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2 Introduction

We will consider games in which each player has a continuous action space. We will study how
to formulate them and to address existence and uniqueness of Nash equilibria in these games. We
also look at connections of conditions for existence and uniqueness of Nash equilibria to convex
optimization problems. This lecture is based mainly on the following references [4, 3, 1].

2.1 Motivation and objectives

We will consider two very common game theoretic models used in economy, and more recently in
engineering. The Cournot and the Bertrand competitions.

Example 1 (Cournot competition). Consider two producers competing in a market. Player (pro-
ducer) i decides on the quantity to produce denoted by xi ∈ R+ for i = 1, 2, and has a production
marginal cost of c ∈ R+. The market price p : R2 → R, is a linearly decreasing function of the total
production x1 + x2, that is, p(x1, x2) = a− b(x1 + x2). The producers want to maximize profit or
equivalently minimize their loss.

1. Write each producer’s loss as a function of the quantities produced.

2. How would you formulate the conditions for (x1, x2) ∈ R2 to be a Nash equilibrium?

3. How would you find the Nash equilibrium based on the above condition?

Solution 1. Note that so far, except for linear quadratic games, all games we considered were over
finite strategy spaces. Now, we are going to generalize our understanding to games over infinite (in
this case continuous) action spaces.

1. The loss functions J i : R2 → R, for i = 1, 2, are given as J i(x) = cxi −
(
a − b(x1 + x2)

)
xi.

Note, the profit will be negative of the loss. Maximizing the profit is equivalent to minimizing
the loss.
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2. A pair (x1NE , x
2
NE) ∈ R2 is a Nash equilibrium if and only if J1(x1NE , x

2
NE) ≤ J1(x1, x2NE), for

all x1 ∈ R, and J2(x1NE , x
2
NE) ≤ J2(x1NE , x

2), for all x2 ∈ R. That is, no player has incentive
to unilaterally deviate from the equilibrium strategy to any feasible strategy in her strategy
set.

3. For player i, let −i denote the other player. From above, it follows that

xiNE ∈ arg min
xi∈R+

J i(xi, x−i
NE), i = 1, 2.

Notice that J i is strongly convex in xi for a fixed x−i. Hence, given x−i, there exists a unique
minimizer of J i with respect to xi. Furthermore, this minimizer is characterized by the point
at which ∂Ji

xi = 0. Setting ∇xiJ i(x) = 0, for i = 1, 2, we obtain a pair of linear equations.
This system of linear equations has a solution and the solution is given by xi = c−a

3b .

Example 2 (Bertrand competition). Consider two producers as before. This time, each producer
decides on the price she will charge her consumers for the electricity provided. Hence, xi ∈ R+ for
i = 1, 2 denotes the price announced by each producer. As before, the production marginal costs
are identically c ∈ R+. The total demand is one unit and the consumers choose to buy from the
producer with the lowest price. Furthermore, if both firms declare the same price, then half of the
demand chooses firm 1 and the other half chooses firm 2.

1. Write each producer’s profit (note, not loss this time) as a function of the price they charge.

2. Derive the Nash equilibrium.

3. What is the Nash equilibrium if each producer has the capacity to serve maximum 2/3 of the
unit demand?

Solution 2. We adopt the same notation as in the previous example.

1. The profits are given by

J1(x) =


x1 − c, if x1 < x2

x1−c
2 , if x1 = x2

0, if x1 > x2.

The cost J2(x) is defined in exactly the same manner.

2. First, verify that (x1, x2) = (c, c) is a Nash equilibrium as no player can unilaterally deviate
and improve her payoff. Now, to see this is the only Nash equilibrium, assume without loss of
generality, that player 1 announces a price x1 > x2. Then, all consumers will go to player 2
and thus, player 1 will make no profit. She has incentive to decrease her price until it reaches
x2. If x2 > c, then she can still decrease x1 and attract all consumers, hence making a profit.
On the other hand, for any x1 < c, she will make a loss rather than a profit. By symmetry,
the same argument holds for player 2.

