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2 Review of first-price and second-price auctions

Le us start by reviewing the first-price auction and the VCG mechanism. We will consider spectrum
auctions, commonly employed by governments for allocating the right to use certain frequency bands
to communication companies. You can read about Switzerland’s spectrum auction Here.

Exercise 1. Spectrum Auction
Consider an auction to sell frequency spectrum licenses for 10 and 20 MHz in the East and West

directions. The four possible options are shown below.

Geographic direction

Bandwidth West-20 East-20
West-10 East-10

There are five bidders — these can be telecommunication providers. In our problem, each bidder is
interested for a particular combination of these options. Let their bids be denoted by xi, i = 1, . . . , 5
and be as follows in million CHF:

x1(West-20, East-20) = 90,

x2(West-10, East-10) = 100,

x3(West-20, East-20) = 110,

x4(East-20, East-10) = 100,

x5(West-20, West-10) = 100.

The interpretation of the above is that bidder 1 desires to have the 20 MHz spectrum in both the
West and East directions and is willing to pay 90 mCHF for it. Determine the winners and the
price that each winner pays to the auctioneer in

1. the pay-as-bid mechanism (first-price auction)
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2. the VCG mechanism

Solution. In both mechanisms, the items are allocated to generate the highest profit. Let αi ∈
{0, 1} denote the decision variable corresponding to the bid of player i getting accepted. The feasible
allocations are:

• α1 = α2 = 1, α3 = α4 = α5 = 0, which gives J(δ) = 190

• α2 = α3 = 1, α1 = α4 = α5 = 0, which gives J(δ) = 210

• α4 = α5 = 1, α1 = α2 = α3 = 0, which gives J(δ) = 200

Thus, the optimal solution is α2 = α3 = 1, α1 = α4 = α5 = 0.

1. In the pay-as-bid mechanism, bidders 1, 4, and 5 will pay nothing. Bidders 2 and 3 will make
a payment of 100 and 110 mCHF, respectively.

2. In the VCG mechanism, Bidders 1, 4, and 5 pay nothing. Bidder 2 pays p2 = 200 − (210 −
100) = 90 mCHF. The analogous formula for bidder 3 gives p3 = 200 − (210 − 110) = 100
mCHF. The total utility the auctioneer makes is 190 mCHF.

Note that our auction setting is arguably simple - the real auctions are much more complex.
The point of our simple example is to help understand the main concepts. Usually, once we get
the fundamentals, we can build more complexities on solid grounds. We saw that in a second-price
auction, the dominant strategy Nash equilibrium is to bid truthfully. What about in a first-price
auction? What is a Nash equilibrium bidding strategy?

Exercise 2. Let t1 > t2 > · · · > tN denote the true valuations of bidders 1, 2, . . . , N for an
item being auctioned. Verify that in a first-price auction, a Nash equilibrium strategy is given by
x1 = t2 + ϵ, where ϵ is a small positive number (related to bid increments allowed) and xj = tj for
i ̸= 1. In words, the bidder with the highest valuation of the item should bid the second highest
price and other bidders should bid truthfully.

Solution. We can verify that no player has incentive to unilaterally deviate from the above strate-
gies. Clearly, for any x1 > t2 player 1 still wins the auction but has to pay higher amount so she
has a lower utility. For x1 < t2 player 1 no longer wins the auction. For all other players, for any
xj > tj the players could potentially win the auction but will have negative utility. However, for
xj ≤ tj , they will have zero utility.

What does “true” valuation mean? We saw that if the bidders in an auction are power producers,
this true valuation can be their production marginal cost. In a spectrum auction, the companies
may estimate their true valuation of a given frequency band by computing their potential benefits
of using the band for broadcasting their information, for example, the profit generated from the
advertisements on their channel. In a painting auction, the true valuation of each bidder depends
on who they are. For example, a national gallery might have certain value for a piece by a famous
artist, and a millionaire aiming to complete her/his art collection might have a different value for
the art piece. In any case, we assume that each bidder has some true value for the item.

Obviously, the players do not know others’ valuation of the items. They have incomplete infor-
mation about the game. Hence, they cannot compute the Nash equilibrium strategy above. One
may then only consider auctions such as second-price or VCG whose dominant strategy Nash equi-
librium is truthful bidding. However, such mechanisms in general suffer from other shortcomings.
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Alternatively, we can try to analyze games with incomplete information. We will shortly introduce
this class of games and return to the question of computing equilibria for a first-price auction.

