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Data Driven Methods: What to use when

Heuristic Search Techniques

Genetic Algorithms 
(Holland – 1975) 

Inspired by genetics and 
natural selection – max 

fitness

Simulated Annealing
(Kirkpatrick – 1983)
Inspired by statistical
mechanics– min energy

Partical Swarm Operators - 
Kennedy - 1995) Inspired 
by the social behavior of 
swarms of insects or flocks 
of birds
– max “food”

Bayesian 
Optimization

Different Acquisition 
Functions



GAs: Summary

Specific characteristics:
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Specifics of GAs versus other ‘traditional’ methods

• GAs search a population of points in parallel, not only a single point

• GAs use probabilistic transition rules, not deterministic ones

• GAs work on an encoding of the design variable set rather than on the 
variables themselves

• GAs do not require derivative information or other auxiliary knowledge - only 
the objective function and corresponding fitness levels influence search
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Genetic Algorithm

Initialize population

Select individuals for mating

Mate individuals and produce children 

Mutate children

Are stopping criteria satisfied?
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Simulated Annealing
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• Start in a randomized state (T high)

• Find ‘close’ perturbed solutions – accepting moves that decrease the energy - find 
the solution with the minimum energy at this state – equilibrium is reached

• Decrease the temperature
• Sometimes accepting less bad configurations at each temperature (enables hill-

climbing)
• To decide if good/bad use Boltzmann distribution, P(r,t) =exp(-E/T)



S = solution, R = perbuted solution

• If R is better than S, we’ll always replace S with

R as usual. B

• ut if R is worse than S, we may still replace S 
with R with a certain probability

Simulated
Annealing
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S = solution, R = perbuted solution

• If R is better than S, we’ll always replace S with

R as usual.

But if R is worse than S, we may still replace S 

with R with a certain probability

Simulated
Annealing
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Unconditional  
Acceptance



S = solution, R = perbuted solution

• If R is better than S, we’ll always replace S with

R as usual. B

• ut if R is worse than S, we may still replace S 
with R with a certain probability

Simulated
Annealing

Unconditional  
Acceptance

Move accepted with 
probability exp(-E/T)
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There is a probability it
might be a less bad solution



Unconditional  
Acceptance

Move accepted with
probability exp(-E/T)

Found at final
temperature

S = solution, R = perbuted solution

• If R is better than S, we’ll always replace S with

R as usual. B

• ut if R is worse than S, we may still replace S 
with R with a certain probability
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Simulated
Annealing



Simulated Annealing
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1. How do we define equilibrium?
• When we cannot yield any significant improvements after certain number of loops
• A constant number of loops has been performed

1. How do we calculate the new temperature for each step?
• A constant value is subtracted to get a new temperature, T’ = T –Td
• A constant scale factor is used to get a new temperature, T’ = T*Rd
→ Scale factor normally can achieve better performance

Problem specific and may need to be tuned



Simulated Annealing: Block Diagram
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Concepts for a PSO Algorithm
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Concepts for a PSO Algorithm
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Concepts for a PSO Algorithm
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Concepts for a PSO Algorithm
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Demonstration of PSO
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GAs SA PSO

Population or Individual Population Individual Population

Bounds No clear definition of 
neighbourhood

Defined and explicit.  Not 
all the search space is 
assumed to be important

No clear definition of 
neighbourhood

Data-types An encode anything Continous Continous

Tuning Many parameters Few parameters Many parameters

Memory No memory, but implicitly 
keeps track of good 
performance through 
elitism

No memory, only used 
after each temperature 
reset

Uses velocity and position

Probablistic Operators Crossover and mutation Metropolis Step Deterministic and 
probabilistic components

Speed Can get stuck in local 
minimum, may not yield 
the global optimum

Typically the fastest, but 
may only get a solution 
‘near’ to the optimal

Hard to tune, can be 
efficienc
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Heuristics: Summary

• No model/surrogate built

• No estimate of uncertainty

• No guarantee of optimality

→ But can operate in very high dimensionality search spaces



Bayesian Optimization



Our prior belief about an unknown function

Mean and standard deviation of the GP

we don’t have any knowledge about the function so the best guess
for our mean is in the middle of the real numbers i.e. 0.

