)
psgL

E - Elastogravity number (ratio of gravity force over elastic force)

t\  E t L
/Ps — s Tsolid = = — :Time for elastic waves to
L T'sotia VE/Ps € travel the reference length L
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Fluid-Solid Interaction: General Formulation

Coupled formulation of fluid-solid interaction:

* We consider a flow interacting with a moving/deforming solid:

*  Fluid motion depends on both fluid and solid variables:

glWU,x,t,u,p,UyL,g,E ps &) =0

11 variables related to solid and fluid domains

U x t u p Uy L g E
11 0-1 -3 1 1 1 -1
Rank| 0 0 0 1 1 0 0 0O 1
-1 0 1-1 0 -1 0 -2 -2

- Problem dimension = 11-3=8

Ps EO

-3 1
1 0[=3
0 0
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Fluid-Solid Interaction: General Formulation

Coupled formulation of fluid-solid interaction:

We consider a flow interacting with a moving/deforming solid:

 Dimensionless form:

U x t pUl Uy $o psglL B
G Ty ) ¥ ! ) ) ) ) )A _O
Ug L L/Uy [gL L E

* Dimensionless parameter A ? (must combine fluid & solid)
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Fluid-Solid Interaction: General Formulation

Coupled formulation of fluid-solid interaction:
 Possible choices for the dimensionless number A:

L : Mass number (mass of the fluid vs mass of the solid)

Ps

U

VE/Ps
UZ

: Reduced velocity (Ratio of fluid velocity & elastic wave celerity)

: Cauchy number (combines fluid forces and solid stiffness)
High Cauchy number = The solid is more deformable under
the action of the fluid forces
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Fluid-Solid Interaction: General Formulation

Equations of motion of fluid and solid:

On the Fluid side: Navier-Stokes equations

Mass conservation or Continuity (incompressible): VU =0
dU - .
Momentum conservation: P~gr = ~PI9Ez— Vp + nAU
/ ‘ o~
Inertia Gravity force Viscous force

Pressure gradient
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Fluid-Solid Interaction: General Formulation

Equations of motion of fluid and solid:

e  On the Solid side:

Single mode approximation: $(x,t) =q(t)p(x)

| N

Modal displacement ~ Modal shape

(Always known)
ex _
Example: mf\. — Px) =e,

dZ

- - kq = f
Oscillator equation: moz tRkq=
/ \

!

Modal mass  p1odqf stiffness Modal load
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Fluid-Solid Interaction: General Formulation

Equations of motion of fluid and solid:

At the interface between fluid and solid (Continuity equations):

* Kinematic condition
(no mixing and no sliding between solid and fluid):

_d§(x,t) dq(t)
U= dt  dt ¢ (x)

Dynamic conditions: Continuity of forces at the interface

{[-pI + u(VU + VU)].n}.¢pdS = f
J N

Modal load
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Fluid-Solid Interaction: General Formulation

Equations of motion of fluid and solid:

dzq

Navier-Stokes moytka=7f

VU =0 Oscillator equation

dU

— = —pge, — Vp + pAU
P =—Pge;~Vp+p

_ da

— ()

] ([=pI + u(VU + VtU)].n}. pdS = f

At the interface: U=

+ boundary conditions in the fluid and solid domains
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Fluid-Solid Interaction: General Formulation

Dimensionless equations of fluid and solid motions

 Dimensionless variables in the fluid:
U I % t

U

Xf = Uf

e  Dimensionless variables in the solid:

X
Xec = — q = — —
ST L & Is k&, Tsolia

—
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Fluid-Solid Interaction: General Formulation

Dimensionless equations of fluid and solid motions

e  Dimensionless time ?

* Inthe solid: Tso1ia=Vym/k - ¢
m/k
L t
or Tsoua=, = ls= L/c
T L t ‘
° Py I gy = — —
In the fluid. ftuid = 77 f =L/,

 The time references (clocks) in the solid and in the fluid are not
necessarily the same. We may have:

T fiuia > Tsotia » Triuia L Tsotia Or  Tria~ Tsotia

t

 Arbitrary choice: tg =
Tsolid
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Fluid-Solid Interaction: General Formulation

Dimensionless equations of fluid and solid motions

On the Fluid side: Navier-Stokes equations

+  Continuity: ~ VU =0 >VU;=0
C M - dU o _
omentum conservation: p E = —pge, — Vp + puAU
c dU_f) gL_, _ | TR
— =———=e,— Vpr+ AU
U, dt, Uz’ 7 puL™ 7
1dU; 1 o Gy Lo
—_— = ——e., — S
Updt,  Frzoz "PrTRe~"s
Up = Tsotia : Reduced velocity. This term appears because the reference
Tfluid time is taken in the solid
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Fluid-Solid Interaction: General Formulation

Dimensionless equations of fluid and solid motions

On the solid side:
d2
mﬁ + kq = f
q f
qds = = —
> & Is k&,

Dimensionless time ?

—
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Fluid-Solid Interaction: General Formulation

Dimensionless equations of fluid and solid motions

e  On the solid side:

2
dzq 2
+kq=f E d”q; k — k
Mz m| | $o T + kéoqs = kéof s
d*q;
dtﬁ +qs=fs

Dimensionless oscillator’s frequency = 1

Obvious, since the oscillation period is
taken as the reference time
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Fluid-Solid Interaction: General Formulation

Dimensionless equations of fluid and solid motions

* Atthe fluid-solid interface:

. Kinematic condition:

_ dq(t) UoT so1ia . fO dqs
U=—g o™ AR TR
dq;
Usr=D
UrUy jdts ¢(x)
Displacement Nb
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Fluid-Solid Interaction: General Formulation

Dimensionless equations of fluid and solid motions

*  On the fluid-solid interface

Dynamic condition:

j ([=pI + (VU + V¢U)].n}. $dS = f

Interface

pUGL " §
j { k" [—pfl t UL (VU; + Vth)] .n} .¢pdS = T"fs

Interface

j Cy|- 1+i(vu +ViU;)|.n;.¢pdS = Df
YI7P T pe\VYS - s

Interface
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Fluid-Solid Interaction: General Formulation

Summary: Dimensionless equations

Oscillator equation
Navier-Stokes d%q,
d t? +qs =15
VUg=0 + solid boundary conditions
1dU; 1

Upg dt, Fr?

+ fluid boundary conditions

At the interface:

dqs
it. ¢ (x)

j {Cy [—pfl + Rie (vU, + Vth)] .n} .¢dS = Df

Interface

UgU; =D
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