We will consider the Bayesian approach to analyze games with incomplete information. In this
approach, all the unknowns in the model are captured by an uncertainty, and a prior distribution
on the uncertainty set is assumed to be common knowledge. The original formulation of Bayesian
games is due to [21]. Ever since, the topic has become standard in most game theory courses and
books [22, 13, 17].

3 Bayesian games

Bayesian games were introduced by John Harsanyi to capture games with incomplete information.
He won the Nobel Prize in Economics in 1994 and here you can read his Nobel Prize lecture on
games with incomplete information.

Definition 1 (Bayesian game). A Bayesian game consists of N players.

• A set K = K1 × · · · ×KN of action spaces, with Kj being the action space for player j.

• A set of types T = T 1 × · · · × TN . Player j’s type is tj ∈ T j and is known only to her.

• A prior probability distribution D on the set of types T .

• A set of utilities (J1, . . . , JN ), where J j : T ×K → R is player j’s utility.

In the Bayesian formulation above, we assume the unknowns in the game are captured by the
“type” of players. And all players have the same common prior distribution D about the types (this
can be generalized to consider players having different priors on the types).

In a Bayesian game, each player must choose its action xj ∈ Kj not knowing others’ types t−j ,
but only the distribution D over all types. How should she select xj? The idea is to associate an
action for each type of the player. We define a pure strategy sj : T j → Kj as a map from player
j’s type to its action space. Given that player j knows her type tj , she can use Bayes’ rule1 to
compute the probability of others’ types conditioned on her type, namely, Dj := D(t−j |tj), so Dj

is the distribution of types of other players, conditioned that type of player j is tj . Her expected
utility then is given by

EDjJ j(tj , t−j , sj(tj), s−j(t−j)) :=
∑
t−j

Dj(t−j |tj)J j
(
tj , t−j , sj(tj), s−j(t−j)

)
.

Note 1: there is a slight abuse of notation in using s−j(t−j) because each player’s strategy should
be a function of her own type.

Note 2: Wile we assume the set of types T has finite cardinality. The generalization to uncount-
able types would simply replace the sum above with an integral.

We will use the expected utility above to define a Bayesian Nash equilibrium strategy:

Definition 2 (Bayesian Nash equilibrium). A strategy profile {sj}Nj=1 with sj : T j → Kj is a

Bayesian Nash equilibrium if each sj is a best-response strategy to s−j for all possible types tj , that
is,

EDjJ j(tj , t−j , sj(tj), s−j(t−j)) ≥ EDjJ j(tj , t−j , xj , s−j(t−j)), (1)

for all xj ∈ Kj , tj ∈ T j , and for all j ∈ {1, . . . , N}.
1recall that for two events A, B, Bayes’ rule gives probability of event A conditioned on event B as follows:

P (A|B) = P (A∩B)
P (B)
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cooperate (C) defect (D)

cooperate (C) 2, 2 0, 3

defect (D) 3, 0 1, 1
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Figure 1: Payoff matrix if player 2 is selfish
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defect (D) 2, 1 0, 0

player 2
p
la
ye
r
1

Figure 2: Payoff matrix if player 2 is nice

Example 1. Let us consider a simple two-player game, with a payoff matrix (utilities rather than
losses) given as in Figure 1. In this table, the green colors correspond to the utility of the first player
and the blue colors correspond to the utility of the second player. The first player chooses the row
of the matrix and the second player chooses the column of the matrix. Furthermore, both players
are maximizing their utility. Verify that (defect, defect) is the dominant strategy Nash equilibrium.

Now consider the situation where player 2 has two types. She can be either selfish or nice. In
the selfish case, the payoff matrix is as per Figure 1. In the nice case, the payoff matrix is as per
Figure 2. Player 1 does not know the type of player 2. How shall we define the concept of Nash
equilibrium? One way to handle this uncertainty is to assume a probability for each type of player
2. We can say that with probability d player 2 is selfish and with probability 1− d player 2 is nice.
Verify that in the Bayes Nash equilibrium, player 2 chooses D if selfish and C if nice, whereas player
1 will choose C if d ≤ 1/2.