3. Let’s write the loss functions again

J1(x) =


2(x1−c)

3 , if x1 < x2

x1−c
2 , if x1 = x2

x1−c
3 , if x1 > x2.
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Consider a strategy (x1, x2) and suppose x1 > x2. Then, player 1 will have 1/3 of the demand.
But she can increase her cost and still keep 1/3 of the demand since the maximum capacity
player 2 can serve is 2/3 of the demand. So, by symmetry one player charging a larger
number than the other cannot be a Nash equilibrium at any finite x1, x2. Continuing with
this reasoning, we see that for any strategy (x1, x2) the players have incentive to increase their
cost. So, the Nash equilibrium is not attained at a finite value in R2.

The above are examples of games with continuous action spaces. For the rest of the lecture,
we will see how to address existence and uniqueness of Nash equilibria for such games and how to
compute them in a more systematic way.

2.2 Notation and background

Vectors and matrices. For a vector x in Rn, we denote its transpose by xT . Similarly, the transpose
of the matrix A ∈ Rm×n is denoted by AT . We let Sn

+ and Sn
++ denote the set of (they are a cone)

symmetric positive semi-definite and positive definite matrices in Rn×n, respectively. Recall that a
symmetric positive definite matrix M ∈ Sn

++ has n real positive eigenvalues λi ∈ R>0, i = 1, . . . , n.
In this case, we denote the smallest and largest eigenvalues of A by λ(M) and λ̄(M), respectively.
Furthermore, we know that for any x ∈ Rn, λ(M)∥x∥22 ≤ xTMx ≤ λ̄(M)∥x∥22. Let xi ∈ Rn. We
denote x = (x1, x2, . . . , xN ) ∈ RnN as the stacked vector; x−i ∈ Rn(N−1) is constructed from x by
removing the i-th vector from the stack. An n by m matrix of constant value b ∈ R on all entries
is denoted by bn×m.

Norms and inner products. A norm on Rn (in general on a vector space over a field) is a function
∥.∥ : Rn → R≥0 that satisfies three axioms: (1) ∥ax∥ = |a|∥x∥, ∀a ∈ R, (2) ∥x + y∥ ≤ ∥x∥ + ∥y∥,
(3) ∥x∥ = 0 ⇐⇒ x = 0. The Euclidean or 2−norm is ∥x∥2 := (xTx)1/2 = (x21 + x22 + · · ·+ x2n)

1/2.
For any A ∈ Sn

++, ∥x∥A := (xTAx)1/2 is a well-defined norm (verify this statement). We denote
the inner product ⟨x, y⟩A = xTAy. The notation ⟨x, y⟩ refers to standard Euclidean inner product
⟨x, y⟩ = xT y. From the Cauchy-Schwarz inequality it follows that |⟨x, y⟩A| = |xTAy| ≤ ∥x∥A∥y∥A.
A celebrated result of linear spaces is that all norms on an finite dimensional vector space are
equivalent. Namely, for any ∥.∥a, ∥.∥b : Rn → R, there exists ml,mu such that for all x ∈ Rn,
ml∥x∥a ≤ ∥x∥b ≤ ∥mu∥x∥a. This is useful because sometimes it is easier to work with one norm
than another, and we can be rest assured that if we prove certain results such as the limit of a
sequence based on a given norm, the result does not change if we use a different norm.

Linear and quadratic functions. A function f : Rn → Rm is linear if f(αx+βy) = αf(x)+βf(y),
for all α, β ∈ R, x, y ∈ Rn. A linear function is also referred to as a linear map. A function
f : Rn → R is called affine if there exists m ∈ R such that f̃ = f − m is linear. Any matrix
A ∈ Rm×n gives rise to a linear map f : Rn → Rm, with f(x) = Ax. 1 A function f : Rn → R is
quadratic if f(x) =

∑n
i=1

∑n
j=1 aijxixj +

∑n
i cixi+ b. In this case, there exists (non-unique) matrix

C ∈ Rn×n such that f(x) = xTCx+ cTx+ b, with c = (c1, . . . , cn). When c = 0, b = 0, the function
is also referred to as a quadratic form.

