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ﬂ Data Driven Methods: What to use when

Heuristic Search Techniques

/ | \
Partical Swarm Operators -
Genetic Algorithms Kennedy - 1995) Inspired
(Holland - 1975) by the social behavior of
Inspired by genetics and swarms of insects or flocks
natural selection — max of birds
fitness | — max “food”

Simulated Annealing
(Kirkpatrick - 1983)
Inspired by statistical
mechanics— min energy

Bayesian
Optimization

|

Different Acquisition
Functions



n GAs: Summary
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Specific characteristics:

Binary representation

Fixed string length
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m Fitness proportional selection operator
m Single-point crossover operator
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Gene-wise mutation operator



ﬂ GAs: Summary

Specifics of GAs versus other ‘traditional’ methods

GAs search a population of points in parallel, not only a single point

e GAs use probabilistic transition rules, not deterministic ones

e GAs work on an encoding of the design variable set rather than on the
variables themselves

* GAs do not require derivative information or other auxiliary knowledge - only

the objective function and corresponding fitness levels influence search




n Genetic Algorithm

( START )

- Initialize population
Initialization |«

| Fitness evaluation |

S I I I / Select individuals for mating

© Selection

o I Mate individuals and produce children
& Crossover —

0 - Mutate children

= I Mutation | ——
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BB Simulated Annealing

e Startin a randomized state (T high)

* Find ‘close’ perturbed solutions — accepting moves that decrease the energy - find
the solution with the minimum energy at this state — equilibrium is reached

* Decrease the temperature

* Sometimes accepting less bad configurations at each temperature (enables hill-
climbing)

* To decide if good/bad use Boltzmann distribution, P(r,t) =exp(-E/T)

ethods

D—drive ; d\e5|gn & fabricatio



BB Simulated
Annealing

Starting
A Configuration

'

Perturb
(Hill Climbing)

o

Perturb
(Hill Climbing)

;

S = solution, R = perbuted solution

Objective Function f(X)

« If Ris better than S, we’ll always replace S with
R as usual. B

Giobal « utif Ris worse than S, we may still replace S

e Wil with R with a certain probability

Variable X




BB Simulated
Annealing

Unconditional
Acceptance

Starting
Configuration

Perturb
(Hill Climbing)

g
s
g . .
2 S = solution, R = perbuted solution
g?’ « If Ris better than S, we’ll always replace S with
R as usual.
Global
— Minimum But if R is worse than S, we may still replace S
> with R with a certain probability

Variable X




BB Simulated

Annealing There is a probability it

Unconditional ) :
might be a less bad solution

Acceptance

Starting
Configuration

Move accepted with
probability exp(-E/T)

Perturb
(Hill Climbin

S = solution, R = perbuted solution

Objective Function f(X)

« If Ris better than S, we’ll always replace S with
R as usual. B

Giobal « utif Ris worse than S, we may still replace S

e Wil with R with a certain probability

Variable X




BB Simulated
Annealing

Unconditional
Acceptance

Starting
Configuration

Move accepted with
probability exp(-E/T)

Found at final
temperature

Perturb
(Hill Climbin

S = solution, R = perbuted solution

Objective Function f(X)

« If R is better than S, we’ll always replace S with
R as usual. B

_— - utif Ris worse than S, we may still replace S

/—— Minimum with R with a certain probability

Variable X




BB Simulated Annealing

1. How do we define equilibrium?
* When we cannot yield any significant improvements after certain number of loops

A constant number of loops has been performed

1. How do we calculate the new temperature for each step?
A constant value is subtracted to get a new temperature, T' =T —Td
A constant scale factor is used to get a new temperature, T' = T*Rd
—> Scale factor normally can achieve better performance

Problem specific and may need to be tuned

D—drive ; d\e5|gn & fabricatio othods




JAR Simulated Annealing: Block Diagram

Define initial Evaluate energy
configuration R, E(R,)
S _ | Perturb configuration Evaluate energy Cor:l‘i[;::cﬁz:rgy
Ri—> R+ E(R;+)

AE = E(RH])-E(Ri)

| " 1

Reduce temperature 3 Reached Accept Ry as
Tiq oT:-AT «— Y—<_ equilbrum ) «—— : -V
=1 (T2 new configuration
atT;?

i

d |
Physical System Optimization Problem T &

— Probl i
Metal Structure roblem Keep R as current S
. - e | — -

Energy State ———  Cost Function configuration number v in [0,1]
Temperature ———  Control Parameter Metropolis step
State (configuration) .,  Solution
Careful Annealing .,  Simulated Annealing




ﬂ Concepts for a PSO Algorithm

» Particle Description: each particle has three features

— Position Xf/; (this is the /™" particle at time k, notice vector notation)

— Velocity V) (similar to search direction, used to update the position)

— Fitness or objective S X (determines which particle has the best value in
the swarm and also determines the best position of each particle over time.