Solution. First, note that T 2 = {selfish,nice} and player 1 does not have types. Hence, we look
for a strategy for player 2 for each of her types and an action for player 1. What is the dominant
strategy of player 2 if she is selfish? what about the case when she is nice?
First, observe that if player 2 is selfish, she has a dominant strategy to defect (D) and if she is nice,
her dominant strategy is to cooperate (C). Note that this dominant strategy is s2 : T 2 → {C,D}.
In other words, it is a strategy for each of player 2’s type. Player 2 knows her type and accordingly
will play her dominant strategy. Player 1 on the other hand has only one type. Hence, we need
to determine his optimal action (not strategy since he has one type). She also does not know the
type of player 2, only the probability of her being nice or selfish. The expected utility of player
1 from cooperating is d × 0 + (1 − d) × 3 = 3 − 3d, and her expected utility from defecting is
d×1+(1−d)×2 = 2−d. Hence, player 1 should cooperate for d ≤ 1

2 and should defect otherwise.
Note that player 1 does not have a type. Thus, for any prior distribution on player 2 being

selfish (captured by d above), player 1 has an equilibrium action, rather than a strategy.

In general, computing Bayesian Nash equilibrium is extremely difficult. However, under certain
assumptions and for certain classes of games, this computation can be done as we will see below for
auctions.
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4 First and second-price auctions revisited

Our goal now is to use the Bayesian game formulation to determine the Bayesian Nash equilibrium
in the first-price auction as follows.

Exercise 3. Consider a first-price auction with two players, call them Alice and Bob. Alice’s true
valuation of the item is a ∈ [0, 1] and Bob’s true valuation of the item is b ∈ [0, 1]. We assume
these true valuations are independently and uniformly distributed on the interval [0, 1]. Verify
that s1(a) = a

2 and s2(b) = b
2 is a Bayesian Nash equilibrium bidding strategy for Alice and Bob,

respectively. What is the Bayesian Nash equilibrium in this setting under the second-price auction?

Solution. Without loss of generality (due to symmetry), let us compute the best response strategy
of Alice considering that Bob bids b/2. Let x be Alice’s bid. The utility of Alice is Ja = a − x if
she wins the bid and Ja = 0 otherwise. Hence, the expected utility of Alice is

EDaJa(a, b, x,
b

2
) = EDa{(a− x)1{z | z> b

2
}(x)},

where 1C(x) is the indicator function of the set C. Since x and a are known to Alice, the only
probabilistic variable is b, the type of Bob. Hence, expected utility of Alice is (a−x)×EDa{1z> b

2
(x)}.

Now, since a and b are independent, Da = D(b|a) becomes the probability density of b. Hence,
expected utility of Alice becomes equivalent to (a − x) × (Probability that x > b

2). In words,
(a − x) × Probability that Alice wins). This was a lengthy discussion for a statement that may
seem intuitive. Nevertheless, the point was to practice using the framework introduced, since the
framework will become handy for more complex setups.

Let’s compute probability that Alice wins. This is the probability that b/2 < x. Considering
that b is uniformly distributed on [0, 1], this probability is given as follows:

P (b < 2x) =


0 if x ≤ 0,

2x if 0 ≤ x ≤ 1/2,

1 if x ≥ 1/2.

Since utility of Alice is a−x if she wins, it follows that she must compare the maximum of a−x
for x ≥ 1/2 or the maximum (a − x)2x subject to 0 ≤ x ≤ 1/2. The first maximization gives the
utility of a− 1/2 for x = 1/2 and the second one gives a2/2 for x = a/2. As a2/2− (a− 1/2) ≥ 0,
it follows that the optimal solution is given by x = a/2. Hence, Alice’s best response to Bob’s bid
of b/2 is to bid a/2. By symmetry, the same argument holds for Bob. Hence, (a/2, b/2) is the
Bayesian Nash equilibrium strategy.

For the second-price auction, we already saw that bidding truthfully is dominant strategy Nash
equilibrium for each player. The fact that this is a dominant strategy, means that each player has
no incentive to deviate from truthful bidding regardless of types (and hence corresponding actions)
of the other players. Hence, Alice would bid a, while Bob would bid b.

The above analysis can be generalized to the first-price auction with N players, where each
player’s valuation is independently and identically distributed. The analysis becomes a little more
involved, but there is a closed form solution for the uniform distribution.