Gradient, Jacobian, and Hessian. Let f : Rn → R (referred to as a real-valued function since
the codomain is R) be differentiable. The gradient of f is the n-dimensional vector of its partial

1It can also be shown that any linear function whose domain and codomain are finite dimensional can be represented
by a matrix. The representation depends on the choice of basis in the domain and codomain. Lastly, linear maps can
be defined for more general domains, including function spaces. For example, integration and derivation are linear
maps with suitable function spaces as domain and codomain. These are subject of more advanced courses in control.
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derivatives, ∂f
∂xi

: Rn → R for i ∈ {1, 2, . . . , n}, and is denoted by ∇f : Rn → Rn:

∇f =


∂f
∂x1
∂f
∂x2

. . .
∂f
∂xn

 .

The Hessian of f is the n×n dimensional matrix of the second order partial derivatives, ∂2f
∂xi∂xj

:

Rn → R for i, j ∈ {1, 2, . . . , n}, and is denoted by ∇2f : Rn → Rn×n.

∇2f =


∂2f
∂x2

1
, ∂2f
∂x1∂x2

, ∂2f
∂x1∂xn

∂2f
∂x2∂x1

, ∂2f
∂x2

2
, ∂2f
∂x2∂xn

. . .
∂2f

∂xn∂x1
, ∂2f
∂xn∂x2

, ∂2f
∂x2

n

 .

A sufficient condition for the Hessian to be a symmetric matrix everywhere is that the function f
has continuous second-order derivatives.

Exercise 1. Derive ∇f and ∇2f for f : Rn → R being (a) an affine function given by f(x) = c′x+b,
c ∈ Rn; and (b) a quadratic function f(x) = x′Cx, with C ∈ Rn×n.

Solution 3. In both cases, ∇f ∈ Rn and ∇2f : Rn → Rn since the domain of the function is Rn

and are as follows.Verify the derivations here.
(a) ∇f(x) = c, ∇2f(x) = 0n×n.
(b)∇f(x) = (C+CT )x, ∇2f(x) = C+CT and if C is symmetric, this simplifies to∇2f(x) = 2C.

For a vector-valued function f : Rn → Rm, the Jacobian is the (m,n) dimensional matrix of
first-order partial derivatives of f , denoted by Jf : Rn → Rn×m.

Jf =


∂f1
∂x1

, ∂f1
∂x2

, ∂f1
∂xn

∂f2
∂x1

, ∂f2
∂x2

, ∂f2
∂xn

. . .
∂fn
∂x1

, ∂fn
∂x2

, ∂fn
∂xn


Observe that for f : Rn → R, the Jacobian is the transpose of the gradient of the function f .

Convex sets. A set D ⊂ Rn is convex if ∀x, y ∈ D, ∀t ∈ [0, 1], tx + (1 − t)y ∈ D. A function
f : D → R is convex if its domain D is a convex set and ∀x, y ∈ D, ∀t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

If in the above, the inequality is strict ∀t ∈ (0, 1), then the function is strictly convex. As checking
the above conditions in general might be difficult, there are easier tests for verifying convexity of a
function if more assumptions are made on f . Namely, a differentiable function f : D → R is convex
if and only if D is convex and

f(y) ≥ f(x) +∇f(x)T (y − x), ∀x, y ∈ D. (1)

The above says that the function f lies above its linear approximator. If the above inequality is
strict, then the function is strictly convex. A twice differentiable function f : D → R is convex if and
only if D is convex and the Hessian ∇2f(x) is positive semi-definite (∇2f(x) ∈ Sn

+) ∀x ∈ D, and is
strictly convex if ∇2f(x) is positive definite (∇2f(x) ∈ Sn

++) ∀x ∈ D [2]. The twice differentiable
function is strongly convex if there exists η > 0 such that xT∇2f(x)x ≥ η∥x∥22 > 0, for all x ∈ D.
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Exercise 2. Verify that a quadratic function is strongly convex if and only if it is strictly convex.

Solution 4. The Hessian of a quadratic function xTCx + cTx + b is given by (C + CT ). Note
that since C + CT is symmetric, it has real-valued eigenvalues and thus, the eigenvalues can be
ordered λmax ≥ · · · ≥ λmin. Now, xT (C + CT )x ≥ λmin(C + CT )∥x∥22. It follows that if λmin > 0
the quadratic function is strongly (and thus, strictly) convex. However, if λmin ≤ 0, the quadratic
function is not strictly (and thus, not strongly) convex.