2

Xl
2
1 2@
‘v\k.
1 v3
X
k k xl%
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ﬂ Concepts for a PSO Algorithm

* [nitial Swarm
— No well established guidelines for swarm size, normally 10 to 60.
— particles are randomly distributed across the design space.

Xy =X, +rand (X, —X

max min )

where Xnin and Xnax are vectors of lower and upper limit values
respectively.

— Evaluate the fitness of each particle and store:

 particle best ever position (particle memory pi here is same as x6 )
» Best position in current swarm (influence of swarm pg )

— Initial velocity is randomly generated.
X oo +rand (X ., — mm) position

At time

Vo

ate=driver @Leslgn fabmg’gy m



ﬂ Concepts for a PSO Algorithm

* Velocity Update
— provides search directions
— Includes deterministic and probabilistic parameters.

— Combines effect of current motion, particle own memory,
and swarm influence.

i i i g _x!
New velocity i i (p — X}, ) (pk X/ )
NVl =WV +c rand +c, rand
At At
H_J . ~ J \ ~ J
current motion particle memory swarm influence
influence
inertia factor self confidence swarm
0.4 t0 1.4 151t0 2 Eauideioa

2t0 2.5




ﬂ Concepts for a PSO Algorithm

* Position Update
— Position is updated by velocity vector.

X
k+1 g
. pk’
i N p!
Xk+l_xk+vk+1 ‘ o
..’.. ‘_._,..u N
QY
Xy ¥e

« Stopping Criteria
— Maximum change in best fithess smaller than specified
tolerance for a specified number of moves (S).

If(Pf)‘f(Pf_q)’Sf g = 12,8

ate=driver @Leslgn fabmg’gy m



n Demonstration of PSO

e,

NSNS = 7 7=
-2 -1 0 1 2
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m Heuristics: Summary

Population or Individual

Bounds

Data-types
Tuning

Memory

Probablistic Operators

Speed

Population

No clear definition of
neighbourhood

An encode anything
Many parameters

No memory, but implicitly
keeps track of good
performance through
elitism

Crossover and mutation

Can get stuck in local
minimum, may not yield
the global optimum

Individual

Defined and explicit. Not
all the search space is
assumed to be important

Continous
Few parameters

No memory, only used
after each temperature
reset

Metropolis Step

Typically the fastest, but
may only get a solution
‘near’ to the optimal

Population

No clear definition of
neighbourhood

Continous
Many parameters

Uses velocity and position

Deterministic and
probabilistic components

Hard to tune, can be
efficienc




n Heuristics: Summary

* No model/surrogate built
* No estimate of uncertainty

* No guarantee of optimality

— But can operate in very high dimensionality search spaces




ﬂ Bayesian Optimization

Bayesian Optimization

Global optimization of multimodal black-box function.

Initial Gaussian
Observation III I I Process .
Data ll I I Prior ="
| Y

Update

Posterior

Distribution

Acquisition

Function

-2

Iteration 1

o

Noise-free objective
—— Surrogate function
®  Noisy samples

-10 -05 00 05 10 15 2.0

Iteration 2

-1.0 =0.5 0.0 0.5 1.0 1.5 2.0

Iteration 3

=1.0 =0.5 0.0 0.3 1.0 1.5 2.0

Iteration 4

0.6

0.4 A

0.2 1

0.0 1

0.10

0.05 4

0.00 -

—— Acquisition function
-= Next sampling location

-1.0 =0.5 0.0 0.5 1.0 15 2.0

=1.0 =0.5 0.0 0.5 10 15 2.0




m Gaussian Processes

Our prior belief about an unknown function

Mean and standard deviation of the GP

2 ZTEN ///\—‘\\
N\ (=
1 1 N N\ < ‘ >
: | \r\/\ // y A S %
-1 - ~ > /N/ - N\
1 TS ol
we don’t have any knowledge about the function so the best guess v o
for our mean is in the middle of the real numbers i.e. 0. B
T3 -2 -1 0 1 2 3 = 3 2 ]
@] b on) L ok There is a wide range of possible
2107 functions and diverse function shapes

on display...

Hn z




m Gaussian Processes

Prior Belief

Training Data: observe some
outputs of the unknown function
at various points

Use Bayes’ rule to update our
belief about the function to get
the posterior Gaussian process

o _ prior Gaussian process

A1 0 1

The updated Gaussian process is constrained to
“the possible functions that fit our training data

posterior Gaussian process

our updated belief about the
function we’re trying to fit.