From the auctioneer perspective, would the first-price or the second-price auction generate more
profit? In our simple two-player example with uniform distribution of valuations on [0, 1], in the case
of first-price auction, the auctioneer’s profit is max{a/2, b/2}, with a and b uniformly distributed.
In the second price auction, since the Nash equilibrium strategy is bidding truthfully, then the
auctioneers revenue is min{a, b} (since the highest bidder gives the second high price).
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Exercise 4. Verify that the expected profit of the auctioneer in both first-price and second-price
auction under the two player setup above is 1/3.

Solution. Hint: Start by computing the expected value of c = max{a/2, b/2}, which is the auction-
eer’s profit in first-price auction, and c = min{a, b}, the auctioneer profit in second-price auction,
for a, b being uniformly distributed in [0, 1].
Let us start with the first-price function. Let c = max{a/2, b/2}. Consider the cumulative distri-
bution function of the random variable c, denoted by F (c ≤ y). Now, c ≤ y ⇐⇒ a ≤ 2y ∧ b ≤ 2y,
and since a and b are independent, F (c ≤ y) = P (a ≤ 2y)P (b ≤ 2y) = (2y)(2y) = 4y2. Hence,
the probability density function of this random variable is 8y. It follows that expected value of c is∫ 1/2
0 y(8y)dy = 8y3/3

∣∣1/2
0

= 1/3. Similarly, you can compute the probability density function of the
random variable c = min{a, b}. Here, it might be easier to compute F (c ≥ y) = 1−F (c ≤ y), since
c ≥ y ⇐⇒ a ≥ y ∧ b ≥ y. Then, verify that expected value of this random variable is 1/3.

The above result is an instance of the celebrated Revenue Equivalence Principle. This theorem
shows that for all mechanisms satisfying certain assumptions the expected utility of the auctioneer
at a Bayesian Nash equilibrium is the same. For more details, see Chapter 9 of [13] and the paper
of Myerson [23] — Myerson received the 2007 Nobel Prize in Economics, Nobel Prize lecture here2.
Note that in practice, players may not have independent and identically distributed valuations.
However, analyzing equilibria in auctions in more general settings is a very challenging problem.
This problem has been receiving increasing attention from the computer science community due to
their applications in online ad auctions.

5 Summary and further reading

There are several topics we have not had a chance to discuss in this course. In the references, we
suggest additional text books for game theory as well as references for auctions. We will briefly
comment on two of the most relevant research topics.

5.1 Learning Nash equilibria

Related to the incomplete information setting, a very active research topic is how players learn Nash
equilibria in iterative games. Note that if players cannot learn to play Nash equilibria, then any
theoretical analysis of outcome of the game based on the Nash equilibrium concept is questionable.
In an auction such as those in electricity markets or for adverts on internet, players have generally
less information than that assumed by a Bayesian game. In particular, they do not know how many
other players there are, their strategy spaces, and sometimes they don’t even fully understand
the auction being run, specially in the case when there are multiple items or indivisible items and
complex constraints (recall electricity market procurement constraints). So, players cannot compute
their Bayesian Nash equilibrium strategy. Nevertheless, these auctions are repeated over and over.
In each run, players are gathering information about the game based on their past observations.
How should they use these observations and update their strategies?

This is the topic of learning Nash equilibria with limited information. In general, first one
needs to assume the specific feedback players receive after each iteration of the game. Then, to
devise a learning rule and prove that this rule converges to an equilibrium. A good reference is [6].
Under assumption of convex games with monotone pseudo-gradients (certainly limiting in terms of

2How Many Nobel Laureates we have met in this course?
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auctions), I have been working on this topic in [7]. Without the above assumption, we also have
some progress, see for example, [8]. For more general games with dynamic population, you can read
[25].

5.2 Mechanism design

From the auctioneer or system operator’s perspective, how should the market be designed to max-
imize social welfare? To do so, we need to incentivize bidders to bid truthfully. It is known that
the VCG mechanisms are the only individually rational dominant strategy incentive compatible
and efficient mechanisms. We have already discussed the issue with collusion and shill bidding.
Given that it is theoretically impossible to ensure all desired properties of a mechanism, we might
need to relax certain properties of the mechanism, such as incentive compatibility. The analysis of
modified mechanisms becomes extremely challenging. It is in general better to resort to simulation
to understand equilibrium strategies and the auction revenue/loss [28].
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