Minimizer. A point x⋆ ∈ D is a minimizer of f if and only if f(x⋆) ≤ f(y), ∀y ∈ D. Note that
sometimes x∗ is referred to as a global minimizer in contrast to a local minimizer. A point xl ∈ D
is a local minimizer of f , if there exists some neighborhood of xl in D, denoted by N(xl) such that
f(x⋆) ≤ f(y), ∀y ∈ N(xl) ∩ D. In general, searching for a minimizer is hard. However, if the
function f is convex and differentiable, we can use necessary and sufficient optimality conditions
based on the gradient of f .

Fact 1. Let f : Rn → R be a continuously differentiable convex function, with derivate ∇f : Rn →
Rn. Let K ⊂ Rn be a convex set. Consider the following constrained optimization problem

min f(x) (2)

s.t. x ∈ K.

A feasible point, x⋆ ∈ K, is a solution of the above problem (in other words it achieves the minimum
above or equivalently x⋆ ∈ argminx∈K f(x)) if and only if ∇f(x⋆)T (y − x⋆) ≥ 0, ∀y ∈ K.

Note that unless K is compact, a minimizer for the above may not exist (consider mini-
mizing e−x2

). Furthermore, if a minimizer exists, it may not be unique and hence, we write
x⋆ ∈ argminx∈K f(x) rather than x⋆ = argminx∈K f(x).

Exercise 3. Prove Fact 1.

Solution 5. We need to show two statements: 1) if x⋆ is an optimizer then ∇f(x⋆)T (y − x⋆) ≥
0, ∀y ∈ K and that 2) if ∇f(x⋆)T (y − x⋆) ≥ 0, ∀y ∈ K then x⋆ is an optimizer. Let us start
with 2), namely, showing that ∇f(x⋆)T (y−x⋆) ≥ 0, ∀y ∈ K is a sufficient condition for optimality.
If ∇f(x⋆)T (y − x⋆) ≥ 0, ∀y ∈ K then, due to convexity of f , from Inequality (1) we conclude
that f(y) ≥ f(x⋆), ∀y ∈ K. Hence, x⋆ is a minimum. To show statement 1), namely, that
∇f(x⋆)T (y−x⋆) ≥ 0, ∀y ∈ K is a necessary condition for optimality, we can prove by contradiction.
In particular, suppose there exists z ∈ K such that ∇f(x⋆)T (z − x⋆) < 0. Since the function is
differentiable, using first-order approximation of the function around the point x⋆, we know that
f(tz+(1−t)x⋆) = f(x⋆)+∇f(x⋆)′(t(z−x⋆))+r(tz+(1−t)x⋆)(t(z−x⋆)), where r(t(z−x⋆)) → 0 as
t → 0. In other words, the third term in the first-order approximation is dominated by the second
term. Hence, we can then show that for sufficiently small t ∈ (0, 1], ∇f(x⋆)′(t(z−x⋆))+ r(tz+(1−
t)x⋆)(t(z− x⋆)) < 0 and consequently, f(tz+ (1− t)x⋆) < f(x⋆). This contradicts optimality of x⋆,
since tz + (1− t)x⋆ is a feasible solution (by convexity of set K) with a lower objective [2]

3 Convex Games

We consider an N player game with player set denoted by N = {1, 2, . . . , N}. For i ∈ N , let
xi ∈ Ki ⊂ Rn, where Ki is non-empty, closed and convex. Let J i : RnN → R denote player i’s
objective function. Let K = K1 ×K2 × · · · ×KN ⊂ RnN . We equivalently represent this game by
Γ(N ,K, {J i}i∈N ).
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Definition 1. A point x ∈ K is a Nash equilibrium for Γ(N ,K, {J i}i∈N ) if and only if

J i(xi, x−i) ≤ J i(yi, x−i), ∀yi ∈ Ki, ∀i ∈ N . (3)

Under which conditions on Γ(N ,K, {J i}i∈N ) does a Nash equilibrium exists? The following
theorem provides sufficient conditions for the existence of Nash equilibria [3].