ﬂ Formalizing This Approach: Bayesian Optimization

: L 1.We first choose a surrogate model for
Bayesian Optimization .
Global optimization of multimodal black-box function. mOdelI ng the true

» function ff and define its prior.

Initial Gaussian

Observation I I I I I I I Process o
Data | I Prior K . o .
| | 2.Given the set of observations (function

Update evaluations), use Bayes rule to obtain
Posterior /\ the posterior.
Distribution

3.Use an acquisition function which is
a function of the posterior, to decide
the next sample point

L 2

Acquisition
Function

* 1.Add newly sampled data to the set of
observations and goto step #2 till
convergence or budget elapses.

P LR\ ' | _Date-driveqidesign & fabrication methiods




ﬂ The learning/utility/aquisition function

The utility should represent our design goal:.

1. Active Learning and experimental design: reduce the
uncertainty in the model (prediction or hyper-parameters).

2. Optimization: Minimize the loss in a sequence x1,..., 2,
N = E f:I'n Nf TM)

(1) does to a lot exploration whereas (2) encourages
exploitation about the minimum of f.

What options do we have for this acquisition function?




ﬂ Upper (lower) confidence band/

Direct balance between exploration and exploitation:
» In noiseless cases, it is a lower bound of the function to

minimize.
arcop(x;60,D) = —u(x;6,D) + Bro(x;6,D) .
» This allows to computer a bound on how close we are to
the minimum.

’

» Optimal choices available for the 'regularization parameter’.

Theorem 1 Let 6 - (0,1) and §, =
2log(|D|t?n%/66). Running GP-UCB with B, for
a sample f of a GP with mean function zero and
covariance function k(x, '), we obtain a regret bound

53 ) 5% 5% 20 of O*(\/T~rlog|D|) urz'qth high probability. Precisely,
with C, = 8/log(1l + o~ *) we have
Expected Loss

\/\/ Pr {R-,« < /CiTBryr VT > 1} 5] 8,

0.2 0.4 0.6 0.8 1.0

f(x)

o
o

GP-LCB(x)

o
S)

fabrig:gtio-



ﬂ Probability of Improvement

This acquisition function chooses the next query point as the one which has the highest

probability of improvement over the current max f(x™ ). Mathematically, we write the
fix*t)+e
selection of next point as follows, .
H*30
p+do

xi 1 = argmazx(apr(z)) = argmax(P(f(z) = (f(z7) +€)))

where,

Gold Content
- N w S w o ~ =] ©o

i
i
i
i
i
i
!
1
i
i
i
i
i
i
i

—-= Next Query Point
* Largest ap

P(-) indicates probability

€ is a small positive number

Acquisition function (ap(x))

O s i

4 . A o . th .-
And, z7 = argmax,. ., f(x;) where x; is the location queried at 2" time step. 0 1 2 3 4 5

X

The grey regions show the probability
Looking closely, we are just finding the upper-tail probability (or the CDF) of the surrogate density below the current max. The “area”

posterior. Moreover, if we are using a GP as a surrogate the expression above converts to, of the violet region at each point represents
the “probability of improvement over
: () & am € . ”
Tyl = argmazxr, P (‘L i(z) — f(&7) ) current maximum®,




ﬂ Probability of Improvement

* Pl uses € to strike a balance between exploration and exploitation.
Increasing € results in querying locations with a larger o as their probability density is spread.

Iteration: 9
_ £=3
Iteration: O &%
£=03 § = Predicted (u)

£ — Predicted () 56 —— Ground Truth (f)
§ 6 = Ground Truth (f) ; H*tO
& o4 g :
2.4 ; \/ Hxo O ® Training Points
O @® Training Points T T :

4 ! . | | i Query Point

o 3 5 5 i 4 ¢ @® QueryPoint 0 1 2 3 | 4 5 6 ®
10-76 10-76 &

g 107156 o ‘ g. 107156 -
1023 — Acquisition function 10-236 ——— Acquisition Function
+ Maxima + Maxima
0 1 2 3 4 5 6
0 1 2 3 4 5 6

We are unable to exploit when we land near the
global maximum. Moreover, with high exploration, the
setting becomes similar to active learning.




ﬂ Expected Improvement Function

p(y) is the probability density of the
normal distribution N(u(x), o?(x))

s N .