There is a wide range of possible 
functions and diverse function shapes 
on display…

Gaussian Processes

Data-driven design & fabrication methods



Prior Belief
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Training Data: observe some 
outputs of the unknown function 
at various points

Use Bayes’ rule to update our 
belief about the function to get 
the posterior Gaussian process

The updated Gaussian process is constrained to 
the possible functions that fit our training data

Gaussian Processes
prior Gaussian process

posterior Gaussian process

our updated belief about the
function we’re trying to fit.



1.We first choose a surrogate model for 
modeling the true

• function ff and define its prior.

2.Given the set of observations (function
evaluations), use Bayes rule to obtain 
the posterior.

3.Use an acquisition function which is 
a function of the posterior, to decide
the next sample point

• 1.Add newly sampled data to the set of
observations and goto step #2 till
convergence or budget elapses.

Formalizing This Approach: Bayesian Optimization
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The learning/utility/aquisition function
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What options do we have for this acquisition function?



Upper (lower) confidence band/

Data-driven design & fabrication methods



Probability of Improvement
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The grey regions show the probability 
density below the current max. The “area” 
of the violet region at each point represents 
the “probability of improvement over
current maximum”.



• PI uses ϵ to strike a balance between exploration and exploitation.
• Increasing ϵ results in querying locations with a larger σ as their probability density is spread.

We are unable to exploit when we land near the 
global maximum. Moreover, with high exploration, the 
setting becomes similar to active learning.
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Probability of Improvement



Expected Improvement Function

Improvement is where the y(x) is better 
(lower) than the previous best minimum

p(y) is the probability density of the 
normal distribution N(μ(x), σ²(x))
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Expected Improvement Function
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The choice of utility matters…
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Why Doesn’t Everyone Use This?
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Bayesian optimization 
+ is a powerful algorithm for optimizing functions that are expensive to evaluate, noisy, and have a small number 
of dimensions. It can find the optimum with relatively few function evaluations, which can be a huge advantage 
when evaluating the function is computationally expensive. 
- The main disadvantage is that it can be slow to converge when the function is highly non-linear or has many 
dimensions.
Genetic algorithms
+ are well-suited for problems with a large number of potential solutions, they can search a large space of 
potential solutions and are good at finding global optima. 
- They can be slow to converge and can suffer from premature convergence.
Simulated Annealing algorithms 
+ are well-suited for problems with a large number of local optima. They can escape local optima and find the 
global optimum. 
- The main disadvantage is that they can be slow to converge and require careful tuning of the temperature 
schedule.
Particle swarm optimization 
+ is well-suited for problems with a large number of dimensions, it can search a large space of potential solutions 
and is good at finding global optima. 
- It can be slow to converge and can suffer from premature convergence.

Rules of Thumb
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Recap Quiz!!

https://participant.turningtechnologies.eu/en/join

https://participant.turningtechnologies.eu
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SessionID: datadriven https://ttpoll.eu/p/datadriven

https://participant.turningtechnologies.eu/en/join
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Data Driven Methods: 
What to use when



Scenario 1: Optimization of foam for insole 

Function Evaluation:

• Can be simulated
• Takes approximately 1s per 

simulation evaluation
• Goal is to optimize for many 

different materials

Goal: Maximize stiffness whilst minimizing material

Q1: How should I encode?
Q2: Should I consider dimensionality reduction?
Q3: What DD algorithm should I use and why?



Function Evaluation:

• Can’t be simulated
• Takes approximately 90 seconds 

per trial, must be human 
supervised

• Stocastic behaviours

Goal: Identify what paper shape falls the fastes

Q1: How should I encode?
Q2: Should I consider dimensionality reduction?
Q3: What DD algorithm should I use and why?

Scenario 2: Falling Paper Shapes



Scenario 3: Optimization of soft robot

Function Evaluation:

• Can be simulated, takes 1 hr per 
simulation

• Can be experimentally evaluated, 
take 90 minutes to build and test

Goal: Maximize stiffness whilst minimizing material

Q1: How should I collect data?
Q2: How should I encode?
Q3: What DD algorithm should I use and why?



Scenario 4: Optimization of 3D printing of structures

Function Evaluation:

• Can be simulated, take 60 seconds, 
but very low accuracy

• Can be experimentally evaluated 
by takes 5 minutes per design

Q1: How should I collect data?
Q2: How should I encode?
Q3: What DD algorithm should I use and why?

Goal: Maximize overhang with least material
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