Theorem 1. Suppose K ⊂ RnN is compact convex and J i are continuous in x ∈ K and convex in
xi for fixed x−i. Then, Γ(N ,K, {J i}i∈N ) has a Nash equilibrium.

We follow the proof provided in [3]. It is similar to our argument for existence of mixed strategy
Nash equilibrium in finite action games based on fixed point of best response maps. Note however
that here we have an infinite action space (Rn) but we are looking for pure strategies.

Proof. Define ρ : K × K → R as ρ(x, y) =
∑N

i=1 J
i(x1, . . . , yi, . . . , xN ). By continuity of J i, ρ is

continuous on K×K and by convexity of J i in xi for fixed x−i, ρ is convex in y for fixed x. Consider
Ω(x) = {y | ρ(x, y) = minz∈K ρ(x, z)}. In general Ω is a set-valued map, that is, it maps each point
in K to a subset of K. Given that 1) K is convex, 2) ρ is convex in z and 3) ρ is continuous,
it follows that the map x 7→ Ω(x) is lower semi-continuous (see The Minimum Theorem below)
and Ω(x) ⊂ K is compact for each x ∈ K. By Kakutani’s fixed point theorem (see below), there
exists x0 ∈ K such that x0 ∈ Ω(x0). We can verify that this x0 is a Nash equilibrium as follows.
By definition of x0 being the fixed-point of the map Ω we have ρ(x0, x0) = minz∈K ρ(x0, z). This
implies that x0 satisfies the Nash equilibrium definition, namely, J i(xi0, x

−i
0 ) ≤ J i(x̃i, x−i

0 ) for each
i and for all x̃i ∈ K. To see this, suppose that there exists i and x̃0 = (x̃i, x−i

0 ) ∈ K such that
J i(x̃0) = J i(x̃i, x−i

0 ) < J i(xi, x−i
0 ). Then, by definition of ρ, we get ρ(x0, x̃0) < ρ(x0, x0). This

however contradicts x0 ∈ Ω(x0).

For completeness we provide the Kakutani’s fixed point theorem. It generalizes the Brower’s
fixed point theorem to set-valued maps. Most Nash equilibrium existence results use fixed point
theorems and there are generalizations of Kaktuani’s fixed point theorem, to derive less existence
conditions for more general classes of games.

Fact 2. [Kakutani’s fixed point theorem] Let K ⊂ Rn be a non-empty convex compact set. Let
Ω : K → 2K be a lower semicontinuous map such that for each x ∈ K, Ω(x) is non-empty, convex
and closed subset of K. Then, there exists x0 ∈ K such that x0 ∈ Ω(x0).

The following theorem provides conditions on well-behavedness of set of minimizers of a function
as a parameter changes. It is used in the proof of the theorem above on existence of Nash equilibria.
It also has applications in optimal control theory. Note that the statement of the theorem can be
generalized but the following version suffices for our problem.

Fact 3. [The Minimum theorem] Let K ⊂ Rn be compact and f : X×Y → R be continuous on X×
Y , and convex in Y for each fixed x. Then, for each point x ∈ X, Ω(x) = argminy∈K{f(x, y) | y ∈
K} ⊂ Y is lower semicontinuous and Ω(x) ⊂ Y is a compact convex set.

Exercise 4. Consider a finite action game, where each agent i has an action set Ai with cardinality
di. Show that the mixed strategy extension of any finite action game is a convex game and satisfies
the assumptions of the above theorem. In the mixed strategy extension, the agents can choose a
mixed strategy from the probability simplex ∆(Ai) which is defined as

∆(Ai) =

xi|xi ≥ 0,

di∑
d=1

xid = 1

 .
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Solution 6. The probability simplex ∆(Ai) is compact and convex for each i = 1, . . . , N . Thus,
the set ∆(A) = ∆(A1)×∆(A2)× · · · ×∆(AN ) is the cartesian product of N compact and convex
sets and is therefore compact and convex as well. The cost function takes the form:

J i(xi, x−i) =
∑

a1∈A1

· · ·
∑

aN∈AN

x1(a1) · . . . · xN (aN )J i(a1, . . . , aN ),

where xi(ai) is the probability of player i playing action ai ∈ Ai. The cost function is continuous
on ∆(A). For a fixed x−i, the cost J i is also linear and thus convex on ∆(Ai). All the assumptions
of the Minimum theorem are thus satisfied.