Improvement is where the y(x) is better ,” 1t Y f N B = / H(@)p(w)dy :
(lower) than the previous best minimum | p(y) ~ N(u(z),0%(x)) L o
| | N e e e e e e e e e e /

| |

: | |

I (I‘) L Ymin — ZIJ(-'I?) if Y (-’I; ) < Ymin : : G

0 if y(.’Ij) 2 Ymin : l/ : [/ lmprovement amount \|
| A / Jran : : l |
| dy ——t I = Ymin — Y(Z) . ; '
i ,7 | BE(I) =) _ I(x)p(y)dy
1 | " : [ I
- \ ~E [
X Y 7 '\ Probability /'

0.0 0.2 0.4 0.6 0.8 1.0
Expected Improvement

L~/ W\

0.0 0.2 0.4 0.6 0.8 1.0




ﬂ Expected Improvement Function

» Perhaps the most used acquisition.
» Explicit for available for Gaussian posteriors.

» It is too greedy in some problems. It is possible to make
more explorative adding a ‘explorative’ parameter

apr(x;0,D) = o(x;0,D)(v(z)@(v(z))) + N(v(x); 0, 1).

where |
f(xbest) = ,u(x; 9, D) + Y

v(z) =

o(x;0,D)




n The choice of utility matters...

The choice of the utility may change a lot the result of the

optimisation.

0.16 ‘ T 7
o ‘ %
5 {. ;
4= 0.12 :
O :
> ! ;
© :
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O :
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n Why Doesn’t Everyone Use This?

These ideas have been around for decades.
Why is Bayesian optimization in broader use?

» Fragility and poor default choices.
Getting the function model wrong can be catastrophic.

» There hasn’t been standard software available.
It’s a bit tricky to build such a system from scratch.

» Experiments are run sequentially.
We want to take advantage of cluster computing.

» Limited scalability in dimensions and evaluations.
We want to solve big problems.




n Rules of Thumb

Bayesian optimization

+ is a powerful algorithm for optimizing functions that are expensive to evaluate, noisy, and have a small number
of dimensions. It can find the optimum with relatively few function evaluations, which can be a huge advantage
when evaluating the function is computationally expensive.

- The main disadvantage is that it can be slow to converge when the function is highly non-linear or has many
dimensions.

Genetic algorithms

+ are well-suited for problems with a large number of potential solutions, they can search a large space of
potential solutions and are good at finding global optima.

- They can be slow to converge and can suffer from premature convergence.

Simulated Annealing algorithms

+ are well-suited for problems with a large number of local optima. They can escape local optima and find the
global optimum.

- The main disadvantage is that they can be slow to converge and require careful tuning of the temperature
schedule.

Particle swarm optimization

+ is well-suited for problems with a large number of dimensions, it can search a large space of potential solutions
and is good at finding global optima.

- It can be slow to converge and can suffer from premature convergence.




g Recap Quiz!!

https://participant.turningtechnologies.eu/en/join

https://participant.turningtechnologies.eu

SessionID: datadriven https://ttpoll.eu/p/datadriven
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Turning
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Data Driven Methods:
What to use when




g Scenario 1: Optimization of foam for insole

Goal: Maximize stiffness whilst minimizing material ~ Function Evaluation:

Cellular structures

Insole Design Unit cells
- [ )
ol - @.’ K —
[ )
3D orint Integration of lattice
printing e
Numarieal simalaton structures with insole
‘_ v S <_ _ ‘_
X

Q1: How should | encode?

Q2: Should | consider dimensionality reduction?
Q3: What DD algorithm should | use and why?

Can be simulated

Takes approximately 1s per
simulation evaluation

Goal is to optimize for many
different materials



B Scenario 2: Falling Paper Shapes

Goal: Identify what paper shape falls the fastes

Steady and
Periodic

Tumblfhg @ T-Teld[e
' '

Ql1: How should | encode?
Q2: Should I consider dimensionality reduction?
Q3: What DD algorithm should | use and why?

Function Evaluation:

 Can’t be simulated

* Takes approximately 90 seconds
per trial, must be human
supervised

e Stocastic behaviours



g Scenario 3: Optimization of soft robot

Goal: Maximize stiffness whilst minimizing material ~ Function Evaluation:

* Can be simulated, takes 1 hr per
simulation

* Can be experimentally evaluated,
take 90 minutes to build and test

Q1: How should | collect data?

Q2: How should | encode?
3

Q3: What DD algorithm should | use and why?




g Scenario 4: Optimization of 3D printing of structures

Goal: Maximize overhang with least material Function Evaluation:

 (Can be simulated, take 60 seconds,
but very low accuracy

* Can be experimentally evaluated
by takes 5 minutes per design

Q1: How should | collect data?

Q2: How should | encode?
3

Q3: What DD algorithm should | use and why?
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