Exercise 5. Go back to Cournot and Bertrand models at the beginning of the lecture and see if
they meet the assumptions for existence of Nash equilibria as above.

Solution 7. In the Cournot competition, the losses are J i(x1, x2) = −pxi+cixi. It follows that the
cost function of each player is continuous. However, with unbounded decision space the action spaces
are not compact. Nevertheless, we were able to uniquely characterize the Nash equilibrium. This
highlights that the above conditions are only sufficient and not necessary. When the action spaces
are constrained, then the above theorem shows existence of Nash equilibrium. In the Bertrand
competition, neither the cost functions are continuous, nor the action spaces are compact. This
game is not a convex game. Hence, the above theorem does not apply. However, we saw that at
least without capacity constraints, we could find the unique Nash equilibrium of the game.

Note that if the action spaces are non-compact, a Nash equilibrium may not exist even if the
cost function of each player is strongly convex in her decision variables. As an example, consider
J1(x1, x2) = (x1)2 +2x1x2 +3x1, J2(x1, x2) = (x2)2 +2x1x2 +2x2. Verify that a Nash equilibrium
must satisfy the following system of linear equations. However, this system does not have a solution:[

2 2
2 2

] [
x1

x2

]
=

[
−3
−2

]
The conditions of the theorem above may seem restrictive in light of the first two examples.

Nevertheless, several classes of games arising in engineering problems do satisfy the above conditions.
If a game does not satisfy these conditions, there may be alternative approaches to show existence
of a Nash equilibrium, such as deriving the Nash equilibrium as we did in Examples 1, 2, or using
fixed point theorems that are more general than Kakutani’s (an active area in mathematics is to
derive fixed point theorems and we now see how applicable they are to game theory, and as we will
later see, to also algorithm design and dynamical system analysis).

From now on, we consider Γ(N ,K, {J i}i∈N ), with set K as Cartesian product of convex sets
Ki ⊂ Rn , that is, K = K1 ×K2 × · · · ×KN ⊂ RnN and whose J i are continuous in x ∈ K and
convex in xi for fixed x−i.

4 Characterization of Nash equilibria of convex games

Definition 2. Given a convex game Γ(N ,K, {J i}i∈N ), the game map FΓ : RnN → RnN is defined
as

FΓ = (∇x1J1;∇x2J2; . . . ;∇xNJN ). (4)

The above is also referred to as the game pseudo-gradient due to its resemblance to gradient of a
single function.
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Exercise 6. Show that x is a Nash equilibrium for Γ(N ,K, {J i}i∈N ) if and only if FΓ(x)
T (y−x) ≥ 0

for all y ∈ K.

Solution 8. First, observe that

FΓ(x)
T (y − x) = (∇x1J1;∇x2J2; . . . ;∇xNJN )T (y − x) =

N∑
i=1

∇xiJ i(xi, x−i)T (yi − xi).

Next, x is a Nash equilibrium if and only if xi ∈ argminyi∈Ki J i(yi, x−i), ∀i ∈ N . From convexity of
J i in xi it follows that x is a Nash equilibrium if and only if ∇xiJ i(xi, x−i)T (yi−xi) ≥ 0, ∀yi ∈ Ki,
i ∈ N . This implies that

∑N
i=1∇xiJ i(xi, x−i)T (yi − xi) = F T

Γ (x)(y − x) ≥ 0. On the other hand, if∑N
i=1∇xiJ i(xi, x−i)T (yi−xi) ≥ 0 for all yi ∈ Ki, then each of the terms in the summand has to be

non-negative (verify). Hence, x is a Nash equilibrium if and only if FΓ(x)
T (y−x) ≥ 0 for all y ∈ K

as desired.

The above gives a first order characterization of Nash equilibria based on the game pseudo-
gradient. We will use this characterization to determine conditions for uniqueness of equilibria and
design of convergent algorithms. To dos, we need to look at properties of vector fields F : DRn,
with D ⊂ Rn.

Definition 3. The map F : D → Rn is monotone if ⟨F (x)−F (y), x−y⟩ ≥ 0 for all x, y ∈ D ⊆ Rn.
If the above inequality is strict for all x ̸= y, then F is strictly monotone.

Let us get more insight into monotonicity but looking at linear maps.

Exercise 7. Consider the linear map defined by the matrix multiplication A : x 7→ Ax. Under which
conditions on the matrix A is this operator monotone? strictly monotone? strongly monotone?

Solution 9. We need ⟨Ax− Ay, x− y⟩ ≥ 0 for all x, y ∈ Rn. This is equivalent to zTAz ≥ 0. We
have zTAz = (zTAz)T = zTAT z = 1

2z
T (A+AT )z. Notice that A+AT is a symmetric matrix that

has real eigenvalues. We know that for a symmetric matrix M , λ(M)∥z∥22 ≤ zTMz ≤ λ̄(M)∥x∥22 if
and only if M ∈ Sn

+. Hence, we conclude that zTAz ≥ 0 for all z ∈ Rn if and only if the symmetric
part of A is positive semidefinite.

For strict monotonicity, we require zTAz > 0 for all z ∈ Rn, z ̸= 0. Observe that zTAz ≥
λ(A + AT )∥z∥2/2. Hence, if the smallest eigenvalue of A + AT is positive, then the map is both
strictly and strongly monotone, with strong monotonicity constant of λ(A+AT )/2.

Note on quadratic functions: A common mistake is to consider a function f(x) == xTCx+cTx+b
as convex and thus, easy to optimize. Unfortunately, this is not the case if Q is not positive semi-
definite. Indeed, if Q is indefinite, the problem of optimizing the above function is NP-hard. The
NP-hardness is shown by formulating boolean optimization problems as instances of above quadratic
optimization.

Monotonicity generalizes the notion of convexity as can be verified below.

Exercise 8. Let f : Rn → R be continuously differentiable and convex. Show that ∇f : Rn → Rn

is monotone. If in addition, f is strictly convex, show that ∇f is strictly monotone.

Solution 10. We use the the equivalent characterization of convex differentiable functions in (1).
Note that from convexity of f we have, for every x, y ∈ Rn

f(y) ≥ f(x) +∇f(x)T (y − x),

f(x) ≥ f(y) +∇f(y)T (x− y).

If we add the above two inequalities, we obtain (∇f(y)−∇f(x))T (y − x) ≥ 0 as desired.
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If the map F is not affine, we can verify monotonicity using the Jacobian of the map. For a
map F : Rn → Rn, let JF :=

(
∂Fi
∂xj

)
∈ Rn×n denote the Jacobian of F .

Proposition 1. Let F : D → Rn be continuously differentiable on the open convex set D ⊂ Rn.
Then, F is monotone on D if and only if JF (x) is positive semi-definite for all x ∈ D. Furthermore,
F is strictly monotone on D if and only if JF (x) is positive definite for all x ∈ D.

See [1] for proof. You can verify that for the map F arising from gradient of a function f , the
above is a generalization of second-order condition for convexity. In particular, if F is a gradient
map, then JF will be a symmetric matrix corresponding to the Hessian of f .

Finally, we can state a condition for uniqueness of a Nash equilibrium. This condition also helps
in design of convergent algorithms.

Fact 4. From [1, Chapter 2, Corollary 2.2.5] Consider the convex game Γ(N ,K, {J i}i∈N ). The
Nash equilibrium is unique if FΓ is strictly monotone.

Exercise 9 (Cournot competition continued). Let us return to Example 1. Consider the case in
which each player’s decision space is [0, ki] ⊂ R, i = 1, 2. Characterize the Nash equilibrium using
the pseudo-gradient. Is there a unique Nash equilibrium in this setting?

Solution 11. Verify that FΓ(x) = [∇x1J1(x1, x2);∇x2J2(x1, x2)] is strictly monotone. Hence, the
unique Nash equilibrium of this game is the solution of VI(K,FΓ), where K = [0, k1]× [0, k2].
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